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Abstract

In this paper, the exact formulae for the generalized degree distance, the
degree distance and the reciprocal degree distance of the tensor product
of a connected graph and of the complete multipartite graph with partite
sets of sizes m0, m1, . . . , mr−1 are obtained. In addition we show that
the result given by Wang and Kang [J. Comb. Optim., online June 2014]
on the degree distance of the tensor product of graphs is incorrect, and
the corrected version of this result is the corollary of our main theorem.

1 Introduction

All the graphs considered in this paper are simple and connected. For a graph G, and
for vertices u, v ∈ V (G), the distance between u and v in G, denoted by dG(u, v), is
the length of a shortest (u, v)-path in G. We also let dG(v) be the degree of a vertex
v ∈ V (G). For two simple graphs G and H, their tensor product, denoted by G×H,
has vertex set V (G) × V (H) in which (g1, h1) and (g2, h2) are adjacent whenever
g1g2 is an edge in G and h1h2 is an edge in H. Note that if G and H are connected
graphs, then G × H is connected only if at least one of the graphs is nonbipartite.
The tensor product of graphs has been extensively studied in relation to areas such
as graph colorings, graph recognition, decompositions of graphs, and design theory;
see [1, 3, 4, 18, 21].

A topological index of a graph is a real number related to the graph; it does not de-
pend on any labeling or pictorial representation of a graph. In theoretical chemistry,
molecular structure descriptors (also called topological indices) are used for model-
ing physicochemical, pharmacologic, toxicologic, biological and other properties of
chemical compounds [10]. There exist several types of such indices, especially those
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based on vertex and edge distances. One of the most intensively studied topological
indices is the Wiener index.

Let G be a connected graph. The Wiener index of G is defined as W (G) =
1
2

∑
u, v ∈V (G)

dG(u, v), with the summation over all pairs of distinct vertices of G. This

definition can be further generalized in the following way:

Wλ(G) =
1

2

∑
u, v ∈V (G)

dλG(u, v),

where dλG(u, v) = (dG(u, v))λ and λ is a real number [11, 12]. If λ = −1, then
W−1(G) = H(G), where H(G) is the Harary index of G. In the chemical literature
both W 1

2
[28] as well as the general case Wλ were examined [8, 13].

Dobrynin and Kochetova [6] and Gutman [9] independently proposed a vertex-
degree-weighted version of the Wiener index called the degree distance or the Schultz
molecular topological index, which is defined for a connected graph G as DD(G) =
1
2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v), where dG(u) is the degree of the vertex u in G.

Note that the degree distance is a degree-weight version of the Wiener index. In
the literature, many results on the degree distance DD(G) have been put forward in
past decades, and they mainly deal with extreme properties of DD(G). Tomescu [25]
showed that the star is the unique graph with minimum degree distance within the
class on n-vertex connected graphs. Tomescu [26] deduced properties of graphs with
minimum degree distance in the class of n-vertex connected graphs with m ≥ n− 1
edges. For other related results along this line, see [5, 16, 19].

The additively weighted Harary index(HA) or the reciprocal degree distance

(RDD) is defined in [2] as HA(G) = RDD(G) = 1
2

∑
u,v∈V (G)

(dG(u)+dG(v))
dG(u,v)

. In [14],

Hamzeh et al. recently introduced the concept of the generalized degree distance
of graphs. Hua and Zhang [17] have obtained lower and upper bounds for the re-
ciprocal degree distance of a graph in terms of other graph invariants, including
the degree distance, Harary index, the first Zagreb index, the first Zagreb coindex,
pendent vertices, independence number, chromatic number and vertex- and edge-
connectivity. Pattabiraman and Vijayaragavan [22, 23] have obtained the reciprocal
degree distance of the join, tensor product, strong product and wreath product of
two connected graphs in terms of other graph invariants. The chemical applications
and mathematical properties of the reciprocal degree distance are well studied in
[2, 20, 24].

The generalized degree distance, denoted by Hλ(G), is defined as Hλ(G) =
1
2

∑
u,v∈V (G)

(dG(u) + dG(v))dλG(u, v), where λ is a any real number. If λ = 1 then

Hλ(G) = DD(G), and if λ = −1 then Hλ(G) = RDD(G). The generalized degree
distance of unicyclic and bicyclic graphs are studied by Hamzeh et al. [14, 15]. Also
they have given the generalized degree distance of the Cartesian product, join, sym-
metric difference, composition and disjunction of two graphs. It is well-known that
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many graphs arise from simpler graphs via various graph operations. Hence it is im-
portant to understand how certain invariants of such product graphs are related to
the corresponding invariants of the original graphs. In this paper, the exact formulae
for the generalized degree distance, degree distance and reciprocal degree distance
of the tensor product G×Km0,m1, ...,mr−1 , where Km0,m1, ...,mr−1 is the complete mul-
tipartite graph with partite sets of sizes m0, m1, . . . , mr−1 are obtained. We show
in Section 2 that the major result proved in the paper [27] is incorrect, and the cor-
rected version of this result is a corollary of Theorem 2.5 proved by us. In addition,
we have given a counterexample to justify our claim.

The first Zagreb index is defined as M1(G) =
∑

u∈V (G)

dG(u)2. In fact, one can

rewrite the first Zagreb index as M1(G) =
∑

uv∈E(G)

(dG(u)+dG(v)). Zagreb indices are

found to have applications in Quantitative Structure Property Relationship (QSPR)
and Quantitative Structure Activity Relationship (QSAR) studies as well; see [7].

If m0 = m1 = · · · = mr−1 = s in Km0,m1, ...,mr−1 (the complete multipartite
graph with partite sets of sizes m0, m1, . . . , mr−1), then we denote this graph by
Kr(s). For S ⊆ V (G), 〈S〉 denotes the subgraph of G induced by S. For two
subsets S, T ⊂ V (G), not necessarily disjoint, by the notation dG(S, T ) we mean
the sum of the distances in G from each vertex of S to every vertex of T ; that is,
dG(S, T ) =

∑
s∈S, t∈T

dG(s, t).

2 Generalized degree distance of tensor product of graphs

Let G be a connected graph with V (G) = {v0, v1, . . . , vn−1} and let Km0,m1, ...,mr−1 ,
r ≥ 3, be the complete multiparite graph with partite sets V0, V1, . . . , Vr−1 with
|Vi| = mi, 0 ≤ i ≤ r−1. In the graph G×Km0,m1, ...,mr−1 , let Bij = vi×Vj, vi ∈ V (G)
and 0 ≤ j ≤ r − 1. For our convenience, we write

V (G)× V (Km0,m1, ...,mr−1) =
n−1⋃
i=0

{
vi ×

r−1⋃
j=0

Vj

}

=
n−1⋃
i=0

{{vi × V0} ∪ {vi × V1} ∪ · · · ∪ {vi × Vr−1}}

=
n−1⋃
i=0

{
Bi0 ∪Bi1 ∪ · · · ∪Bi(r−1)

}
, where Bij = vi × Vj

=

r−1
n−1⋃
i=0
j=0

Bij.
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Let B = {Bij}i=0,1,..., n−1
j=0,1,..., r−1

. We call Xi =
r−1⋃
j=0

Bij a layer and Yj =
n−1⋃
i=0

Bij a column

of G × Km0,m1, ...,mr−1 ; see Figures 1 and 2. Clearly, a layer (respectively, column)
is an independent set in G × Km0,m1, ...,mr−1 ; in particular, Bij is an independent
set. Further, if vivk ∈ E(G), then the subgraph 〈Bij ∪Bkp〉 of G×Km0,m1, ...,mr−1 is
isomorphic to K|Vj ||Vp| or a totally disconnected graph according as j 6= p or j = p.
This is used in the proof of the next lemma.

Bkl• •

•

Bil••

V0 · · · Vl · · · Vr−1

vertices of Km0,m1,...,mr−1

v0

...

vi

...

vj

...

vk

...

vn−1

ve
rt

ic
es

of
G

If vivk is on a triangle vivjvk in G, then the distance from
a vertex in Bil to a vertex in Bkl is 2 and a shortest path
is shown with broken edges. If vivk is an edge but not
on a triangle in G, then the distance from a vertex in
Bil to a vertex in Bkl is 3 and a shortest path is shown
with solid edges.

Fig. 1

The proof of the following lemma follows easily from the properties and structure
of G×Km0,m1, ...,mr−1 and the paths as shown in Figures 1 and 2.



K. PATTABIRAMAN AND P. KANDAN/AUSTRALAS. J. COMBIN. 62 (3) (2015), 211–227 215

Bkl•

•

••

• •

Bil•

V0 · · · Vl · · · Vr−1

vertices of Km0,m1,...,mr−1

v0

...

vi

...

...

...

...

vk
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vn−1
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rt
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es

of
G

If the distance d from vi to vk in G is even (resp. odd),
then the distance from a vertex in Bil to a vertex in Bkl

is d (resp. d) and a shortest path is shown with broken
(resp. solid) edges.

Fig. 2

Lemma 2.1. Let G be a connected graph on n ≥ 2 vertices and let Bij, Bkp ∈ B of
the graph G×Km0,m1, ...,mr−1, where r ≥ 3.

(i) The distance between any two distinct vertices in Bij is 2.

(ii) The distance between any two vertices one from Bij and another from Bip,
j 6= p, is 2.

(iii) The distance between any two vertices one from Bij and another from Bkj,
i 6= k, is 2 or 3 according as vivk lies on a triangle in G or vivk ∈ E(G) and
vivk does not lies on a triangle in G.

(iv) If vivk ∈ E(G), then the distance between two vertices, one in Bij and the other
in Bkp, i 6= k, j 6= p, is 1.
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(v) If vivk /∈ E(G), then the distance between two vertices, one in Bij and the other
in Bkp, is dG(vi, vk).

The proof of the following lemma follows easily from Lemma 2.1, and hence it
is left to the reader. This lemma is used in the proof of the main theorem of this
section.

Lemma 2.2. Let G be a connected graph on n ≥ 2 vertices and let Bij, Bkp ∈ B of
the graph G′ = G×Km0,m1, ...,mr−1, where r ≥ 3.

(i) If vivk ∈ E(G), then

dλG′(Bij, Bkp) =


mjmp, if j 6= p,

2λm2
j , if j = p and vivk is on a triangle of G,

3λm2
j , if j = p and vivk is not on a triangle of G.

(ii) If vivk /∈ E(G), then dλG′(Bij, Bkp) =

{
mjmp d

λ
G(vi, vk), if j 6= p,

m2
j d

λ
G(vi, vk), if j = p.

(iii) dλG′(Bij, Bip) =

{
2λmj(mj − 1), if j = p,

2λmjmp, if j 6= p.

Proof. (i) Let vivk ∈ E(G).

If j 6= p, then the distance between a vertex of Bij and a vertex of Bkp is 1 in
G′ and there are mjmp pairs of vertices between Bij and Bkp; hence dλG′(Bij, Bkp) =
mjmp.

If j = p and vivk lie in a triangle (respectively, not in a triangle), then the distance
between a vertex of Bij and a vertex of Bkj is 2λ (respectively, 3λ) in G′, and there are
m2
j pairs of vertices between Bij and Bkj; hence dλG′(Bij, Bkj) = 2λm2

j (respectively,
3λm2

j).

(ii) If vivk /∈ E(G), then the distance from a vertex of Bij to a vertex of Bkj (re-
spectively, Bkp) is dλG(vi, vk) in G′ and there are mjmp (respectively, m2

j) pair of ver-
tices between Bij and Bkp (respectively, Bkj); hence dλG′(Bij, Bkp) = mjmpd

λ
G(vi, vk)

(respectively, dλG′(Bij, Bkj) = m2
jd
λ
G(vi, vk)).

(iii) The distance between a vertex of Bij and a vertex of Bip (respectively, Bij)
is 2λ (respectively, 2λ) in G′, and there are mj(mj − 1) (respectively, mjmp) pairs of
vertices between Bij and Bip (respectively, Bij); hence dλG′(Bij, Bij) = 2λmj(mj − 1)
(respectively, dλG′(Bij, Bip) = 2λmjmp).

Lemma 2.3. Let G be a connected graph and let Bij be in G′ = G×Km0,m1, ...,mr−1.
Then the degree of a vertex (vi, uj) ∈ Bij in G′ is dG′((vi, uj)) = dG(vi)(n0 − mj),

where n0 =
r−1∑
j=0

mj.
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Remark 2.4. The following sums hold:
∑r−1

j, p=0
j 6= p

mjmp = 2q,
r−1∑
j=0

m2
j = n2

0 − 2q,

∑r−1
j, p=0
j 6= p

m2
jmp = n3

0 − 2n0q −
r−1∑
j=0

m3
j =

∑r−1
j, p=0
j 6= p

mjm
2
p and

r−1∑
j, p=0
j 6= p

m3
jmp = n0

r−1∑
j=0

m3
j −

r−1∑
j=0

m4
j =

r−1∑
j, p=0
j 6= p

mjm
3
p,

where n0 =
r−1∑
j=0

mj and q is the number of edges of Km0,m1, ...,mr−1 .

Next we determine the generalized degree distance of G×Km0,m1, ...,mr−1 .

Theorem 2.5. Let G be a connected graph with n ≥ 2 vertices and m edges and let
E2 be the set of edges of G which do not lie on any C3 of it. If n0 and q are the
numbers of vertices and edges of Km0,m1, ...,mr−1, r ≥ 3, respectively, then

Hλ(G×Km0,m1, ...,mr−1) = 2n0q Hλ(G) + 2λ+2mq(n0 − 1)+(
(2λ − 1)M1(G) +

(3λ − 2λ)

2

∑
vivk ∈E2

(
dG(vi) + dG(vk)

))(
n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)
.

Proof. Let G′ = G×Km0,m1, ...,mr−1 . Clearly,

Hλ(G
′) =

1

2

∑
Bij , Bkp ∈B

(
dG′(Bij) + dG′(Bkp)

)
dλG′(Bij, Bkp)

=
1

2

(
n−1∑
i=0

r−1∑
j, p=0
j 6= p

(
dG′(Bij) + dG′(Bip)

)
dλG′(Bij, Bip)

+
n−1∑
i, k=0
i 6= k

r−1∑
j=0

(
dG′(Bij) + dG′(Bkj)

)
dλG′(Bij, Bkj)

+
n−1∑
i, k=0
i 6= k

r−1∑
j, p=0
j 6= p

(
dG′(Bij) + dG′(Bkp)

)
dλG′(Bij, Bkp)

+
n−1∑
i=0

r−1∑
j=0

(
dG′(Bij) + dG′(Bij)

)
dλG′(Bij, Bij)

)

=
1

2
{A1 + A2 + A3 + A4}, (2.1)

where A1 to A4 are the sums of the above terms, in order.
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We shall calculate A1 to A4 of (2.1) separately.

(A1) First we compute
n−1∑
i=0

r−1∑
j, p=0
j 6= p

(
dG′(Bij) + dG′(Bip)

)
dλG′(Bij, Bip).

n−1∑
i=0

r−1∑
j, p=0
j 6= p

(
dG′(Bij) + dG′(Bip)

)
dλG′(Bij, Bip)

=
n−1∑
i=0

r−1∑
j, p=0
j 6= p

(
(n0 −mj)dG(vi) + (n0 −mp)dG(vi)

)
2λmjmp,

by Lemmas 2.1, 2.2 and 2.3

=
n−1∑
i=0

r−1∑
j, p=0
j 6= p

2λ
(

2n0 −mj −mp

)
dG(vi)mjmp

= 2λ+2m
(

4n0q − n3
0 +

r−1∑
j=0

m3
j

)
, by Remark 2.4.

(A2) Next we compute
r−1∑
j=0

n−1∑
i, k=0
i 6= k

(
dG′(Bij)+dG′(Bkj)

)
dλG′(Bij, Bkj). For this, initially

we calculate
n−1∑
i, k=0
i 6= k

(
dG′(Bij) + dG′(Bkj)

)
dλG′(Bij, Bkj).

Let E1 = {uv ∈ E(G) |uv is on a C3 in G} and E2 = E(G)− E1.

n−1∑
i, k=0
i 6= k

(
dG′(Bij) + dG′(Bkj)

)
dλG′(Bij , Bkj)

=
n−1∑
i, k=0
i 6= k

vivk /∈E(G)

(
dG′(Bij) + dG′(Bkj)

)
dλG′(Bij , Bkj)
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+

n−1∑
i, k=0
i 6= k

vivk ∈E1

(
dG′(Bij) + dG′(Bkj)

)
dλG′(Bij , Bkj)

+

n−1∑
i, k=0
i 6= k

vivk ∈E2

(
dG′(Bij) + dG′(Bkj)

)
dλG′(Bij , Bkj)

=

n−1∑
i, k=0
i 6= k

vivk /∈E(G)

(n0 −mj)(dG(vi) + dG(vk))m
2
j dλG(vi, vk)

+

n−1∑
i, k=0
i 6= k

vivk ∈E1

(n0 −mj)(dG(vi) + dG(vk))2
λm2

j

+
n−1∑
i, k=0
i 6= k

vivk ∈E2

(n0 −mj)(dG(vi) + dG(vk))3
λm2

j , by Lemmas 2.2 and 2.3

=
n−1∑
i, k=0
i 6= k

vivk /∈E(G)

(n0 −mj)
(
dG(vi) + dG(vk)

)
m2
j dλG(vi, vk)

+
n−1∑
i, k=0
i 6= k

vivk ∈E1

(n0 −mj)
(
dG(vi) + dG(vk)

)(
2λm2

j +m2
j −m2

j

)

+
n−1∑
i, k=0
i 6= k

vivk ∈E2

(n0 −mj)
(
dG(vi) + dG(vk)

)(
3λm2

j +m2
j −m2

j

)
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=

(
n−1∑
i, k=0
i 6= k

vivk /∈E(G)

(n0 −mj)
(
dG(vi) + dG(vk)

)
m2
j dλG(vi, vk)

+
n−1∑
i, k=0
i 6= k

vivk ∈E1

(n0 −mj)
(
dG(vi) + dG(vk)

)
m2
j dλG(vi, vk)

+
n−1∑
i, k=0
i 6= k

vivk ∈E2

(n0 −mj)
(
dG(vi) + dG(vk)

)
m2
j dλG(vi, vk)

)

+
n−1∑
i, k=0
i 6= k

vivk ∈E1

(n0 −mj)
(
dG(vi) + dG(vk)

)
(2λ − 1)m2

j

+
n−1∑
i, k=0
i 6= k

vivk ∈E2

(n0 −mj)
(
dG(vi) + dG(vk)

)
(3λ − 1)m2

j ,

since dλG(vi, vk) = 1 if vivk ∈ E1 and vivk ∈ E2

=
n−1∑
i, k=0
i 6= k

(n0 −mj)
(
dG(vi) + dG(vk)

)
m2
j dλG(vi, vk)

+

(
n−1∑
i, k=0
i 6= k

vivk ∈E1

(n0 −mj)
(
dG(vi) + dG(vk)

)
(2λ − 1)m2

j

+
n−1∑
i, k=0
i 6= k

vivk ∈E2

(n0 −mj)
(
dG(vi) + dG(vk)

)
(2λ − 1)m2

j

)

+
n−1∑
i, k=0
i 6= k

vivk ∈E2

(n0 −mj)
(
dG(vi) + dG(vk)

)
(3λ − 2λ)m2

j

= (n0 −mj)m
2
j

(
2Hλ(G) + 2M1(G)(2λ −1) + (3λ − 2λ)

n−1∑
i, k=0
i 6= k

vivk ∈E2

(dG(vi) + dG(vk))
)
,(2.2)

where M1(G) is the first Zagreb index of G. Note that each edge vivk of G is being
counted twice in the sum, namely, vivk and vkvi.
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Now summing (2.2) over j = 0, 1, . . . , r − 1, we get

r−1∑
j=0

n−1∑
i, k=0
i 6= k

(
dG′(Bij)) + dG′(Bkj)

)
dλG′(Bij, Bkj) =

(
n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)

×
(

2Hλ(G) + 2(2λ − 1)M1(G) + (3λ − 2λ)
n−1∑
i, k=0
i 6= k

vivk ∈E2

(
dG(vi) + dG(vk)

))
, (2.3)

by Remark 2.4.

(A3) Next we compute
n−1∑
i, k=0
i 6= k

r−1∑
j, p=0
j 6= p

(
dG′(Bij) + dG′(Bkp)

)
dλG′(Bij, Bkp).

n−1∑
i, k=0
i 6= k

r−1∑
j, p=0
j 6= p

(
dG′(Bij) + dG′(Bkp)

)
dλG′(Bij , Bkp)

=
n−1∑
i, k=0
i 6= k

r−1∑
j, p=0
j 6= p

(
(n0 −mj)dG(vi) + (n0 −mp)dG(vk)

)
mjmp dλG(vi, vk),

by Lemmas 2.2 and 2.3

=
n−1∑
i, k=0
i 6= k

r−1∑
j, p=0
j 6= p

(
(n0mjmp −m2

jmp)dG(vi)d
λ
G(vi, vk) + (n0mjmp−mjm

2
p)dG(vk)d

λ
G(vi, vk

)

=

n−1∑
i, k=0
i 6= k

r−1∑
j, p=0
j 6= p

nomjmp

(
dG(vi) + dG(vk)

)
dλG(vi, vk)−m2

jmpdG(vi)d
λ
G(vi, vk)

−mjm
2
pdG(vk)d

λ
G(vi, vk),

by Remark 2.4

= 2qn0(2Hλ(G))− (n3
0 − 2qn0 −

r−1∑
j=0

m3
j )(2Hλ(G))

=
(
4n0q − n3

0 +

r−1∑
j=0

m3
j

)
2Hλ(G). (2.4)
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(A4) Finally, we compute
n−1∑
i=0

r−1∑
j=0

(
dG′(Bij) + dG′(Bij)

)
dλG′(Bij, Bij).

n−1∑
i=0

r−1∑
j=0

(
dG′(Bij) + dG′(Bij)

)
dλG′(Bij, Bij)

=
n−1∑
i=0

r−1∑
j=0

2λ+1(n0 −mj)dG(vi)mj(mj − 1), by Lemma 2.2

=
( n−1∑
i=0

dG(vi)
) r−1∑
j=0

2λ+1(n0 −mj)mj(mj − 1)

= 2λ+2m
(
n3
0 − 2n0q − 2q −

r−1∑
j=0

m3
j

)
, by Remark 2.4. (2.5)

Using (2.1) and the sums A1, A2, A3 and A4 in (2.2), (2.3), (2.4) and (2.5), respec-
tively, we have,

Hλ(G
′) = 2n0q Hλ(G) + 2λ+2mq(n0 − 1)

+

(
(2λ − 1)M1(G) +

(3λ − 2λ)

2

∑
vivk ∈E2

(
dG(vi) + dG(vk)

))(
n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)
.

Using λ = 1 in Theorem 2.5, we have the following corollary, which is a corrected
version of the main theorem proved by Wang and Kang [27].

Corollary 2.6. Let G be a connected graph with n ≥ 2 vertices and m edges and
let E2 be the set of edges of G which do not lie on any C3 of it. If n0 and q
are the numbers of vertices and edges of Km0,m1, ...,mr−1 , r ≥ 3, respectively, then

DD(G×Km0,m1, ...,mr−1) = 2n0q DD(G)+8mq(n0−1)+
(
M1(G)+ 1

2

∑
vivk ∈E2

(dG(vi)+

dG(vk))
)(
n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)
.

Counterexample: One can easily find the degree distance of the graph K2×K2,2,2

(see Fig. 3) is 960. For this graph the result given by Wang and Kang [27] is not
correct.
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• • • • • •

• • • • • •

Figure 3 Tensor product of K2 and K2,2,2

Using Corollary 2.6, we have the following corollaries.

Corollary 2.7. Let G be a connected graph with n ≥ 2 vertices and m edges. If each
edge of G is on a C3, then DD(G×Km0,m1, ...,mr−1) = 2qn0DD(G) + 8mq(n0− 1) +

M1(G)
(
n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)
, r ≥ 3.

For a triangle free graph, E2 = E(G) and hence
∑

vivk ∈E2

(
dG(vi) + dG(vk)

)
=

M1(G).

Corollary 2.8. If G is a connected triangle free graph on n ≥ 2 vertices and m

edges, then DD(G×Km0,m1, ...,mr−1) = 2qn0DD(G) + 8mq(n0 − 1) + 3
2
M1(G)

(
n3
0 −

2qn0 −
r−1∑
j=0

m3
j

)
, r ≥ 3.

If mi = s, 0 ≤ i ≤ r − 1, in Theorem 2.5, Corollaries 2.7 and 2.8, we have the
following corollaries.

Corollary 2.9. Let G be a connected graph with n ≥ 2 vertices and m edges. Let E2

be the set of edges of G which do not lie on a triangle. Then DD(G×Kr(s)) = r2s3(r−
1)DD(G)+4mrs2

(
r2s−r−rs+1

)
+
(
M1(G)+ 1

2

∑
vivk ∈E2

(
dG(vi)+dG(vk)

))
rs3(r−

1), r ≥ 3.

Corollary 2.10. Let G be a connected graph with n ≥ 2 vertices and m edges. If
each edge of G is on a C3, then DD(G×Kr(s)) = r2s3(r−1)DD(G)+M1(G)rs3(r−
1) + 4mrs2

(
r2s− r − rs+ 1

)
, r ≥ 3.
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Corollary 2.11. If G is a connected triangle free graph on n ≥ 2 vertices and m

edges, then DD(G×Kr(s)) = r2s3(r− 1)DD(G) + 2M1(G)rs3(r− 1) + 4mrs2
(
r2s−

r − rs+ 1
)
, r ≥ 3.

If we consider s = 1, in Corollaries 2.9, 2.10 and 2.11, we have the following
corollaries.

Corollary 2.12. Let G be a connected graph with n ≥ 2 vertices and m edges. Let
E2 be the set of edges of G which do not lie on a triangle. Then DD(G × Kr) =

r2(r − 1)DD(G) +
(
M1(G) + 1

2

∑
vivk∈E2

(dG(ui) + dG(uk))
)

+ 4mr(r − 1)2, r ≥ 3.

Corollary 2.13. Let G be a connected graph on n ≥ 2 vertices with m edges. If
each edge of G is on a C3, then DD(G×Kr) = r2(r− 1)DD(G) +M1(G)r(r− 1) +
4r(r − 1)2m, where r ≥ 3.

Corollary 2.14. If G is a connected triangle free graph on n ≥ 2 vertices and m

edges, then DD(G×Kr) = r2(r−1)DD(G)+2r(r−1)M1(G)+4r(r−1)2m
)
, r ≥ 3.

Using λ = −1, in Theorem 2.5, we obtain the reciprocal degree distance of tensor
product of complete multipartite graph Km0,m1, ...,mr−1 and a given connected graph
G.

Corollary 2.15. Let G be a connected graph with n ≥ 2 vertices and m edges and let
E2 be the set of edges of G which do not lie on any C3 of it. If n0 and q are the num-
bers of vertices and edges of Km0,m1, ...,mr−1 , r ≥ 3, respectively, then RDD(G ×

Km0,m1, ...,mr−1) = 2n0qRDD(G) + 2mq(n0 − 1) −

(
M1(G)

2
+ 1

12

∑
vivk ∈E2

(
dG(vi) +

dG(vk)
))(

n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)
.

Using Corollary 2.15, we have the following corollaries.

Corollary 2.16. Let G be a connected graph with n ≥ 2 vertices and m edges. If
each edge of G is on a C3, then RDD(G×Km0,m1, ...,mr−1) = 2qn0 RDD(G)+2mq(n0−

1)− M1(G)
2

(
n3
0 − 2qn0 −

r−1∑
j=0

m3
j

)
, r ≥ 3.

Corollary 2.17. If G is a connected triangle free graph on n ≥ 2 vertices and m

edges, then RDD(G×Km0,m1, ...,mr−1) = 2qn0 RDD(G) + 2mq(n0− 1)− 2M1(G)
3

(
n3
0−

2qn0 −
r−1∑
j=0

m3
j

)
, r ≥ 3.

If mi = s, 0 ≤ i ≤ r − 1, in Theorem 2.5 Corollaries 2.16 and 2.17, we have the
following corollaries.
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Corollary 2.18. Let G be a connected graph with n ≥ 2 vertices and m edges.
Let E2 be the set of edges of G which do not lie on a triangle. Then RDD(G ×
Kr(s)) = r2s3(r−1)RDD(G)+mrs2

(
r2s−r−rs+1

)
−
(
M1(G)

2
+ 1

12

∑
vivk ∈E2

(
dG(vi)+

dG(vk)
))
rs3(r − 1), r ≥ 3.

Corollary 2.19. Let G be a connected graph with n ≥ 2 vertices and m edges. If
each edge of G is on a C3, then RDD(G×Kr(s)) = r2s3(r−1)RDD(G)−M1(G)

2
rs3(r−

1) +mrs2
(
r2s− r − rs+ 1

)
, r ≥ 3.

Corollary 2.20. If G is a connected triangle free graph on n ≥ 2 vertices and m

edges, then RDD(G×Kr(s)) = r2s3(r− 1)RDD(G)− 2M1(G)
3

rs3(r− 1) +mrs2
(
r2s−

r − rs+ 1
)
, r ≥ 3.

If we consider s = 1, in Corollaries 2.18, 2.19 and 2.20, we have the following
corollaries.

Corollary 2.21. Let G be a connected graph with n ≥ 2 vertices and m edges. Let
E2 be the set of edges of G which do not lie on a triangle. Then RDD(G × Kr) =

r(r − 1)

(
rRDD(G)− 1

2
M1(G)− 1

12

∑
vivk∈E2

(dG(ui) + dG(uk)) + (r − 1)m

)
, r ≥ 3.

Corollary 2.22. Let G be a connected graph on n ≥ 2 vertices with m edges. If each

edge of G is on a C3, then RDD(G×Kr) = r(r−1)
(
rRDD(G)− 1

2
M1(G)+(r−1)m

)
,

where r ≥ 3.

Corollary 2.23. If G is a connected triangle free graph on n ≥ 2 vertices and m

edges, then RDD(G×Kr) = r(r − 1)
(
rRDD(G)− 2

3
M1(G) + (r − 1)m

)
, r ≥ 3.
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