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Abstract

The punctured power graph P�(G) of a finite group G is the graph which
has as vertex set the nonidentity elements of G, where two distinct ele-
ments are adjacent if one is a power of the other. We show that P�(G)
has diameter at most 2 if and only if G is nilpotent and every Sylow sub-
group of G is either a cyclic group or a generalized quaternion 2-group.
Also, we show that if G is a finite group and P�(G) has diameter 3, then
G is not simple. Finally, we show that P�(G) is Eulerian if and only if G
is a cyclic 2-group or a generalized quaternion 2-group.

1 Introduction

In this paper we present particular properties of punctured power graphs. Through-
out, G shall denote a finite group, and e shall denote its identity.

Definition 1 The directed power graph
−→P (G) of G is the directed graph whose

vertex set is the underlying set of G with an edge (u, v) for all distinct u, v ∈ G
where v is a power of u. The (undirected) power graph P(G) of G has the same
vertex set with an (undirected) edge between distinct group elements when one is a
power of the other in G. The punctured power graph P�(G) of G is the subgraph of
P(G) induced on G \ {e}.
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Directed and undirected power graphs of semigroups were introduced in [7], and
some combinatorial properties were examined in [8, 9, 10]. Undirected power graphs
of groups were studied in [2, 3, 4, 5, 11]. The reference [1] surveys the literature to
date. Standard references provide the necessary background, such as [13] for graphs
and [12] for groups.

2 Shortest paths

We consider properties of the shortest paths in punctured power graphs.

Definition 2 Pick adjacent vertices a, b ∈ P(G). Write a → b or b ← a if b is a
power of a and a ↔ b when each is a power of the other. Write a � b or b � a
when a→ b but b �→ a. We augment a path x0x1 · · ·xd by adding appropriate arrows
between vertices.

Let 〈x〉 denote the cyclic subgroup of G generated by x ∈ G, and let 〈〈x〉〉 denote
the set of generators of 〈x〉. Note that x→ y if and only if 〈y〉 ⊆ 〈x〉; x � y if and
only if 〈y〉 � 〈x〉; and x ↔ y if and only if 〈x〉 = 〈y〉 if and only if y ∈ 〈〈x〉〉. Let
o(x) to denote the order of x as an element in G, and let φ denote the Euler totient
function. Then |〈〈x〉〉| = φ(o(x)).

Lemma 3 Suppose x = x0x1 · · ·xd = y is a shortest path between x and y in P�(G).
Then for all i (1 ≤ i ≤ d− 1), either xi−1 � xi � xi+1 or xi−1 � xi � xi+1.

Proof. If xi−1 → xi → xi+1, then xi+1 = xn
i = (xm

i−1)
n for some positive integers

m and n, so xi−1 → xi+1. This implies that omitting xi gives a shorter path from x
to y, contradicting the minimality of the length of the given path. The oppositely
directed case is similar. �

Corollary 4 With reference to Lemma 3, if one of xi−1 or xi+1 has prime order for
some i (1 ≤ i ≤ d− 1), then xi−1 � xi � xi+1.

Proof. Suppose xi−1 → xi and xi−1 has prime order. Then xi generates the same
subgroup, so xi−1 ↔ xi, contradicting Lemma 3. The case where xi+1 has prime
order is similar. �

Lemma 5 If x = x0 · · ·xi−1xixi+1 · · ·xd = y is a shortest path between x and y in
P�(G), then for all i (1 ≤ i ≤ d−1) and for all x′

i ∈ 〈〈xi〉〉, x = x0 · · ·xi−1x
′
ixi+1 · · ·xd

= y is too.

Proof. Pick x′
i ∈ 〈〈xi〉〉, and say x′

i = xk
i and xi = x′

i
�. Suppose xi−1 � xi � xi+1,

with xi = xm
i−1 and xi = xn

i+1. Then x′
i = xkm

i−1 and x′
i = xkn

i+1, so xi−1 � x′
i � xi+1.

The case xi−1 � xi � xi+1 is treated similarly. �
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Lemma 6 Suppose that P�(G) is connected. The shortest path distance in P�(G)
between distinct nonadjacent vertices of prime order is even.

Proof. Let x and y be distinct nonadjacent elements of prime order. The arrows
of any augmented shortest path between them point to x and y by Corollary 4. By
Lemma 3 the arrows alternately point to and away from successive vertices. This
requires that their distance is even. �

Lemma 7 Adjacent vertices in P(G) commute in G. If x ← y → z, the x, y, z
commute.

Proof. If x and y are adjacent, then one is a power of the other, and if x← y → z
then all three are powers of y. �

3 Punctured power graphs of low diameter

Recall that the diameter of a graph is the maximum distance between any pairs
of vertices. A graph has diameter 1 precisely when it is complete. We say that a
disconnected graph has diameter ∞, so any graph of finite diameter is necessarily
connected. The punctured power graph of any dihedral group is disconnected since
the flips are isolated vertices. We focus on groups with low diameter punctured
power graphs. The diameter of P�(G) is at least as large as that of P(G).

Theorem 8 [4, Theorem 2.12] P(G) has diameter at most 2. Moreover, P(G) has
diameter 1 if and only if G is a cyclic p-group.

Corollary 9 P�(G) has diameter 1 if and only if G is a cyclic p-group.

Proof. In P(G), every nonidentity element of G is adjacent to the identity. Thus
P(G) is complete if and only if P�(G) is complete. �

We recall a connection between a family of groups and a graph theoretic property.
A group is called a generalized quaternion group if it has a presentation 〈x, y | x2n =
y4 = 1, xn = y2, y−1xy = x−1〉 for some integer n ≥ 2. Such a group is a 2-group
when n is a power of 2.

Theorem 10 A p-group has a unique subgroup of order p if and only if it is a cyclic
group or a generalized quaternion 2-group

A graph is 2-connected if the removal of any one vertex does not make the graph
disconnected. By construction P(G) is 2-connected if and only if P�(G) is connected.

Theorem 11 [11, Theorem 7] The power graph of a p-group is 2-connected if and
only if the p-group is a cyclic group or a generalized quaternion 2-group.
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Lemma 12 Suppose that P�(G) has diameter at most 3. Then the Sylow subgroups
of G are cyclic groups or generalized quaternion 2-groups.

Proof. If P�(G) has diameter 1, then the result follows from Corollary 9. Assume
P�(G) has diameter at least 2. Let p be a prime divisor of |G|, and let Q be a Sylow
p-subgroup of G. By Theorem 11 and the comment just prior to it, it suffices to
show that P�(Q) is connected.

Pick nonidentity nonadjacent elements x, y ∈ Q. Let x′ be x if o(x) = p and
xo(x)/p otherwise, and let y′ be y if o(y) = p and yo(y)/p otherwise. Then x′ and y′ are
elements of Q with order p. Assume x′ �= x, y′ �= y; the remaining cases are similar.
If x′ = y′, then xx′y is a path in P�(Q). If x′ and y′ are distinct but adjacent in
P�(G), then it must be the case that y′ is a power of x′, so xx′y is a path in P�(Q).
Suppose x′ and y′ are distinct and nonadjacent but have a common neighbor z in
P�(G). By Corollary 4, x′ � z � y′, so 〈x′〉 and 〈y′〉 are cyclic subgroups 〈z〉 of
the same order. Thus 〈x′〉 = 〈y′〉, so x′ ↔ y′. Thus xx′y′y is a path in P�(Q). Note
that x′, y′ are at an even distance at most three by assumption and by Lemma 6.
Thus we have exhausted all possibilities and have shown that P�(Q) is connected,
as required. �

Theorem 13 A finite group is nilpotent if and only if it is the direct product of its
Sylow subgroups, if and only if every pair of elements with coprime order commute.
In particular, abelian groups and p-groups are nilpotent.

Theorem 14 The following are equivalent.

(i) P�(G) has diameter at most 2.

(ii) G is nilpotent and all of its Sylow subgroups are cyclic groups or generalized
quaternion 2-groups.

When (i) and (ii) hold, P(G) and P�(G) have the same diameter.

Proof. Note that both (i) and (ii) hold when P�(G) has diameter 1 by Theorem 8
and Corollary 9, so there is nothing to show in this case.

(i)⇒(ii): Suppose P�(G) has diameter 2. We first show that G is nilpotent. Pick
x, y ∈ P�(G) with coprime orders. Note that neither is a power of the other, so
they are nonadjacent in P(G). However, they have a common neighbor z in P�(G)
since its diameter is 2. Since xzy is a shortest path, we may appeal to Lemma 3.
Now z cannot be a power of both x and y since in this case its order would divide
both those of x and y. Thus x and y are both powers of z, so they commute. Hence
G is nilpotent by Theorem 13. Lemma 12 gives that its Sylow subgroups are cyclic
groups or generalized quaternion 2-groups.

(ii)⇒(i): Suppose that G is nilpotent and that its Sylow subgroups are cyclic
groups or generalized quaternion 2-groups. Pick x, y ∈ P�(G). If (o(x), o(y)) = 1,
then xy � x and xy � y by Theorem 13, so their distance is at most 2. If some
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prime p divides (o(x), o(y)), then there exist natural numbers r, s such that x′ = xr

and y′ = ys have order p since G is nilpotent. By Theorem 10, x′ and y′ are generators
the unique subgroup of order p, so x′ ↔ y′ and xx′y is a path of length 2 in P�(G).

�

Corollary 15 If P�(G) has diameter 3, then G is not nilpotent.

Proof. This is clear from Lemma 12 and Theorem 14. �

Lemma 16 If P�(G) has diameter at most 3, then elements of G with prime order
commute.

Proof. Pick x, y ∈ G with prime order. Their distance in P�(G) is at most 2 by
Lemma 6. There is nothing to show if x = y. If x and y are adjacent, then one is
a power of the other, so they commute. If x and y are nonadjacent, then there is
some nonidentity z ∈ G adjacent to both. By Corollary 4, x � z � y, so x and y
commute by Lemma 7. �

Corollary 17 If P�(G) has diameter at most 3, then for any square-free divisor f
of |G|, the product of group elements of the appropriate distinct prime orders has
order f .

4 Comments on non-simplicity

We give a couple of power graph criteria for the non-simplicity of G.

Theorem 18 [6, Theorem B] Let G be a finite non-abelian simple group. Then there
exist distinct prime divisors a, b of |G| such that for all x, y ∈ G with o(x) = a and
o(y) = b, the subgroup 〈x, y〉 is nonsolvable.

Corollary 19 If G is a non-abelian simple group, then P�(G) has diameter at
least 4.

Proof. Suppose P�(G) has diameter at most 3. For all distinct prime divisors a,
b of |G|, the elements of order a commute with those of order b by Lemma 16. In
particular, the subgroup generated by such elements is abelian, and so solvable. The
result follows by Theorem 18. �

Lemma 20 Let p be the greatest prime divisor of |G|. If some vertex has at least
|G|/p neighbors in P(G), then G is not a non-abelian simple group.

Proof. Suppose x has at least |G|/p neighbors. By Lemma 7, x and its neighbors
are in CG(x), so |CG(x)| > |G|/p and r = |G : CG(x)| < p. If G is a finite non-abelian
simple group, then r ≥ 3 and G is isomorphic to a subgroup of the alternating group
Ar. This cannot be since p does not divide r!, so the result holds. �
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Corollary 21 Let q be the least prime divisor of |G|. Any vertex with at least |G|/q
neighbors in P(G) is in the center of G.

Proof. If x has at least |G|/q neighbors, then |G : CG(x)| < q by Lemma 7, so
CG(x) = G. �

5 Eulerian punctured power graphs

A graph is said to be Eulerian whenever there is a closed walk that traverses every
edge of the graph exactly once. A connected graph is Eulerian if and only if every
vertex has even degree. It is easy to see that P(G) is Eulerian if and only if |G| is
odd [11, Lemma 1]. We determine when P�(G) is Eulerian. Recall that the degree
of a vertex in a graph is the number of adjacent vertices.

Lemma 22 Pick x ∈ P�(G), and let deg�(x) denote its degree in P�(G). Then

deg�(x) = o(x)− 2 +
∑

g∈G,x�g

ϕ(o(g)). (1)

Proof. Observe deg�(x) = |{g ∈ G | x → g}| − |{e}| + |{g ∈ G | x ← g}| − |{g ∈
G | x↔ g}| (last term eliminates double counts). By Definition 2 and the comments
following it, |{g ∈ G | x → g}| = o(x) − 1 and |{g ∈ G | x ← g}| − |{g ∈ G | x ↔
g}| = ∑

g∈G,x�g ϕ(o(g)). �

Corollary 23 For all x ∈ P�(G), o(x) and deg�(x) have the same parity.

Proof. For all g ∈ G with x � g, φ(o(g)) is even since o(g) > o(x) ≥ 2. Thus the
sum on the right side of (1) is even, so the result follows. �

Theorem 24 P�(G) is Eulerian if and only if G is a cyclic 2-group or a generalized
quaternion 2-group.

Proof. Suppose P�(G) is Eulerian. Then every element of P�(G) has even order
by Corollary 23. Hence G is a 2-group. Moreover, Eulerian implies connected, so G
is a cyclic 2-group or a generalized quaternion 2-group by Theorem 11.

Suppose G is a cyclic 2-group or a generalized quaternion 2-group. Every non-
identity element has even order, and hence even degree in P∗(G) by Corollary 23.
By Theorem 10, there is a unique element of order 2, and it is adjacent to every
vertex of P�(G). Thus P�(G) is connected, and hence Eulerian. �

This paper should be seen as part of a program to understand the connections
between a group and its power graph. Ultimately, we hope to find combinatorial
conditions on a power graph which correspond to interesting group properties. This
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paper, like many others (see the survey [1]), starts from strong graph theoretic con-
ditions on a power graph (low diameter, Eulerian, etc.) and finds that only a few
special groups give rise to such a power graph. Our hope is to gain insight so that
we might eventually tackle more interesting problems, such as finding a criterion or
characterization for solvable or simple groups from combinatorial properties of their
power graphs.
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