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Abstract

An edge-colouring is strong if every colour class is an induced matching.
In this work we give a formula that determines either the optimal or the
optimal plus one strong chromatic index of bipartite outerplanar graphs.
Further, we give an improved upper bound for any outerplanar graph
which is close to optimal. All our proofs yield efficient algorithms to
construct such colourings.

1 Introduction

Given a simple undirected graph G, let V (G) and E(G), respectively, denote the
vertex set and the edge set of G. A proper k-edge-colouring of G is a map C :
E(G) �→ [k] such that adjacent edges (edges of G sharing a common vertex) receive
different colours (numbers), where [k] = {1, 2, . . . , k}. The smallest positive integer
k such that G admits a proper k-edge-colouring is known as the chromatic index of
G and is denoted by χ′(G).

An induced matching M in G is a matching such that G[V (M)] = M . That is,
the subgraph of G induced by the vertices of M is M itself. A proper edge-colouring
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is a strong edge-colouring if every colour class is an induced matching in G. In other
words, for any edge e = uv, the sets of colours seen by u and v have exactly one
colour in common (in an edge-colouring we say that a vertex sees colour c if c is
assigned to any of the edges incident to it). That is, the distance between any two
edges having the same colour is at least two. The minimum positive integer k such
that G admits a strong k-edge-colouring is called the strong chromatic index of G,
denoted by χ′

s(G). The degree of a vertex v is denoted by d(v). An edge incident to
a vertex of degree one is called a pendant edge. Let Δ = Δ(G) denote the maximum
degree of vertices of G. Given a cycle C = v1v2...vk, we say that vi is an odd vertex
when i is odd, otherwise we say that vi is an even vertex.

A graph G is outerplanar if it has a planar embedding in which all vertices i
are incident to the infinite face. We define a puffer graph as a graph obtained by
adding some (possibly empty) pendant edges to each vertex of a cycle or adding
a common neighbour to two consecutive vertices of the cycle. Notice that for an
outerplanar graph, at most one such vertex can be added. All graphs are assumed
to be connected.

The strong edge-colouring has a long history and has lead to many well known
conjectures. Some of the many unsolved conjectures include χ′

s(G) ≤ 5Δ2/4 for all
graphs, χ′

s(G) ≤ Δ2 for bipartite graphs and χ′
s(G) ≤ 9 for 3-regular planar graphs.

See the open problems pages of Douglas West [11] for more details.

Molloy and Reed [9] proved a conjecture by Erdős and Nešetřil (see [3]) that for
large Δ, there is a positive constant c such that χ′

s(G) ≤ (2 − c)Δ2. Mahdian [8]
proved that for a C4-free graph G, χ′

s(G) ≤ (2 + o(1))Δ2/ lnΔ.

For integers 0 ≤ � ≤ k ≤ m, Sm(k, �) is the bipartite graph with vertex set
{x ⊆ [m] : |x| = k or �} and a k-subset x is adjacent to an �-subset y if y ⊆ x.
Quinn and Benjamin [1] proved that Sm(k, �) has strong chromatic index

(
m
k−�

)
. The

Θ-graph Θ(G) of a partial cube G (distance-invariant subgraph of some n-cube), is
the intersection graph of the equivalence classes of the Djoković-Winkler relation Θ
defined on the edges of G such that xy and uv are in relation Θ if d(x, u)+ d(y, v) �=
d(x, v) + d(y, u). Šumenjak [7] showed that the strong chromatic index of a tree-like
partial cube graph G is at most the chromatic number of Θ(G).

Faudree, Gyárfás, Schelp and Tuza [4] proved that for graphs where all cycle
lengths are multiples of four, χ′

s(G) ≤ Δ2. They mention that this result probably
could be improved to a linear function of the maximum degree. Brualdi and Quinn [2]
improved the upper bound to χ′

s(G) ≤ αβ for such graphs, where α and β are the
maximum degrees of the respective partitions. Nakprasit [10] proved that if G is
bipartite and the maximum degree of one partite set is at most 2, then χ′

s(G) ≤ 2Δ.

In a recent work [5] an upper bound of 3Δ− 3 was given for general outerplanar
graphs. This result is based on two forbidden configurations of outerplanar graphs.
We remark that the upper bound of 3Δ− 3 is tight when the graph contains a cycle
of lenght three and each of the vertices on the cycle has degree Δ. In this work,
using different techniques, we improve that upper bound. We also obtain either the
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exact value of χ′
s(G) or the exact value plus one for bipartite outerplanar graphs.

The following is our main result.

Theorem 1. Let G be an outerplanar graph. Then

χ′
s(G) = max{max

uv∈E
d(u) + d(v)− 1,max

H∈P
χ′
s(H)}

where P is the set of all puffer subgraphs of G. Moreover, if G is bipartite, then
χ′
s(G) is either maxuv∈E d(u) + d(v)− 1 or maxuv∈E d(u) + d(v).

We also give efficient algorithms to produce strong edge-colourings of such classes
of graphs satisfying the above bounds.

2 Outerplanar graphs

A block is a maximal connected component without a cut-vertex. A block decompo-
sition of a graph G is a partition of G into its blocks. Notice that each component
is either a maximally 2-connected subgraph or a single edge.

An ear in G to a subgraph H is a simple path P on at least three vertices with
end-points in H such that (1) none of the internal vertices of P are contained in H
and (2) P along with the segment between its end-points in H forms an induced
cycle. An ear decomposition of a 2-connected subgraph is a partition of its edges
into a sequence of ears where the first ear is an induced cycle. It is easily seen that
for a 2-connected outerplanar graph, there is an ear decomposition where each ear
contains at least one internal vertex and the endpoints of every ear are adjacent in
the preceding graph (if not, the outerplanarity property is affected). Further notice
that when the graph is bipartite outerplanar any added ear has an even number of
internal vertices. Any such ear (which forms an induced cycle) together with the
edges incident to it forms a puffer graph we defined earlier. Thus, we first show an
upper bound for the puffer graphs.

2.1 Puffer graphs

Note that to compute the strong chromatic index we suppose that the puffer graph
only has pendant edges (no common neighbours forming a triangle) since we can
always split any common neighbour of adjacent vertices of the cycle to two pendant
edges which does not affect the colouring.

The following lemma gives bounds for the puffer graphs.

Lemma 2. Let G be a puffer graph and C its cycle. We have the following according
to the cycle length |C|.

1. If |C| = 3, then χ′
s(G) = d(u) + d(v) + d(w)− 3, u, v, w ∈ C.



V. BOROZAN ET AL. /AUSTRALAS. J. COMBIN. 62 (1) (2015), 35–44 38

2. If |C| = 4, then χ′
s(G) = maxuv∈E(C) d(u) + d(v).

3. If G = C5, then χ′
s(G) = 5.

4. If |C| = 5 and either only a single vertex or exactly two vertices at distance 2
have pendant edges, then χ′

s(G) = maxu∈C d(u) + 2.

5. If |C| = 5 and cases 3 and 4 above do not hold, and if at least one vertex has
at most 1 pendant edge, then χ′

s(G) = maxuv∈E(C) d(u) + d(v)− 1.

6. If |C| = 5 and every vertex has at least 2 pendant edges, let u, v be the vertices
where d(u) + d(v) = maxu1u2∈E(C) d(u1) + d(u2) and let x, y and z be the rest

of the vertices. Call η = 	d(x)+d(y)+d(z)−d(u)−d(v)−3
2


. Then

χ′
s(G) ≤

{
d(u) + d(v)− 1 if d(u) + d(v) ≥ d(x) + d(y) + d(z)− 3

d(u) + d(v)− 1 + η otherwise

7. Let C = Ck, k ≥ 6. If G = Ck, then

χ′
s(G) =

{
3 if k ≡ 0(mod3)

4 otherwise

8. Let C = C2k, k ≥ 3, and set C2k = v1v2 . . . v2kv1. Let G �= C2k. Let u, v be the
vertices where d(u) + d(v) = maxu1u2∈E(C2k) d(u1) + d(u2) and suppose without
losing generality that u = v1, v = v2 and at least u has a non-empty set of
pendant edges.

(a) If 2k ≡ 0(mod3) then χ′
s(G) = d(u) + d(v)− 1.

(b) If 2k ≡ 2(mod3) then

• χ′
s(G) ≤ d(u) + d(v) if there exists another pair of vertices vjvj+1 ∈

E(C2k) such that d(u)+d(v) = d(vj)+d(vj+1), j is even and d(vj+1) =
2 (clearly this implies that d(vj−1) = 2).

• χ′
s(G) = d(u) + d(v)− 1 otherwise.

(c) If 2k ≡ 1(mod3) then

• χ′
s(G) ≤ d(u) + d(v) if for every vertex w ∈ C2k we have d(w) ≤ 3.

• χ′
s(G) ≤ d(u) + d(v) if there exists another pair of vertices vjvj+1 ∈

E(C2k) such that d(u)+d(v) = d(vj)+d(vj+1), j is even and d(vj+1) ≤
3 (clearly this implies that d(vj−1) ≤ 3).

• χ′
s(G) = d(u) + d(v)− 1 otherwise.

9. Let C = C2k−1, k ≥ 4, and set C2k−1 = v1v2 . . . v2k−1v1. Let G �= C2k−1. Let
u, v be the vertices where d(u) + d(v) = maxu1u2∈E(C2k−1) d(u1) + d(u2) and let
x, y and z be the consecutive vertices of C2k−1 not considering u and v where
d(x)+d(y)+d(z) = mins1,s2,s3∈C2k−1

d(s1)+d(s2)+d(s3). Suppose without losing

generality that v1 = x, v2 = y and v3 = z. Let η = 	d(x)+d(y)+d(z)−d(u)−d(v)−2
2


.
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(a) If 2k − 1 ≡ 0(mod3) then{
χ′
s(G) = d(u) + d(v)− 1 if d(u) + d(v) ≥ d(x) + d(y) + d(z)− 2

χ′
s(G) ≤ d(u) + d(v)− 1 + η otherwise

(b) If 2k − 1 ≡ 2(mod3) then

• χ′
s(G) ≤ d(u)+ d(v) if d(u) + d(v) ≥ d(x) + d(y) + d(z)− 2 and there

exists another pair of vertices vjvj+1 ∈ E(C2k−1) such that d(u) +
d(v) = d(vj) + d(vj+1), j is odd and d(vj+1) = 2 (clearly this implies
that d(vj−1) = 2).

• χ′
s(G) = d(u) + d(v)− 1 if d(u) + d(v) ≥ d(x) + d(y) + d(z)− 2 and

we are not in the previous case.

• χ′
s(G) ≤ d(u) + d(v)− 1 + η if d(u) + d(v) < d(x) + d(y) + d(z)− 2.

(c) If 2k − 1 ≡ 1(mod3) then

• χ′
s(G) ≤ d(u) + d(v) if for every vertex w ∈ C2k−1 we have d(w) ≤ 3.

• χ′
s(G) ≤ d(u)+ d(v) if d(u) + d(v) ≥ d(x) + d(y) + d(z)− 2 and there

exists another pair of vertices vjvj+1 ∈ E(C2k−1) such that d(u) +
d(v) = d(vj) + d(vj+1), j is odd and d(vj+1) ≤ 3 (clearly this implies
that d(vj−1) ≤ 3).

• χ′
s(G) = d(u) + d(v)− 1 if d(u) + d(v) ≥ d(x) + d(y) + d(z)− 2 and

we are not in the previous case.

• χ′
s(G) ≤ d(u) + d(v) + η if d(u) + d(v) < d(x) + d(y) + d(z)− 2 and

and there exists another pair of vertices vjvj+1 ∈ E(C2k−1) such that
d(u) + d(v) = d(vj) + d(vj+1), j is odd and d(vj+1) = 3 (clearly this
implies that d(vj−1) ≤ 3).

• χ′
s(G) ≤ d(u) + d(v)− 1 + η if d(u) + d(v) < d(x) + d(y) + d(z) − 2

and we are not in the previous case.

And same bounds plus 1 if |C2k−1| = 7.

We give below a proof of the above lemma. We then show how to colour any
outerplanar graph in a strong manner using the lemma and the ear decomposition.
We start by colouring the first ear (a cycle) with its incident edges (which forms a
puffer graph) and extend that colouring to the next puffer graph (next ear with its
incident edges).

Proof of Lemma 2.

The proof is trivial for statements 1) through 4).

For 5), let uvxyz be the vertices of the C5 in a cyclic order and suppose that
d(u) + d(v) = maxu1u2∈E(C) d(u1) + d(u2). Colour the edges of the cycle with colours
1 to 5 starting at the edge uv. It is easy to see that for each vertex on the cycle we
can repeat only one already used colour for its uncoloured incident edges. That is,
we can use colour 3 at u, 4 at v, 5 at x, 1 at y and 2 at z. Therefore, as cases 3) and
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4) do not hold, we need d(u)− 3 new colours at vertex u and d(v)− 3 new colours
at vertex v. Now, as there is at least one vertex among x, y and z with at most one
pendant edge, these edges (if exist) are coloured with an already used colour in the
cycle as described before. Finally, if there are other uncoloured edges (at most two
vertices could remain with uncoloured edges), we can repeat the d(u)−3 and d(v)−3
new colours used at u and v for them in an appropriate way to obtain a strong edge-
colouring. By this we used a total of 5+d(u)−3+d(v)−3 = d(u)+d(v)−1 colours
as desired.

For 6) we note that every vertex of the cycle has at least 2 pendant edges. Let
uvxyz be the vertices of the C5 in a cyclic order. We colour the cycle with colours
1 to 5 starting at the edge uv. Then we colour one uncoloured incident edge of
each vertex with the only possible colour among the used ones (keeping the strong
colouring property). Thus we have d(u) + d(v) − 6 uncoloured edges incident to u
and v, and d(x) + d(y) + d(z)− 9 uncoloured edges incident to x, y and z. Suppose
that d(u)+d(v)−6 ≥ d(x)+d(y)+d(z)−9, i.e., d(u)+d(v) ≥ d(x)+d(y)+d(z)−3.
We use d(u)− 3 new colours to colour the uncoloured edges at u and d(v)− 3 new
colours for the ones at v. We remark that this is the only possibility to keep the
strong colouring property. Clearly d(x) ≤ d(u) and d(z) ≤ d(v). We colour the
uncoloured edges at x and z from the set of colours used at u and v respectively.
Since d(x) + d(y) + d(z)− 3 ≤ d(u) + d(v), we notice that there are enough colours
left to colour the edges incident to y. Since we use only d(u) + d(v)− 1 colours, the
bound is optimal in this case.

Now suppose that d(u) + d(v) < d(x) + d(y) + d(z)− 3. As before, we colour the
d(u)− 3 edges at u and the d(v)− 3 edges at v with new colours. Now we introduce
an additional η new colours and colour as many edges incident to both x and z (we
can verify that both x and z have at least η uncoloured edges in this case). Then for
the remaining edges at x we use at most d(x)− 3− η colours used at u and for the
ones at z use at most d(z)− 3 − η colours used at v. As before it is not difficult to
see that we have enough colours left to colour the edges incident to y.

For statement 7), we colour the cycle in the following way. If k ≡ 0(mod3), then
we use colours 1, 2 and 3 repeatedly for the cycle and we are done. If k ≡ 1(mod3),
then we colour one edge with colour 4 and then repeatedly with colours 1, 2 and 3.
Finally, if k ≡ 2(mod3), then we colour the first 5 edges with colours 4, 1, 2, 3, 4 and
then repeatedly with colours 1, 2 and 3. Again, it works since k > 7.

For 8a), colour the edges of the cycle repeatedly with colours 1, 2 and 3 starting
from the edge v1v2. Clearly the cycle is strong edge-coloured since 2k ≡ 0(mod3).
Now introduce a set of new colours A, where |A| = d(v1)−2 and for each odd vertex
on the cycle colour its uncoloured incident edges with colours from A using the least
permissible colour. Then do the same for each even vertex on the cycle using another
set of new colours B, where |B| = d(v2)− 2. If there are not more uncoloured edges
we are done.

Suppose now that there exists one vertex vj, j odd (j even is similar) such that
d(vj) > d(v1). Therefore there are d(vj) − d(v1) edges to colour incident to vj. We
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know that d(v1) + d(v2) ≥ d(vj) + d(vj+1) and d(v1) + d(v2) ≥ d(vj) + d(vj−1). So if
we suppose (without losing generality) that d(vj+1) ≥ d(vj−1) then d(v2)−d(vj+1) ≥
d(vj) − d(v1). Therefore we have d(v2) − d(vj+1) colours from B not used neither
at vj−1 nor at vj+1 and then we can use them to colour the remaining d(vj)− d(v1)
edges at vj . Clearly this edge-colouring is strong and we used 3 + |A| + |B| =
3+d(u)−2+d(v)−2 = d(u)+d(v)−1 colours, which is optimal since d(u)+d(v)−1
is also a lower bound.

For 8b), we colour the cycle with colours 1, 2, 3 starting at the edge v1v2 until the
edge v2k−4v2k−3 and for the four remaining edges we use colours (respecting the cycle
ordering) 4, 3, 2, 4. Then, by the way we coloured the cycle we have that for each
odd vertex vi in the cycle there is one available colour among the colours {1, 2, 3, 4}
to use at its uncoloured incident edges. We proceed to colour this edges with that
colour. As in 8a), introduce a set of new colours A, but now |A| = d(v1)− 3 and for
each odd vertex on the cycle colour its uncoloured incident edges with colours from
A using the least permissible colour. For each even vertex on the cycle do the same
using another set of new colours B, where |B| = d(v2)−2. If there are no more edges
to colour we are done.

Suppose now that there exists one vertex vj with uncoloured edges incident to
it. Suppose also that d(v1) + d(v2) = d(vj) + d(vj+1), j is even and d(vj+1) = 2.
Therefore d(vj) > d(v2). Now, since d(vj+1) = 2 (and also d(vj−1) = 2). We can
use the d(v1) − 3 colours from A for the remaining uncoloured edges at vj. By this
we colour 2 + d(v1)− 3 + d(v2)− 2 = d(v1) + d(v2)− 3 edges at vj . However, since
d(v1) + d(v2) = d(vj) + d(vj+1) we have that d(vj) = d(v1) + d(v2) − d(vj+1) =
d(v1) + d(v2) − 2 therefore we need one new colour more to finish colouring vj in a
strong manner since vj sees the four colours used at the cycle (j is even). By this
we used 4 + |A|+ |B| + 1 = d(u) + d(v) colours and then χ′

s(G) ≤ d(u) + d(v). We
remark that if there are few vertices vj with that property, we can maybe recolour
the cycle with four colours such that each vj sees only three colours among the four
used at the cycle. Then this new colour would not be necessary and we would have
χ′
s(G) = d(u) + d(v) − 1. Nevertheless, there are graphs where we cannot do this

and therefore χ′
s(G) = d(u) + d(v).

To finish this case if we are not in the previous conditions for vj then at least one
condition among these three is true: (1) d(u) + d(v) > d(vj) + d(vj+1), (2) j is odd
or (3) d(vj+1) ≥ 3. In each of these cases the way to colour the remaining edges at
vj is similar to the case 8a) and we obtain χ′

s(G) = d(u)+ d(v)− 1 which is optimal.

For 8c), the case where every vertex w ∈ C2k has d(w) ≤ 3 can be easily verified.
Otherwise we colour the cycle repeatedly with colours 1, 2, 3 starting at the edge v1v2
until the edge v2k−6v2k−5 and for the six remaining edges we use colours (respecting
the cycle ordering) 5, 3, 4, 5, 2, 4. Then, by the way we coloured the cycle we have
now that for each odd vertex vi in the cycle there are two available colours among the
colours {1, 2, 3, 4, 5} to use at its uncoloured incident edges. We colour them with
those colours. Similar to 8b), for each odd vertex on the cycle colour its uncoloured
incident edges with a new set of colours A where |A| = d(v1) − 4 and for each
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even vertex on the cycle do the same using another set of new colours B where
|B| = d(v2)− 2. If there are not more uncoloured edges we are done.

Suppose now that there exists one vertex vj with uncoloured edges incident to
it. Suppose also that d(u) + d(v) = d(vj) + d(vj+1), j is even and d(vj+1) ≤ 3.
Therefore d(vj) > d(v2). Suppose first that d(vj+1) = 2 (and also d(vj−1) = 2). We
can use the d(v1) − 4 colours from A for the remaining uncoloured edges at vj. By
this we colour 2 + d(v1) − 4 + d(v2) − 2 = d(v1) + d(v2) − 4 edges at vj . However,
since d(v1) + d(v2) = d(vj) + d(vj+1) we have that d(vj) = d(v1) + d(v2)− d(vj+1) =
d(v1) + d(v2)− 2 therefore we still need to colour two edges. Now, since vj sees four
colours among the five used at the cycle and d(vj+1) = 2, d(vj−1) = 2, we colour
one of its two remaining edges with that colour. For the last one, we need to use
a new colour and we finish colouring vj. Suppose last that d(vj+1) = 3 (and then
d(vj−1) ≤ 3). As before, if we use the colours from A for the uncoloured edges at vj,
we colour d(v1) + d(v2)− 4 edges at vj but now d(vj) = d(v1) + d(v2)− 3. Then we
still have to colour one more edge at vj . For this one, we need to use a new colour
since the colour that vj does not see among the five used at the cycle is used either at
vj+1 or at vj−1 or at both. In both cases this we used 5+ |A|+ |B|+1 = d(u)+ d(v)
colours and then χ′

s(G) ≤ d(u) + d(v). Same remark as case 8b) applies.

If there is no vj satisfying these three conditions, we colour its remaining edges
as in cases 8a), 8b) and we obtain χ′

s(G) = d(u) + d(v)− 1.

For 9a), colour the edges on the cycle from the edge v1v2 with colours 1,2 and
3 repeatedly Clearly, the cycle is strong edge-coloured since 2k − 1 ≡ 0(mod3). We
will colour the rest of the graph as in 8a) but considering the vertices v1 and v2 as a
single vertex (say v2). Observe that there are d(u) + d(v)− 4 uncoloured edges at u
and v and d(x)+d(y)+d(z)−6 uncoloured ones at x, y and z. Suppose first then that
d(u)+d(v)−4 ≥ d(x)+d(y)+d(z)−6, that is, d(u)+ d(v) ≥ d(x)+ d(y)+ d(z)−2.
Then, introduce a set of new colours A where |A| = d(u) − 2 and another set of
new colours B where |B| = d(v) − 2. Now colour the rest of the edges as in 8a)
considering v1 and v2 as a single vertex. Clearly, this leads to a strong edge-colouring
of G following same arguments as in 6) and 8a). We use d(u) + d(v) − 1 colours.
Second, suppose that d(u) + d(v) < d(x) + d(y) + d(z) − 2. We use η (as defined
earlier) new colours to colour a subset of η edges incident to each of v1 and v3. Again
it is easily seen that d(v1) and d(v3) are at least η using the assumed inequalities.
Finally to colour the rest of the edges we proceed as in the first case. As before, the
colouring is strong by 6) and 8a). We use d(u) + d(v)− 1 + η colours as desired.

For 9b), we colour the cycle repeatedly with colours 1, 2, 3 starting at the edge v1v2
until the edge v2k−7v2k−6 and for the six remaining edges we use colours (respecting
the cycle ordering) 4, 1, 3, 4, 2, 3. We can observe that for each even vertex vi in
the cycle there is one available colour among the colours {1, 2, 3, 4} to use at its
uncoloured incident edges. Then combining cases 8b) and 9a) the result holds. We
remark that the case that d(u) + d(v) < d(x) + d(y) + d(z) − 2 and there exists
another pair of vertices vjvj+1 ∈ E(C) such that d(u) + d(v) = d(vj) + d(vj+1), j is
odd and d(vj+1) = 2, is not possible since that would contradict the fact that x, y
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and z were the consecutive vertices that minimise the sum of degrees or that u and
v maximised it.

For 9c), we have a similar situation as case 9b) but here we colour the cycle
repeatedly with colours 1, 2, 3 starting at the edge v1v2 until the edge v2k−9v2k−8

and for the seven remaining edges we use colours (respecting the cycle ordering)
5, 1, 4, 5, 3, 4, 2, 3 (for the special case |C| = 7 we colour 5, 1, 4, 5, 3, 4, 2). Now for
each even vertex vi in the cycle there are two available colours among the colours
{1, 2, 3, 4, 5} to use at its uncoloured incident edges (for the special case |C| = 7 we
may need one more colour since by the lenght of the cycle there exists one even vertex
without this property). Then we combine cases 8c) and 9b). We remark that as in the
previous case, we cannot have at the same time d(u) + d(v) < d(x) + d(y) + d(z)− 2
and the existence of another pair of vertices vjvj+1 ∈ E(C) such that d(u) + d(v) =
d(vj) + d(vj+1), j is odd and d(vj+1) = 2. However, we can for d(vj+1) = 3, therefore
we might need one more colour. �

2.2 General outerplanar graphs

We finish this section proving the main theorem of the paper.

Proof of Theorem 1

We observe that given a block decomposition of an outerplanar graph and then
an ear decomposition of each block, every ear together with the edges incident to it
forms a puffer graph. Then, adding the ears in the order of the decomposition, each
new ear joins two adjacent vertices. Since only the edges incident to two adjacent
vertices of the new ear are precoloured, we note that we can simply extend the
colouring to the new puffer graph (as the precoloured edges all get distinct colours
in both cases). The upper bound for outerplanar graphs is now clear by maximising
over all puffer graphs and over all pairs of adjacent vertices (the latter is a trivial
lower bound). When the graph is bipartite, this gives either the exact value or the
exact value plus one colour. �

The proof itself gives the algorithm to obtain such a colouring and it is easy to
see that it takes sub-quadratic time.

3 Remarks

In this work we have considered outerplanar graphs. We gave a formulae to find
either the exact value or the exact value plus one of the strong chromatic index for
bipartite outerplanar graphs. We also improved the upper bound for the general
outerplanar graphs from the 3Δ− 3 stated in [5].

A recent work [6] gives an algorithm to find the strong chromatic index of any
maximal outerplanar graph. However, notice that when you extend the graph to
maximal outerplanar, the maximum degree and the index can increase. As our
proofs are constructive, they lead to an algorithm to colour any outerplanar graph
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with a number of colours close to the optimum and for bipartite outerplanar graphs
with the optimum (or just one more) number of colours.

In some special cases of the general outerplanar graph (where we use η extra
colours, statements 6 and 9 of Lemma 2) we were not able to show the optimality of
the bounds. We believe that it is very close to the exact bound within an additive
factor of a small constant. It would be interesting to prove whether our bounds are
optimal, and if not, to find a way to close the gap.
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[3] R. J. Faudree, A. Gyárfás, R.H. Schelp and Z. Tuza, Induced matchings in
bipartite graphs, Discrete Math. 78 (1989), 83–87.
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