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Abstract

A broadcast on a graph G is a function f : V (G) → {0, 1, . . . , diamG}
such that f(v) ≤ e(v) (the eccentricity of v) for all v ∈ V (G). The broad-
cast number of a graph is the minimum value of

∑
v∈V (G) f(v) among all

broadcasts f with the property that each vertex of G is within distance
f(v) from a vertex v with f(v) > 0. We characterize a class of trees with
equal broadcast and domination numbers.

1 Introduction

Consider a radio station wishing to transmit a broadcast across a large area. It
must decide where to place the broadcast towers (and how big the towers should
be) in order to minimize the number of towers while ensuring that the entire region
hears the broadcast. We can model this situation with a graph G, where the vertices
represent geographic regions and two vertices are adjacent if their corresponding
regions are close enough that a weak broadcast from one region can be heard from
the other. If the towers can only broadcast to adjacent regions, then finding the
optimal layout is equivalent to finding a minimum dominating set S of G, that is,
a set of vertices of G where each vertex of G is either in S or adjacent to a vertex
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in S. If the station can use stronger towers (at a higher cost) then the goal is now
to minimize the total cost of the towers. Placing the towers and determining their
strength is equivalent to assigning a nonnegative integer to each vertex, where the
regions corresponding to vertices with a zero do not have towers, and the strength
of each tower on all other regions is proportional to the integer for that vertex.

We consider the case where the graphs representing regions are trees, and inves-
tigate a class of trees, called 1-cap trees (see Section 1.1 for the definition), for which
the use of arbitrarily strong transmitters does no better than using transmitters that
only broadcast to adjacent regions.

After giving basic definitions, we describe our initial class C2 of trees in Section 1.1,
and introduce some essential tools in Sections 1.2 – 1.4. In Section 2 we characterize
the 1-cap trees in a subclass C ′2 of C2 and in Section 3 we combine these trees to
form 1-cap trees in C2. We close with a short list of open problems on 1-cap trees in
Section 4.

1.1 Definitions and background

For undefined concepts see [5, 13]. A broadcast on a graph G = (V,E) is a function
f : V → {0, 1, . . . , diamG} such that f(v) ≤ e(v) (the eccentricity of v) for all
v ∈ V . A broadcast vertex is a vertex v for which f(v) ≥ 1. The set of all broadcast
vertices is denoted V +

f . For v ∈ V +
f , the f -neighbourhood Nf [v] of v is the set

{u ∈ V : d(u, v) ≤ f(v)}. A vertex u hears a broadcast from v ∈ V +
f , and v

broadcasts to u, if u ∈ Nf [v].

A broadcast f is a dominating broadcast if every vertex hears at least one broad-
cast. The cost of a broadcast f is defined as cost(f) =

∑
v∈V (G) f(v). The broadcast

number γb(G) is defined by γb(G) = min{cost(f) : f is a dominating broadcast of
G}. A dominating broadcast f of a graph G for which cost(f) = γb(G) is called a
γb-broadcast. If f is a dominating broadcast such that f(v) = 1 for each v ∈ V +

f ,

then V +
f is a dominating set of G, and the minimum cost of such a broadcast is the

usual domination number γ(G). A γ-set is a dominating set of cardinality γ(G). If
D is a dominating set and v ∈ D, then PN(v,D) is the set of all vertices dominated
by v and by no other vertex in D. Let DPN = {v ∈ D : PN(v,D) = {v}}; note that
if v ∈ DPN, then D − {v} dominates all vertices of G except v.

Erwin [11, 12] was the first to consider the broadcast domination problem, and
to observe the trivial bound γb(G) ≤ min{radG, γ(G)} for any graph G. A graph
G is radial if γb(G) = radG. The problems of characterizing radial trees and trees
T with γb(T ) = γ(T ) were first addressed by Dunbar, Erwin, Haynes, Hedetniemi
and Hedetniemi in [9] and also studied in [1, 10, 23]. The former problem was solved
by Herke and Mynhardt [17], while a large class of trees satisfying γb(T ) = γ(T )
was studied by Mynhardt and Wodlinger in [21]. In [19], a graph G such that
γb(G) = γ(G) is called a 1-capacity graph, abbreviated to a 1-cap graph, because in
these graphs the cost of an arbitrary dominating broadcast is no less than that of a
dominating broadcast in which each vertex broadcasts with a capacity of 1, or not
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Figure 1: A tree with maximum split-sets {uv} and {xy}

at all.

Minimum broadcast domination is solvable in polynomial time (O(n6)) for any
graph (Heggernes and Lokshtanov [14]) and in linear time for trees (Dabney, Dean
and Hedetniemi [8]) and block graphs (Heggernes and Sæther [15]). While the prob-
lem of determining the domination number of an arbitrary graph is NP-complete,
it has long been known that the domination number of a tree can be determined in
linear time (see [6]). Knowing that γ(T ) = γb(T ) for some tree T (or for any number
of given trees) however does not adequately reveal the properties of all 1-cap trees,
which merit investigation in their own right. Other work on broadcast domination
includes [2, 3, 4, 20, 22].

A diametrical path (abbreviated d-path) of a tree T is a path of length d = diamT .
(Note: we use the Roman letter “d” for the abbreviation d-path, and the italic letter
“d” for the length of a d-path.) We initially consider the class C2 of trees that
can be obtained from a d-path P = v0, ..., vd and a number of paths Bi, each of
length congruent to 2 (mod 3), by identifying a leaf of Bi with a vertex vj of P ,
j = 2, ..., d−2, in such a way that the resulting tree T has maximum degree ∆(T ) = 3
and diamT = d. We explain in Section 1.3 how 1-cap trees in C2 are used to obtain
a much larger class of 1-cap trees.

1.2 Split-sets

Let P be a d-path of a tree T . A set M of edges of P is a split-P set if, for
each component T ′ of T −M , the path P ∩ T ′ is a d-path of T ′ of even positive
length. A split-set of T is a split-P set for some d-path P of T , and a maximum
split-set of T is a split-set of maximum cardinality. For example, the sets {uv} and
{xy} are maximum split-P sets of the tree in Fig. 1, where P is the path of black
vertices. Herke and Mynhardt [16, 17] showed that split-sets play an important role
in determining the broadcast number of a tree, and Cockayne, Herke and Mynhardt
[7] showed that split-sets are also relevant to the study of 1-cap trees.

Theorem 1.1 [16, 17] For any tree T , let m ≥ 0 be the cardinality of a maximum
split-set of T . Then γb(T ) = radT −

⌈
m
2

⌉
.
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Theorem 1.2 [7] A tree T is 1-cap if and only if it has a maximum split-set M
such that each component of T −M is 1-cap.

1.3 Shadow trees

The class of trees we consider is best described by means of so-called shadow trees,
as first defined in [17]. Let P be a d-path of a tree T . For each i = 0, ..., d, let Vi be
the set of all vertices of T that are connected to vi by a (possibly trivial) path that is
internally disjoint from P . Let `i be a vertex of T in Vi at maximum distance from vi
(possibly `i = vi), and let Bi be the vi − `i path. The shadow tree of T with respect
to P , denoted ST,P , is the subtree of T induced by

⋃d
i=0 V (Bi). If Bi has length at

least one, it is called a branch of ST,P . Note that if P and P ′ are different d-paths of
T , then it is possible that ST,P � ST,P ′ . If the d-path P is understood or irrelevant,
we abbreviate ST,P to ST . Furthermore, any tree T such that T = ST is called a
shadow tree; any shadow tree is the shadow tree of infinitely many trees. A tree and
its shadow tree (in dark vertices and edges) are shown in Fig. 2. The relevance of
shadow trees to the study of broadcast domination was demonstrated in [16, 17].

Theorem 1.3 [16, 17] For any shadow tree ST of a tree T , γb(ST ) = γb(T ).

The following corollary to Theorem 1.3 demonstrates the importance of shadow
trees to the class of all 1-cap trees.

Corollary 1.4 [7] (i) If a tree T is 1-cap, then γ(T ) = γ(ST ) and ST is 1-cap.

(ii) If ST is 1-cap and γ(ST ) = γ(T ), then T is 1-cap.

Due to the relatively simple structure of shadow trees, the following approach to
studying 1-cap trees is useful. Let k denote a positive integer.

Step 1 Find all 1-cap shadow trees S with γb(S) = k.

Step 2 If S is a 1-cap shadow tree with γb(S) = k, use Corollary 1.4 to find
all 1-cap trees T with γb(T ) = k that have S as shadow tree.

In order to perform Step 2 we need to know the conditions for a tree T and a
subtree T ′ to have equal domination numbers. Let W1, ...,Wt be the components of

Figure 2: A tree and its shadow tree (dark vertices and edges)
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T − E(T ′). For i = 1, ..., t, let ui be the unique vertex of V (T ′) ∩ V (Wi). We call
ui the hinge of Wi and also say that Wi is hinged at ui. Let U1 (respectively U2) be
the set of hinges of nontrivial subtrees Wi that are stars hinged at a central vertex
(respectively at a leaf that is not also a central vertex). Note that U1 ∩ U2 = ∅.

Proposition 1.5 [7] Let T ′ be a subtree of the tree T . Then γ(T ) = γ(T ′) if and
only if

(i) each nontrivial subtree Wi is either a star hinged at its centre or a star hinged
at a leaf, and

(ii) T ′ has a γ-set D with U1 ⊆ D and U2 ⊆ DPN.

Suppose that S is a 1-cap shadow tree and we want to determine which trees T
with γ(T ) = γ(S) have S as shadow tree, i.e. satisfy S = ST . (We already know from
Theorem 1.3 that γb(T ) = γb(S).) Let D be any γ-set of S that does not contain
leaves and let v ∈ D. Using Proposition 1.5, we can join any number of new leaves to
v. Furthermore, if v ∈ DPN and we have not joined v to a new leaf, we can join v to
a new vertex u and then join u to any number of new leaves. Then (D− {v})∪ {u}
is a γ-set of the resulting tree. Note that if v ∈ DPN, then v is not a stem, hence
this operation does not change the diameter or the branch lengths of the tree, hence
S = ST . We can repeat the procedure for each vertex of D and for each γ-set of S
to construct all 1-cap trees that have S as shadow tree.

1.4 Overlap and branch length sequences

A shadow tree T with diametrical path P = v0, ..., vd can be drawn in the Cartesian
plane so that P lies on the x-axis with v0 at the origin and each edge is one unit in
length, where the edges not on P are drawn above the x-axis parallel to the y-axis.
Thus a vertex vi is described as being to the left of vj , or vj to the right of vi, if
i < j. A shadow tree drawn in this way is said to be in standard representation. We
henceforth assume that all shadow trees are drawn in standard representation.

Let H(t) be the tree obtained from K1,3 by subdividing each edge t− 1 times. If
H(t) is a subtree of T , then the leaves of H(t) lie at the (geometric) vertices of an
isosceles right triangle ∆ whose hypotenuse lies on P and has length 2t; we say that
∆ has radius t. The triangles of the shadow tree in Fig. 2 are shown in Fig. 3. A
triangle ∆′ that lies inside another triangle is called a nested triangle; for example,
the triangles ∆4 and ∆5 in Fig. 3 are nested triangles. As the removal of nested
triangles and the branches (i.e., the vertices of the branches not on P ) that form
their altitudes does not affect split-sets of T , it also does not affect γb(T ), and we
henceforth only consider shadow trees without nested triangles.

Consider a shadow tree T with d-path P = v0, ..., vd. Let B1, ..., Bk be the
branches of T , in order of their occurrence on P , and let ∆i be the triangle associated
with Bi, i = 1, ..., k. For each i, let v`i and vri be the left and right vertices of ∆i

on P . Assuming that T has no nested triangles, `i < `j and ri < rj whenever
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Figure 3: Triangles associated with the tree in Fig. 2

i < j. See Fig. 3; ignore ∆4 and ∆5. Notice that some triangles overlap, others
just touch, and indeed, if we consider the triangles of the shadow tree of the tree in
Fig. 1, some triangles are separated by edges of P (in this case the edges uv, vx, xy)
that are not contained in triangles. Edges of the latter type are called free edges.
These “overlaps” are of vital importance in deciding whether T is 1-cap or not. For
i = 1, ..., k + 1, we define the overlaps hi as follows. Let

h1 = −`1, hk+1 = rk − d, and, for i = 2, ..., k, hi = ri−1 − `i.

Note that h1, hk+1 ≤ 0. The overlap sequence h of T is defined by h = (h1, ..., hk+1).
For the tree in Fig. 3, h = (0, 0, 1,−1) and v9vd = v9v10 is a free edge. In addition, for
i = 1, ..., k, say the branch Bi has length bi, and define the branch length sequence b
of T by b = (b1, ..., bk). It is worth noting that T is uniquely determined by its branch
length and overlap sequences, and we also write T = T (b, h). As demonstrated in
[7], whether or not a shadow tree is 1-cap depends not on the branch lengths of the
triangles, but only on their least residues modulo 3 and the overlap sequence.

Theorem 1.6 [7] Let T = T (b, h) and T ′ = T ′(b′, h) be shadow trees without nested
triangles, where b = (b1, ..., bk) and b′ = (b′1, ..., b

′
k) such that b′i ≡ bi (mod 3) for each

i = 1, ..., k. Then T is 1-cap if and only if T ′ is 1-cap.

Let T be a shadow tree with triangles ∆1, ...,∆k. Free edges before ∆1 are called
leading free edges, free edges after ∆k are trailing free edges, and free edges that are
neither leading nor trailing free edges are called internal free edges. The following
result was proved in [19].

Theorem 1.7 [19] Let r, s be nonnegative integers and let T, T ′ be shadow trees,
where T ′ is obtained by adding 3r leading and 3s trailing free edges to a d-path of T ′.
Then T is 1-cap if and only if T ′ is 1-cap.

A caterpillar is a tree whose shadow tree only has branches of length one (if any).
Seager [23] characterized radial and 1-cap caterpillars. Mynhardt and Wodlinger [21]
extended Seager’s results on caterpillars to the class of trees whose shadow trees have
branch lengths congruent to 1 (mod 3). These results, together with Theorem 1.6,
serve as our motivation for studying shadow trees with branches of length congruent
to 2 (mod 3).
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2 Shadow Trees with Branches of Length 2 (mod 3)

All trees in this section belong to the class C2, that is, they are shadow trees with
branches of length congruent to 2 (mod 3). In addition, we require that our trees
contain no nested triangles and no internal free edges, and denote this subclass of
C2 by C ′2. In Section 2.1 we define six types of trees in C ′2. We then show that these
trees are 1-cap, and in Sections 2.2 and 2.3 we show that they are in fact the only
1-cap trees of this nature. We first mention a number of further assumptions we
make throughout this section.

A stem of a tree is a vertex adjacent to a leaf, and a branch vertex is a vertex
of degree at least three. If f is a γb-broadcast of T 6= K2 such that V +

f contains a
leaf u, and v is the stem adjacent to u, then the broadcast g defined by g(u) = 0,
g(v) = f(u), and g(w) = f(w) otherwise, is a γb-broadcast of T such that |V +

g | =
|V +
f |. Therefore we consider only broadcasts without leaves as broadcast vertices.

Let b = (b1, ..., bk) and h = (h1, ..., hk+1). Each shadow tree T = T (b, h) in this
section is assumed to have a d-path P = v0, ..., vd with branch vertices vc1 , ..., vck ,
k ≥ 1. The branch Bi = vci , ui,1, ..., ui,bi of T attached to vci has length bi = 3mi + 2,
i = 1, ..., k, and is covered by the triangle ∆i, where ∆i,∆i+1 overlap by hi+1 ≥ 0
edges, i = 1, ..., k − 1. Only h1 and hk+1 can be negative. Since the radius of ∆i is
bi, the consecutive triangles ∆i,∆i+1 contain 2(bi + bi+1)− hi+1 edges of P .

Suppose T = T (b, h) is a 1-cap tree without nested triangles such that hi ≤ 3,
i = 2, ..., k. Let b′ = (b′1, ..., b

′
k), where b′i = 2 for each i = 1, ..., k. Then T ′ = T ′(b′, h)

exists, also has no nested triangles, and, by Theorem 1.6, is 1-cap. For simplicity
we sometimes assume, where appropriate, that each branch of T has length equal to
two.

Given a γ-set X of T , a branch vertex vci may or may not be in X. In either
case, X contains at least

⌈
3mi+1

3

⌉
= mi + 1 vertices of Bi − vci . A γ-set X such that

X ∩ (V (Bi − vci)) = {ui,1, ui,4, ..., ui,3mi+1} for each i = 1, ..., k is called a natural
γ-set.

2.1 Six classes of 1-cap trees

Define the classes T1 − T6 of shadow trees as follows. For b = (b1, ..., bk), where
bi ≡ 2 (mod 3), i = 1, ..., k, and h = (−x, h2, ..., hk,−y), let

T1 = {T (b, h) : x ≡ 1 (mod 3) and hi = 0, i = 2, ..., k}
T2 = {T (b, h) : x ≡ y ≡ 1 (mod 3), hi = 1 for exactly one i = 2, ..., k,

and hj = 0 if j 6= i}
T3 = {T (b, h) : x ≡ y ≡ 1 (mod 3), hi = 3 for exactly one i = 2, ..., k,

and hj = 0 if j 6= i}
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T4 = {T (b, h) : x ≡ y ≡ 2 (mod 3) and k = 1}
T5 = {T (b, h) : x ≡ y ≡ 2 (mod 3), k = 2 and h2 = 1}
T6 = {T (b, h) : x ≡ 1 (mod 3), y ≡ 2 (mod 3), hi = 0 for i = 2, ..., k − 1,

and hk = 2}.

Note that the definitions of T6 and some instances of T1 (the cases y ≡ 0 or 2 (mod 3))
are not symmetrical with respect to x and y; however, we also consider a tree to be
in one of these classes if we can reverse its diametrical path P to fit the criteria. Let
T =

⋃6
i=1 Ti ⊆ C ′2. Our aim is to prove the following result.

Theorem 2.1 Let T be a shadow tree without internal free edges whose branches all
have length congruent to 2 (mod 3). Then T is a 1-cap tree if and only if T ∈ T .

In the next four lemmas we consider shadow trees with specific overlap sequences
and show that such a tree T is 1-cap if and only if it belongs to

⋃6
i=1 Ti. By Theorem

1.6 we may assume that each branch of T has length 2. We prove each result for
x, y ∈ {0, 1, 2}; each lemma then follows from Theorem 1.7. A dominating set of
a graph is efficient if each vertex is dominated exactly once, and that such a set is
necessarily a γ-set.

Lemma 2.2 Let T = T (b, h) with h = (−x, 0, ..., 0,−y) be a shadow tree with k ≥ 1
branches. Then T is 1-cap if and only if T ∈ T1 ∪ T4.

Proof. Let T ′ be the subtree of T induced by all edges of T except the leading and
trailing free edges. Then diamT ′ = 4k and radT ′ = 2k. Let P ′ = v0, ..., v4k be a d-
path of T ′. Note that v2, v6, ..., v4k−2 are the branch vertices. For each i ∈ {1, ..., k},
the branch Bi that starts at v2+4(i−1) = v4i−2 consists of the path v4i−2, ui,1, ui,2.
Define D ⊆ V (T ′) by D = {ui,1 : i = 1, ..., k}∪{v4i : i = 0, ..., k}. Then |D| = 2k+ 1
and D is an efficient dominating set, hence γ(T ′) = 2k+ 1. For each x, y ∈ {0, 1, 2},
let T (x, y) be the tree obtained by adding x leading and y trailing free edges to P ′.
Each such T (x, y) has the empty set as maximum split-set, hence, by Theorem 1.1,
γb(T (x, y)) = radT (x, y). We consider the admissible values of x and y below, and
determine radT (x, y) and γ(T (x, y)). The results are summarized in Table 1.

(i) If (x, y) = (0, 0), then radT (x, y) = 2k < |D| and T (x, y) is not 1-cap.

(ii) If (x, y) ∈ {(1, 0), (0, 1), (1, 1)}, then D is a γ-set of T (x, y) and radT (x, y) =
2k + 1 = |D|, so T (x, y) is 1-cap, and T (x, y) ∈ T1 (reverse the d-path if x = 0
and y = 1).

(iii) If (x, y) ∈ {(0, 2), (2, 0)}, then radT (x, y) = 2k + 1. It is simple to verify that
γ(T (x, y)) ≥ |D|+1 = 2k+2 for all values of k ≥ 1, hence T (x, y) is not 1-cap.
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(x, y) γ γb 1-cap?

(0, 0) 2k + 1 2k No
(0, 1) 2k + 1 2k + 1 Yes
(0, 2) 2k + 2 2k + 1 No
(1, 1) 2k + 1 2k + 1 Yes
(1, 2) 2k + 2 2k + 2 Yes

(2, 2), k = 1 4 4 Yes
(2, 2), k ≥ 2 2k + 3 2k + 2 No

Table 1: Possibilities for γ(T (x, y)) and γb(T (x, y)) in the proof of Lemma 2.2

(iv) If (x, y) ∈ {(1, 2), (2, 1)}, then radT (x, y) = 2k + 2, and D together with
one new vertex (incident with the first leading or the last trailing free edge)
dominates T (x, y). Hence T (x, y) is 1-cap, and T (x, y) ∈ T1 (reverse the d-path
if x = 2 and y = 1).

(v) Finally, if (x, y) = (2, 2), then radT (x, y) = 2k+2. If k = 1, then T (x, y) ∈ T4.
Let w and w′ be the vertices incident with the two leading and two trailing free
edges of T (x, y), respectively. Then {w, v2, u1,1, w′} dominates T (x, y). Hence
γ(T (x, y)) = 4 = radT (x, y) and T (x, y) is 1-cap.

If k ≥ 2, it is simple to verify that γ(T (x, y)) ≥ |D|+ 2 = 2k+ 3, hence T (x, y)
is not 1-cap.

Therefore, if T (x, y) is 1-cap, then T (x, y) ∈ T1 ∪ T4. Conversely, if T (x, y) ∈ T1,
then (ii) or (iv) applies, and if T (x, y) ∈ T4, then (v) applies with k = 1. Thus, if
T (x, y) ∈ T1 ∪ T4, then T (x, y) is 1-cap. By Theorem 1.7, T is 1-cap if and only if
T ∈ T1 ∪ T4.

Lemma 2.3 Let T = T (b, h) with h = (−x, h2, ..., hk,−y) be a shadow tree with
k ≥ 2 branches such that hi = 1 for exactly one i ∈ {2, ..., k} and hj = 0 if j 6= i.
Then T is 1-cap if and only if T ∈ T2 ∪ T5.

Proof. Define T ′, P ′ = v0, ..., v4k−1 and T (x, y) as in the proof of Lemma 2.2. Say
T ′ has k = k1+k2 branches B1, ..., Bk with triangles ∆1, ...,∆k, where ∆k1 and ∆k1+1

overlap in one edge. Then diamT ′ = 4k − 1 and radT ′ = 2k. Let T1 and T2 be
the subtrees of T ′ formed by ∆1, ...,∆k1 and ∆k1+1, ...,∆k respectively. For i = 1, 2,
define the efficient dominating set Di of Ti similar to the γ-set D of T ′ in the proof
of Lemma 2.2. Then

D1 = {ui,1 : i = 1, ..., k1} ∪ {v4i : i = 0, ..., k1},
D2 = {ui,1 : i = k1 + 1, ..., k} ∪ {v4i−1 : i = k1, ..., k},

and |Di| = 2ki + 1. Note that D3 = (D2 − {v4k1−1}) ∪ {v4k1} is also a γ-set of T2.
Now D = D1∪D3 is a γ-set of T ′ of cardinality 2k+1, and γ(T ′) = 2k+1. Again we
consider the admissible values of x and y and determine radT (x, y) and γ(T (x, y)),
summarizing the results in Table 2.
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(x, y) γ γb 1-cap?

(0, 0) 2k + 1 2k No
(0, 1) 2k + 1 2k No
(0, 2) 2k + 2 2k + 1 No
(1, 1) 2k + 1 2k + 1 Yes
(1, 2) 2k + 2 2k + 1 No

(2, 2), k = 2 6 6 Yes
(2, 2), k ≥ 3 2k + 3 2k + 2 No

Table 2: Possibilities for γ(T (x, y)) and γb(T (x, y)) in the proof of Lemma 2.3

(i) If (x, y) ∈ {(0, 0), (1, 0), (0, 1)}, then radT (x, y) = 2k < |D| ≤ γ(T (x, y)) and
T (x, y) is not 1-cap.

(ii) If (x, y) = (1, 1), then radT (x, y) = 2k + 1 and D dominates T (x, y). Hence
T (x, y) is 1-cap. Also, T (x, y) ∈ T2.

(iii) If (x, y) ∈ {(0, 2), (2, 0)}, then radT (x, y) = 2k + 1. Certainly, D does not
dominate T (x, y) and nor does any set of cardinality 2k+1, as is easy to verify.
Hence T (x, y) is not 1-cap.

(iv) If (x, y) ∈ {(1, 2), (2, 1)}, then radT (x, y) = 2k + 1. By (iii), γ(T (x, y)) >
2k + 1.

(v) If (x, y) = (2, 2), then radT (x, y) = 2k + 2. If k = 2, then radT (x, y) = 6 and
T (x, y) ∈ T5. Define w and w′ as in Lemma 2.2(v). Then {w, v2, u1,1, v5, u2,1, w′}
dominates T (x, y), hence T (x, y) is 1-cap.

If k ≥ 3, it is simple to verify that γ(T (x, y)) ≥ |D|+ 2 = 2k+ 3, hence T (x, y)
is not 1-cap.

Therefore, if T (x, y) is 1-cap, then T (x, y) ∈ T2 ∪ T5. Conversely, if T (x, y) ∈ T2,
then (ii) applies, and if T (x, y) ∈ T5, then (v) applies with k = 2. Thus, if T (x, y) ∈
T2 ∪T5, then T (x, y) is 1-cap. By Theorem 1.7, T is 1-cap if and only if T ∈ T2 ∪T5.

Lemma 2.4 Let T = T (b, h) with h = (−x, h2, ..., hk,−y) be a shadow tree with
k ≥ 2 branches such that hi = 2 for exactly one i ∈ {2, ..., k} and hj = 0 if j 6= i.
Then T is 1-cap if and only if T ∈ T6.

Proof. Proceed as in the proof of Lemma 2.3 to construct the trees T1 and T2, where
this time ∆k1 and ∆k1+1 overlap in two edges, and diamT ′ = 4k − 2 = 2 radT ′. Let
P ′ = v0, ..., v4k−2 be a d-path of T ′. Define the efficient γ-set D′i of Ti by

D′1 = {ui,1 : i = 1, ..., k1} ∪ {v4i : i = 0, ..., k1},
D′2 = {ui,1 : i = k1 + 1, ..., k} ∪ {v4i−2 : i = k1, ..., k}.
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Then |D′i| = 2ki + 1. Note that D1 = (D′1 − {v4k1}) ∪ {v4k1−1} is also a γ-set of T1,
while D2 = (D′2−{v4k1−2})∪{v4k1−1} is also a γ-set of T2. Therefore D = D1∪D2 is
a dominating set of T ′ of cardinality 2k+ 1. To see that D is a γ-set of T ′, note that
D1 − {v4k1−1} is an efficient γ-set of H1 = T1 − {v4k1−1, v4k1} (hence γ(H1) = 2k1),
and that no γ-set of H1 contains v4k1−2. Similarly, if H2 = T2 − {v4k1−2, v4k1−1},
then γ(H2) = 2k2 and no γ-set of H2 contains v4k1 . Thus neither D − {v4k1−1}
nor the union of any γ-sets of H1 and H2 dominates v4k1−1 in T ′. Finally, since
the uk1,2 − uk1+1,2-path in T ′ is isomorphic to P7, no two vertices of T ′ dominate
{uk1,2, v4k1−1, uk1+1,2}. Hence γ(T ′) > 2k, from which it follows that γ(T ′) = 2k + 1.
Since radT ′ = 2k − 1, T (x, y) can only be 1-cap if x + y ≥ 3. For all choices of x
and y such that 3 ≤ x+ y ≤ 4, radT (x, y) = 2k + 1. We consider two cases.

Case 1 x + y = 3. Assume without loss of generality that x = 1 and y = 2.
Let v−1v0 be the leading free edge and let v4k−2v4k−1 and v4k−1v4k be the trailing
free edges of T (x, y). If k = k1 + 1, that is, the 2-overlap is the last overlap, then
X = {ui,1 : i = 1, ..., k} ∪ {v4i : i = 0, ..., k − 1} ∪ {v4k−1} is a dominating set of
T (x, y) of cardinality 2k+1, hence γ(T (x, y)) = 2k+1. Note that no γ-set of T (x, y)
contains v−1. If k2 ≥ 2, that is, if the 2-overlap is not the last overlap, then it can
be verified easily that γ(T (x, y)) ≥ 2k + 2. Thus, T (x, y) is 1-cap if and only if
T (x, y) ∈ T6.

Case 2 (x, y) = (2, 2). If the 2-overlap is not the last overlap, then it follows from
Case 1 that T (x, y) is not 1-cap. If the 2-overlap is the last overlap, the note in Case
1 that no γ-set of T (1, 2) contains v−1 implies that γ(T (2, 2)) ≥ 2k+ 2 > radT (2, 2).

The lemma follows from Theorem 1.7.

Lemma 2.5 Let T = T (b, h) with h = (−x, h2, ..., hk,−y) be a shadow tree with
k ≥ 2 branches such that hi = 3 for exactly one i ∈ {2, ..., k} and hj = 0 if j 6= i.
Then T is 1-cap if and only if T ∈ T3.

Proof. Define T ′and T (x, y) as in the proof of Lemma 2.2. Say T ′ has k = k1 + k2
branches B1, ..., Bk with triangles ∆1, ...,∆k, where ∆k1 and ∆k1+1 overlap in three
edges. Then diamT ′ = 4k−3 and radT ′ = 2k−1. Let P ′ = v0, ..., v4k−3 be a d-path
of T ′ and define D by

D = {ui,1 : i = 1, ..., k} ∪ {v4i : i = 0, ..., k1 − 1} ∪ {v4i−3 : i = k1 + 1, ..., k}.

Then D is an efficient γ-set of T ′ of cardinality 2k and γ(T ′) = 2k. Therefore T (x, y)
can only be 1-cap if x+ y ≥ 2.

If x = y = 1, then D is also a γ-set of T (x, y) and radT (x, y) = 2k. The
efficiency of D further implies that if {x, y} = {1, 2}, then γ(T (x, y)) = 2k+ 1 while
radT (x, y) = 2k, and if x = y = 2, then γ(T (x, y)) = 2k + 2 while radT (x, y) =
2k + 1. Finally, if {x, y} = {0, 2}, then radT (x, y) = 2k, and it is easy to see that
γ(T (x, y)) = 2k + 1. Hence T (x, y) is 1-cap if and only if x = y = 1, that is,
T (x, y) ∈ T3.
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2.2 Clear shadow trees and pure minimum dominating sets

A shadow tree T that has at least one γ-set D that contains no branch vertices is
called clear and D is called a pure γ-set of T . We now show that the only clear
1-cap shadow trees whose only free edges are leading and trailing free edges are the
trees in T1 ∪ T2 ∪ T3.

Theorem 2.6 Let T be a clear shadow tree whose only free edges are x leading and
y trailing free edges. Then T is a 1-cap tree if and only if T ∈ T1 ∪ T2 ∪ T3.

Proof. By Theorem 1.7 we may assume that x, y ∈ {0, 1, 2} so that γb(T ) = radT .
Recall that the branch Bi = vci , ui,1, ..., ui,bi of T attached to vci has length bi =
3mi + 2, i = 1, ..., k, and is covered by the triangle ∆i, where ∆i,∆i+1 overlap by hi
edges, i = 1, ..., k − 1. Then

radT =

⌈
d

2

⌉
=

⌈
1

2

(
x+ y +

k∑
i=1

2bi −
k−1∑
i=1

hi

)⌉
=

k∑
i=1

bi +

⌈
x+ y

2
− 1

2

k−1∑
i=1

hi

⌉

= 2k + 3
k∑
i=1

mi +

⌈
x+ y

2
− 1

2

k−1∑
i=1

hi

⌉
. (1)

For each i = 1, ..., k − 1, let Qi be the path vci+1, ..., vci+1−1. Since d(vci , vci+1
) =

ci+1− ci = bi + bi+1−hi, the length `(Qi) of Qi is given by `(Qi) = bi + bi+1−hi− 2;
hence Qi contains bi + bi+1 − hi − 1 vertices. We determine γ(T ). Let D be a pure
natural γ-set of T .

• Each branch Bi contains
⌈
bi
3

⌉
= mi + 1 vertices in D. The vertex ui,1 is in D

(since D is natural) and dominates vci .

• The path v0, ..., vc1−1 contains c1 vertices,
⌈
c1
3

⌉
of which are in D.

• The path vck+1, ..., vd contains d− ck vertices,
⌈
d−ck
3

⌉
of which are in D.

• Each path Qi contains
⌈
bi+bi+1−hi−1

3

⌉
vertices in D.

Since c1 = x+ b1 and d− ck = y + bk, we obtain

γ(T ) =
k∑
i=1

⌈
bi
3

⌉
+

⌈
x+ b1

3

⌉
+

⌈
y + bk

3

⌉
+

k−1∑
i=1

⌈
bi + bi+1 − hi − 1

3

⌉

=
k∑
i=1

(mi + 1) +

⌈
x+ 3m1 + 2

3

⌉
+

⌈
y + 3mk + 2

3

⌉

+
k−1∑
i=1

⌈
3mi + 3mi+1 − hi + 3

3

⌉
(2)
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=
k∑
i=1

mi + k +m1 +mk +

⌈
x+ 2

3

⌉
+

⌈
y + 2

3

⌉
+ k − 1 +

k−1∑
i=1

(mi +mi+1)

−
k−1∑
i=1

⌊
hi
3

⌋

= 3
k∑
i=1

mi + 2k − 1 +

⌈
x+ 2

3

⌉
+

⌈
y + 2

3

⌉
−

k−1∑
i=1

⌊
hi
3

⌋
. (3)

Since radT = γb(T ) and γb(T ) ≤ γ(T ), (1) and (3) imply that⌈
x+ y

2
− 1

2

k−1∑
i=1

hi

⌉
≤
⌈
x+ 2

3

⌉
+

⌈
y + 2

3

⌉
− 1−

k−1∑
i=1

⌊
hi
3

⌋
. (4)

Assuming that T is a 1-cap tree, i.e., γb(T ) = γ(T ), (4) becomes⌈
x+ y

2
− 1

2

k−1∑
i=1

hi

⌉
=

⌈
x+ 2

3

⌉
+

⌈
y + 2

3

⌉
− 1−

k−1∑
i=1

⌊
hi
3

⌋
. (5)

Note that
⌈
x+y
2

⌉
≤
⌈
x+2
3

⌉
+
⌈
y+2
3

⌉
− 1, with equality if and only if x = 1 or y = 1.

Hence if hi = 0 for all i, then without loss of generality x = 1 and y ∈ {0, 1, 2}.
Therefore T ∈ T1.

Now assume hi > 0 for at least one i. Then 1
2

∑k−1
i=1 hi >

∑k−1
i=1

⌊
hi
3

⌋
for all k ≥ 2.

Therefore, if there are an even number of odd overlaps, then
∑k−1

i=1 hi is even, and⌈
x+ y

2
− 1

2

k−1∑
i=1

hi

⌉
=

⌈
x+ y

2

⌉
− 1

2

k−1∑
i=1

hi <

⌈
x+ 2

3

⌉
+

⌈
y + 2

3

⌉
− 1−

k−1∑
i=1

⌊
hi
3

⌋
.

Hence (5) does not hold and T is not a 1-cap tree. It follows that there are an odd
number of odd overlaps. Assume therefore that hj = t for some j, where t is odd.

Then
∑k−1

i=1,i 6=j hi is even. Hence, from (4),⌈
x+ y

2
− 1

2

k−1∑
i=1

hi

⌉
=

⌈
x+ y − t

2

⌉
− 1

2

k−1∑
i=1,i 6=j

hi

≤
⌈
x+ 2

3

⌉
+

⌈
y + 2

3

⌉
− 1−

⌊
t

3

⌋
−

k−1∑
i=1,i 6=j

⌊
hi
3

⌋
. (6)

As can be seen from Table 3,
⌈
x+y−t

2

⌉
≤
⌈
x+2
3

⌉
+
⌈
y+2
3

⌉
− 1 −

⌊
t
3

⌋
, with equality if

and only if x = y = 1 and t ∈ {1, 3}. Moreover, 1
2

∑k−1
i=1,i 6=j hi ≥

∑k−1
i=1,i 6=j

⌊
hi
3

⌋
, and

this inequality is strict if hi > 0 for some i 6= j. Hence equality holds in (6) if and
only if hi = 0 for all i 6= j, x = y = 1, and t ∈ {1, 3}. Therefore T ∈ T2 ∪ T3. �
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(x, y)
⌈
x+y−t

2

⌉ ⌈
x+2
3

⌉
+
⌈
y+2
3

⌉
− 1−

⌊
t
3

⌋
(0, 0) −

⌊
t
2

⌋
1−

⌊
t
3

⌋
(0, 1) −

⌊
t−1
2

⌋
1−

⌊
t
3

⌋
(0, 2) 1−

⌊
t
2

⌋
2−

⌊
t
3

⌋
(1, 1) 1−

⌊
t
2

⌋
1−

⌊
t
3

⌋
(1, 2) 1−

⌊
t−1
2

⌋
2−

⌊
t
3

⌋
(2, 2) 2−

⌊
t
2

⌋
3−

⌊
t
3

⌋
Table 3: Comparing

⌈
x+y−t

2

⌉
and

⌈
x+2
3

⌉
+
⌈
y+2
3

⌉
− 1−

⌊
t
3

⌋
for x, y ∈ {0, 1, 2}

2.3 Thorny trees and mixed minimum dominating sets

A shadow tree that is not clear is said to be thorny and its γ-sets are said to be
mixed. Among all natural γ-sets of a thorny shadow tree T , if D is one that contains
the minimum number of branch vertices, then D is a minimally mixed γ-set of T . In
this section we show that the only thorny 1-cap shadow trees whose only free edges
are leading and trailing edges are the trees in T4 ∪ T5 ∪ T6. We need two lemmas.

Lemma 2.7 Let T be a thorny shadow tree with a minimally mixed natural γ-set D
and branch vertices vc1 , ..., vck , k ≥ 1. Suppose vcα ∈ D. Define the vertex z to the
right of vcα as follows.

• If α 6= k and vcα+1 ∈ D, let z = vcα+1; if vcα+1 /∈ D let z = uα+1,1.

• If α = k, let z = vd.

Define the vertex z′ to the left of vcα similarly. Let Q be the z′ − z subpath of T .
Then d(vcα , q) ≡ 0 (mod 3) for each vertex q ∈ V (Q) ∩D.

Proof. Neither vcα−1 nor vcα+1 is a branch vertex: if both were branch vertices,
then D − {vcα} would be a dominating set of T , which is not the case, and if (say)
vcα−1 were a branch vertex but not vcα+1, then (D − {vcα}) ∪ {vcα+1} would be a
γ-set containing fewer branch vertices than D, contrary to the choice of D.

Let Qr (Q`, respectively) be the subpath of Q to the right (left, respectively)
of vcα . Without loss of generality, consider Qr and note that each vertex of Qr is
dominated by a vertex in D∩V (P ), with the possible exception of vcα+1 , which may
only be dominated by z = uα+1,1 if vcα+1 /∈ D. Suppose d(vcα , q

′) 6≡ 0 (mod 3) for
some vertex q′ ∈ V (Qr) ∩ D. Let q be the nearest vertex to vcα on Qr such that
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q ∈ D and d(vcα , q) 6≡ 0 (mod 3). Let vr1 , ..., vrj be the vertices in V (Q) ∩ D that
lie strictly between vcα and q. If {vr1 , ..., vrj} 6= ∅, then d(vrj , q) ∈ {1, 2}, otherwise
d(vcα , q) ∈ {1, 2}. Now D′ = (D − {vcα , vr1 , ..., vrj}) ∪ {vcα−1, vr1−1, ..., vrj−1} is a
γ-set of T containing fewer branch vertices than D, a contradiction. �

Lemma 2.8 Let T be a thorny shadow tree with a minimally mixed γ-set D and
branch vertices vc1 , ..., vck , k ≥ 1. If vc1 ∈ D (vck ∈ D, respectively), then d(vc1 , v0) ≡
1 (mod 3) (d(vck , vd) ≡ 1 (mod 3), respectively).

Proof. Suppose vc1 ∈ D and let w be the first vertex of P in D. By Lemma 2.7,
d(vc1 , w) ≡ 0 (mod 3). Since w dominates v0, w ∈ {v0, v1}. However, if w = v0,
then D′ = (D− {w}) ∪ {v1} is a γ-set of T that does not satisfy Lemma 2.7. Hence
w = v1 and d(v0, vc1) ≡ 1 (mod 3). Similarly, d(vck , vd) ≡ 1 (mod 3) if vck ∈ D. �

If D is a natural γ-set of T , then D ∩ V (Bi) = {ui,j : j ≡ 1 (mod 3)}. If vci ∈ D
and

D′ = (D − {ui,j : j ≡ 1 (mod 3)}) ∪ {ui,j : j ≡ 0 (mod 3)} ∪ {ui,bi},

then D′ is a γ-set of T , called the i-conversion of D. Similarly, for i′ 6= i, if
{vci , vci′} ⊆ D and

D′′ = (D′ − {ui′,j : j ≡ 1 (mod 3)}) ∪ {ui′,j : j ≡ 0 (mod 3)} ∪ {ui′,bi′},

then D′′ is also a γ-set of T , called the {i, i′}-conversion of D.

Theorem 2.9 Let T be a thorny 1-cap shadow tree whose only free edges are x
leading and y trailing free edges. Then T ∈ T4 ∪ T5 ∪ T6.

Proof. Suppose the statement of Theorem 2.9 is false. Amongst all thorny 1-cap
shadow trees without internal free edges not in T4 ∪ T5 ∪ T6, let T be a smallest one.
By Theorem 1.7 we may assume that x, y ∈ {0, 1, 2} so that γb(T ) = radT . Let D
be a minimally mixed natural γ-set of T and let vcα ∈ D. Define the vertices z and
z′ as in Lemma 2.7. If z = vd and z′ = v0, then T has exactly one branch vertex and
it follows from Lemma 2.8 that T ∈ T4, so assume without loss of generality that
z 6= vd. We consider two cases, depending on the choice of z.

Case 1 z = vcα+1 . Then z ∈ D and by Lemma 2.7, d(vcα , vcα+1) ≡ 0 (mod 3).
Define the vertex z′′ for vcα+1 similar to the vertex z for vcα .

Recall that the branches Bα and Bα+1 have lengths bα and bα+1. Now bα ≡ bα+1 ≡
2 (mod 3) and d(vcα , vcα+1) ≡ 0 (mod 3), hence hα+1 ≡ 1 (mod 3). Let X be the
{α, α + 1}-conversion of D. Then {uα,bα , uα+1,bα+1} ⊆ X and for i ∈ {α, α + 1},
PN(ui,bi , X) = {ui,bi}.

Let T ′ = T − {uα,bα , uα+1,bα+1} and let ∆′α and ∆′α+1 be the triangles of T ′

corresponding to the triangles ∆α and ∆α+1 of T . Let h′α+1 be the overlap of ∆′α and
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∆′α+1. Since T has no internal free edges and hα+1 ≥ 1, h′α+1 ≥ −1. If ∆α−1 exists,
let h′α be the overlap of ∆α−1 and ∆′α, otherwise let h′α be the number of leading
free edges of T ′. Similarly, if ∆α+2 exists, let h′α+2 be the overlap of ∆′α+1 and ∆α+2,
otherwise let h′α+2 be the number of trailing free edges of T ′.

Since PN(ui,bi , X) = {ui,bi} for i ∈ {α, α + 1}, γ(T ′) ≤ γ(T )− 2 and therefore

γb(T
′) ≤ γ(T ′) ≤ γ(T )− 2 = γb(T )− 2 = rad(T )− 2 = rad(T ′)− 2. (7)

Let m be the cardinality of a maximum split-set of T ′. By Theorem 1.1, γb(T
′) =

rad(T ′)−
⌈
m
2

⌉
, hence by (7), m ≥ 3. Since h′α+1 ≥ −1, the only possible free edges of

T ′ are x leading free edges, y trailing free edges, possibly an edge to the left of ∆′α,
possibly an edge to the right of ∆′α+1, and possibly an edge between ∆′α and ∆′α+1.
Since none of the x leading or y trailing free edges of T is a split-edge, we deduce
that m = 3, h′α+1 = −1 and

h′α =

{
−1 if ∆α−1 exists
−x− 1 otherwise

h′α+2 =

{
−1 if ∆α+2 exists
−y − 1 otherwise

.

Suppose ∆α+2 exists. Then h′α+2 = −1 and therefore hα+2 = 0. This in turn implies
that d(vcα+1 , vcα+2) ≡ 1 (mod 3) and d(vcα+1 , uα+2,1) ≡ 2 (mod 3). Now if vcα+2 ∈ D,
then z′′ = vcα+2 , otherwise z′′ = uα+2,1 ∈ D (since D is a natural γ-set). But by
Lemma 2.7, d(vcα+1 , z

′′) ≡ 0 (mod 3), a contradiction. We deduce that ∆α+2 does
not exist. Therefore α + 1 = k. By Lemma 2.8, d(vcα+1 , vd) ≡ 1 (mod 3), that is,
y ≡ 2 (mod 3) and so y = 2. Similarly, α = 1 (hence α + 1 = k = 2) and x = 2.
Finally, hα+1 = h′α+1 + 2 = 1. Therefore T ∈ T5, contrary to the choice of T .

By symmetry, T ∈ T5 if z′ = vcα−1 . We therefore assume henceforth that z′ 6=
vcα−1 .

Case 2 z = uα+1,1. Then z ∈ D and by Lemma 2.7, d(vcα , z) ≡ 0 (mod 3)
and d(vcα , vcα+1) ≡ 2 (mod 3). Therefore hα+1 ≡ 2 (mod 3). If z′ = uα−1,i, then
similarly d(vcα−1 , vcα) ≡ 2 (mod 3) and hα−1 ≡ 2 (mod 3). Then T ′ = T − {uα,bα}
has no internal free edges, hence is radial, so that γb(T

′) = γb(T ). But if X is the
α-conversion of D, then X − {uα,bα} is a dominating set of T ′. This means that

γb(T
′) ≤ γ(T ′) < γ(T ) = γb(T ) = γb(T

′),

which is impossible. Therefore z′ = v0 and α = 1. By Lemma 2.8, d(v0, vc1) ≡
1 (mod 3); hence x ≡ 2 (mod 3) and so x = 2.

Suppose h2 ≥ 5. Since T has no nested triangles it follows that the branch B1 at
vc1 has length at least 5. Let T ′′ = T − {u1,b1 , u1,b1−1, u1,b1−2, u1,b1−3}. Then T ′′ has
exactly x+ 4 = 6 leading free edges, y ∈ {0, 1, 2} trailing free edges, and no internal
free edges since h2 ≥ 5. Moreover, γb(T

′′) ≤ γ(T ′′) = γ(T ) − 2 = rad(T ) − 2. Let
m be the cardinality of a maximum split-set M of T ′′. By Theorem 1.1, γb(T

′′) =
rad(T ′) −

⌈
m
2

⌉
, hence m ≥ 3. But it is impossible to find a split-set of cardinality
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three amongst six consecutive free edges (the removal of three edges would leave a
component with a d-path of zero or odd length), and (for a similar reason) none of
the trailing free edges is a split-edge. Hence h2 = 2.

Let H be the subtree of T obtained by deleting all the vertices of B1 except
vc1 . Then D − {u1,1, u1,4, ..., u1,b1−1} dominates H and γ(H) = γ(T ) − m1 − 1.
Since γb(H) ≤ γ(H), H has a maximum split-set M of cardinality m ≥ 1. By
Theorem 1.1, γb(H) = rad(H) −

⌈
m
2

⌉
= rad(T ) −

⌈
m
2

⌉
. Therefore m ≥ 2m1 + 1.

The rightmost vertex of ∆1 is v2b1+2 and, since h2 = 2, the leftmost vertex of ∆2

is v2b1 . The leading free edges of H are the edges on the path R = v0, v1, ..., v2b1 ,
and H has no internal free edges. Hence M consists of edges of R. Note that
2b1 = 6m1 + 4. Since each component of H −M has even positive diameter, the
set M = {v2v3, v5v6, ..., v6m1+2v6m1+3} of cardinality m = 2m1 + 1 is the unique
maximum split-set of H.

Let Td be the component of H −M that contains vd; it has exactly one leading
free edge and at least one branch vertex. By Theorem 1.2, Td is a 1-cap tree. If Td
is a clear tree, then Td ∈ T1 ∪ T2 ∪ T3, and if it is a thorny tree, then, by the choice
of T , Td ∈ T4 ∪ T5 ∪ T6. But since Td has exactly one leading free edge, Td /∈ T4 ∪ T5.
We examine the other possibilities.

• If Td ∈ T1, then y = 1 since diam(Td) is even and Td has one leading free edge.
Since x = 2, T is the reverse of a tree in T6.

• If Td ∈ T2∪T3, then Td has an odd number of leading free edges, an odd number
of trailing free edges, and one odd overlap, so that diam(Td) is odd, contrary
to M being a nonempty split-set.

• If Td ∈ T6, then it has one leading free edge, two trailing free edges, and only
even overlaps, so that diam(Td) is odd, again a contradiction.

This completes the proof of Theorem 2.9. �

Theorem 2.1 is now an immediate consequence of Lemmas 2.2 – 2.5 and Theorems
2.6 and 2.9. Thus the 1-cap shadow trees in C ′2 have been completely characterized.

3 Joining 1-Cap Shadow Trees

In this section we discuss joining 1-cap shadow trees in C2 to form new 1-cap shadow
trees with internal free edges. Consider the classes T1 – T6 defined in Section 2.1.
For i = 1, ..., 6, let xTiy denote the set of all trees in Ti that have x leading and
y trailing free edges. In order to join two trees correctly, order is important here.
Thus, although 1T12 ⊆ T1 and 2T11 ⊆ T1, and a tree in 1T12 is isomorphic to a
tree in 2T11, their representations are mirror images of each other. A tree in 2T11 is
shown in Fig. 4. We further define the subset T1,1 of T1 by

T1,1 = {T (b, h) ∈ T1 : y ≡ 1 (mod 3).
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If T, T ′ ∈ T =
⋃6
i=1 Ti, say T ∈ kTi` has diametrical path v0, ..., vd, and T ′ ∈ k′Tj`′

has diametrical path v′0, ..., v
′
d′ , we denote the tree obtained by joining vd to v′0 by

T + T ′, and the set of all such trees by kTi`+ k′Tj`
′, and say that T + T ′ is the sum

of T and T ′. The tree T in Fig. 4 belongs to 2T11 + 1T11 if we consider uv to be the
joining edge, or to 2T42 + 0T11 if we consider vw to be the joining edge.

It is not necessarily true that the sum of two 1-cap trees is another 1-cap tree.
For example, as illustrated by the tree T with γ(T ) = 10 and γb(T ) = 9 in Fig. 5,
no tree in 1T21 + 1T21 is a 1-cap tree; the bold (blue) edge is a split-edge of T . Note
that if H ∈ 1T21, then diam(H) is odd. In contrast, the tree T in Fig. 6 is the sum
of the 1-cap trees T ′ and T ′′, both of which have even diameter and are radial, but
T is not 1-cap. Again the bold (blue) edges form a split-set.

We now summarize exactly when the sum of two trees in T is a 1-cap tree. The
proof involves examining several different cases and is given [19]. We omit it here.

Theorem 3.1 If F1, F2 ∈ T , then F1 + F2 is a 1-cap tree if and only if one of the
following conditions holds.

(i) F1, F2 ∈ T1,1 ∪ T4.

(ii) Fi ∈ T1,1 and Fj ∈ T − (T 1,1∪T 4), i 6= j.

(iii) Fi ∈ T4 and Fj ∈ yT1x, where x ≡ 1 (mod 3) and y ≡ 0 (mod 3), i 6= j.

(iv) Fi ∈ xT1y and Fj ∈ y′T1x, where x ≡ 1 (mod 3) and y, y′ ≡ 0 or 2 (mod 3),
i 6= j.

(v) F1, F2 ∈ xT1y, and F2 has exactly one branch vertex, or F1, F2 ∈ yT1x, and F1

has exactly one branch vertex, where x ≡ 1 (mod 3) and y ≡ 2 (mod 3).

Theorem 3.1 does not give all 1-cap trees in C2 with internal free edges. The
radial 1-cap tree T in Fig. 7 cannot be written as the sum of two trees in T . Note
that T = T (b, h), where b = (2, 2) and h = (−2,−2,−2). The pattern does not
generalize: T (b, h), where b = (2, 2, 2) and h = (−2,−2,−2,−2) is not 1-cap (and
also not radial).

wvu

T

2T11

Figure 4: T ∈ 2T11 + 1T11 = 2T42 + 0T11
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T in 1T21 + 1T21
4 5

+

Figure 5: The tree T ∈ 1T21 + 1T21 is not a 1-cap tree

Figure 6: T ′ and T ′′ are 1-cap trees but T is not

T:

Figure 7: A 1-cap tree with internal free edges that is not the sum of trees in T
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4 Future Work

We close by briefly mention a number of open problems on 1-cap trees.

Question 1 Is the radial 1-cap tree in Fig. 7 the only 1-cap shadow tree in C2 that
cannot be written as the sum of 1-cap trees in the class T ?

Problem 1 Determine all 1-cap shadow trees in C2 that contain internal free edges.

Since the class of 1-cap trees with branches of length congruent to 1 (mod 3) is
completely characterized in [21], only the trees with branches of length congruent to
0 (mod 3) remain to be considered in the study of trees, all of whose branches have
the same length (modulo 3).

Problem 2 Determine all 1-cap trees with branches of length congruent to 0 (mod 3).

Finally, the case where the shadow trees have branches of arbitrary length remains
open.

Problem 3 Characterize the class of all 1-cap trees.
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[4] B. Brešar and S. Špacapan, Broadcast domination of products of graphs, Ars
Combin. 92 (2009), 303–320.

[5] G. Chartrand, L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman &
Hall, Boca Raton, 2005.



S. LUNNEY AND C.M. MYNHARDT/AUSTRALAS. J. COMBIN. 61 (3) (2015), 251–272 271

[6] E. J. Cockayne, S. Goodman and S. T. Hedetniemi, A linear-time algorithm for
the domination number of a tree, Inform. Proc. Lett. 4 (1975), 41–44.

[7] E. J. Cockayne, S. Herke and C. M. Mynhardt, Broadcasts and domination in
trees, Discrete Math. 311 (2011), 1235–1246.

[8] J. Dabney, B. C. Dean and S. T. Hedetniemi, A linear-time algorithm for broad-
cast domination in a tree, Networks 53 (2009) 160–169.

[9] J. Dunbar, D. Erwin, T. Haynes, S. M. Hedetniemi and S. T. Hedetniemi, Broad-
casts in graphs, Discrete Applied Math. 154 (2006), 59–75.

[10] J. Dunbar, S. M. Hedetniemi and S. T. Hedetniemi, Broadcasts in trees,
Manuscript, 2003.

[11] D. Erwin, Cost domination in graphs, Dissertation, Western Michigan Univer-
sity, 2001.

[12] D. Erwin, Dominating broadcasts in graphs, Bull. Inst. Combin. Aplic. 42
(2004), 89–105.

[13] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination
in Graphs, Marcel Dekker, New York, 1998.

[14] P. Heggernes and D. Lokshtanov, Optimal broadcast domination in polynomial
time, Discrete Math. 36 (2006), 3267-3280.

[15] P. Heggernes and S. H. Sæther, Broadcast domination on block graphs in lin-
ear time. Computer science—theory and applications, 172–183, Lecture Notes
Comput. Sci. 7353, Springer, Heidelberg, 2012.

[16] S. Herke, Dominating broadcasts in graphs, Master’s thesis, University of Victo-
ria, 2009. http://hdl.handle.net/1828/1479

[17] S. Herke and C. M. Mynhardt, Radial Trees, Discrete Math. 309 (2009), 5950–
5962.

[18] N. Jafari Rad and F. Khosravi, Limited dominating broadcast in
graphs, Discrete Math. Algorithms Appl. 5 (2013) [9 pages]. DOI:
10.1142/S1793830913500250

[19] S. Lunney, Trees with equal broadcast and domination numbers, Master’s thesis,
University of Victoria, 2011. http://hdl.handle.net/1828/3746

[20] C. M. Mynhardt and L. Teshima, Broadcasts and multipackings in trees, Utilitas
Math. (to appear).

[21] C. M. Mynhardt and J. S. Wodlinger, A class of trees with equal broadcast and
domination numbers. Australas. J. Combin.56 (2013), 3–22.



S. LUNNEY AND C.M. MYNHARDT/AUSTRALAS. J. COMBIN. 61 (3) (2015), 251–272 272

[22] C. M. Mynhardt and J. S. Wodlinger, Uniquely radial trees, (submitted).

[23] S. M. Seager, Dominating broadcasts of caterpillars, Ars Combin. 88 (2008),
307–319.

(Received 22 Apr 2014; revised 7 Jan 2015)


