
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 61(3) (2015), Pages 210–226

Edge decompositions of hypercubes by paths

David Anick

Laboratory for Water and Surface Studies
Tufts University, Department of Chemistry

62 Pearson Rd., Medford, MA 02155
U.S.A.

david.anick@rcn.com

Mark Ramras∗

Department of Mathematics
Northeastern University

Boston, MA 02115
U.S.A.

m.ramras@neu.edu

Abstract

Many authors have investigated edge decompositions of graphs by the
edge sets of isomorphic copies of special subgraphs. For q-dimensional
hypercubes Qq various researchers have done this for certain trees, paths
and cycles. In this paper we shall say that “H divides G” if E(G) is the
disjoint union of {E(Hi) |Hi ' H}. Our main result is that for q odd,
the path of length m, Pm, divides Qq if and only if m ≤ q and m | q ·2q−1.

1 Introduction

Edge decompositions of graphs by subgraphs have a long history. For example, there
is a Steiner triple system of order n if and only if the complete graph Kn has an
edge-decomposition by K3. In 1847 Kirkman [9] proved that for a Steiner triple
system to exist it is necessary that n ≡ 1 (mod 6) or n ≡ 3 (mod 6). In 1850 [10] he
proved the converse holds also.

Theorem 1 A Steiner system of order n ≥ 3 exists if and only if n ≡ 1 (mod 6) or
n ≡ 3 (mod 6).

∗ Corresponding author.
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In more modern times (1964) Ringel [17] stated the following conjecture, which
is still open.

Ringel’s Conjecture
If T is a fixed tree with m edges then K2m+1 is edge-decomposable into 2m+1 copies
of T .

Still more recently, the n-dimensional hypercube graph Qn has been studied ex-
tensively, largely because of its usefulness as the architecture for distributed parallel
processing supercomputers [12]. Communication problems such as “broadcasting”
in these networks (see [8], [3]) have led to research on constructions of maximum
size families of edge-disjoint spanning trees (maximum is bn/2c for Qn [2]; see [11]
for results on more general product networks.) Fink [6] and independently Ramras
[14] proved that Qn could be decomposed into 2n−1 isomorphic copies of any tree on
n edges. Wagner and Wild [19] proved that Qn is edge-decomposable into n copies
of a specific tree on 2n−1 edges. Horak, Siran, and Wallis [7] showed that Qn has
an edge decomposition by isomorphic copies of any graph G with n edges each of
whose blocks is either an even cycle or an edge. Ramras [15] proved that for a cer-
tain class of trees on 2n edges, isomorphic copies of these trees edge-decompose Qn.
Other researchers have demonstrated edge decompositions by Hamiltonian cycles for
Cartesian products of cycles [16], [1], [4]. Song [18] applies a different construction
of this to even-dimensional hypercubes.

We concentrate in this work on the important question of edge decompositions
of hypercubes into paths of equal length. Literature on this specific question is
not extensive. The cases of n odd and n even are very different, with the theory
of edge decompositions of Qn for n even being dominated by Hamiltonian cycle
considerations as noted above. Mollard and Ramras [13] found edge decompositions
of Qn into copies of P4, the path on 4 edges, for all n ≥ 5. Our principal result goes
far beyond that: we answer the general question of when Qn for n odd can be edge
decomposed into length-m paths. The method of proof involves construction of two
new graph-theoretic concepts, the “m-stretch of a graph” (see Definition 2), and an
analog of the topological cylinder (see Definition 4) and a variant thereof (Definition
5) that may have wide applicability to edge decomposition studies.

In an earlier version of this article (submitted to the arXiv in August 2013) we
conjectured this principal result, and proved it for all m and all odd n < 225 . We
did not initially see how to complete the theorem within our framework but the
## construction in Definition 5 came to us later as the way to bridge the gap,
making a satisfying whole of our approach. Meanwhile the truth of the theorem was
independently established by J. Erde [5].

2 Notation and Preliminaries

Definition 1 For graphs H and G we say that H divides G if there is a collection
of subgraphs {Hi} each isomorphic to H (Hi ' H for all i) for which E(G) is the
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disjoint union of {E(Hi)}.

Notation We shall denote “H divides G” by H <D G, since the relation <D is
clearly reflexive and transitive and thus a partial order.

For the q-dimensional hypercube Qq the vertices are the 2q q-tuples of 0’s and
1’s. V (Qq) has an additive structure of Zq2. The edge set E(Qq) consists of those
(unordered) pairs of vertices that differ in exactly one coordinate. The group Zq2 acts
on the set of edges in the obvious way: for γ ∈ Zq2 and e = {α, α ′} an unordered pair
representing an edge of E(Qq), γ + e will denote the edge {γ + α, γ + α ′}.

The parity of a q-tuple α = (a1, . . . , aq) ∈ Zq2 is ρ(α) = a1 + · · · + aq, defined
(mod 2). Let Bq be the subgroup of V (Qq) consisting of those q-tuples with parity
0. For q ≥ 1, clearly |Bq | = |V (Qq) |/2 = 2q−1.

Given an integer j, 1 ≤ j ≤ q, and a vertex α = (a1, . . . , aq) ∈ V (Qq), some
helpful notation is as follows. Let

j · α = (a1, . . . , 1 + aj, . . . , aq)

i.e. alter aj only. Let
j0 · α = (a1, . . . , c, . . . , aq),

where c = ρ(α) + aj. The idea of j0 is “alter the jth coordinate if necessary so that
the parity is 0”. It should be obvious that j0 · α = j0 · (j · α) ∈ Bq. Likewise, put

j1 · α = j · (j0 · α),

i.e. alter the jth coordinate if necessary so that the parity is 1. Notice that {α, j ·α}
is an edge of Qq and that {j0 ·α, j1 ·α} is the same edge. Our notation for this edge
is ĵ · α. Then ĵ is compatible with the Zq2-action, i.e. ĵ · (γ + α) = γ + ĵ · α. Clearly
ĵ · α = ĵ · (j0 · α) = ĵ · (j1 · α) = ĵ · (j · α).

The path Pq of length q is a graph with a vertex set {0, 1, . . . , q} and an edge set

{1̂, . . . , q̂}, k̂ denoting the edge joining k − 1 and k. We define graph embeddings
fγ : Pq −→ Qq, for γ ∈ Bq, as follows. For 0 ≤ k ≤ q let

1k0q−k = (1, . . . , 1︸ ︷︷ ︸
k 1′s

, 0, . . . , 0︸ ︷︷ ︸
q−k 0′s

) ∈ V (Qq)

and set
fγ(k) = 1k0q−k + γ.

Notice that in E(Qq),

fγ(k̂) = k̂ · (1k0q−k + γ) = 1k0q−k + k̂ · γ = 1k−10q−k+1 + k̂ · γ.

The family {fγ} provides |Bq | = 2q−1 ways of embedding Pq in Qq, and Pq has q
edges, so altogether the family {fγ} sends q·2q−1 edges to Qq while |E(Qq) | = q·2q−1.
Therefore if the family {fγ} cover E(Qq) then they cover each edge just once, i.e.
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the path images of {fγ} are pairwise edge-disjoint. To see that this is the case, let

e = {α, α ′} denote any edge of Qq; then e = k̂ · α where the unique coordinate that
differs between α and α ′ is the kth. Put γ = k0 · (α + 1k0q−k) and observe that
fγ(k̂) = k̂ · α = e. We have proved

Lemma 1 The family of graph embeddings {fγ : Pq −→ Qq | γ ∈ Bq} defines a
partition of E(Qq) into edge-disjoint paths indexed by Bq.

(As mentioned in the Introduction, a more general result, for all trees on q edges,
appears in [6] and in [14].)

The results in the next lemma are also in [14] but we include short proofs here
so this article can be self-contained.

Lemma 2 (a) P2 <D Q3.
(b) If P2m <D Qq, where q is odd, then q ≥ 2m.

Proof. (a) Q3 may be viewed as an inner Q2 joined to an outer Q2 via a perfect
matching. Decompose the inner Q2 into 2 edge-disjoint P2’s. Each of the remaining
8 edges decompose into 4 P2’s, with one edge of the outer Q2 joined to an incident
matching edge.

(b) Every vertex of Qq has odd degree, so at every vertex at least one embedded
path must start or end there. So there must be at least |V (Qq) |/2 paths, i.e.
q · 2q−1/2m ≥ 2q/2, which implies that q ≥ 2m. 2

3 Stretched Graphs

Definition 2 Let G be a graph and let m be a positive integer. The m-stretch of
G, denoted m ∗ G, is the graph obtained by replacing each edge of G by a path of
length m.

Remark The m-stretch of G is a special case of a subdivision of G, in which
exactly m− 1 new vertices are placed along each edge. One might therefore call this
an (m− 1)-subdivision of G, although we shall continue to use the term ‘m-stretch
of G’.

Lemma 3 (a) 1 ∗G ' G for any graph G.
(b) |E(m ∗G)| = m|E(G)|.
(c) |V (m ∗G)| = (m− 1)|E(G)|+ |V (G)|.
(d) m1 ∗ (m2 ∗G) ' (m1m2) ∗G.
(e) If H <D G, then m ∗H <D m ∗G.
(f) m ∗ Pq ' Pmq.
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The proofs are trivial.

The importance for hypercubes of stretched graphs comes from the next theorem.

Theorem 2 m ∗Qq <D Qmq for any m ≥ 1, q ≥ 1.

For example, from this and Lemmas 2(a) and 3(e,f) it follows easily that P6 = 3∗
P2 <D 3∗Q3, which divides Q9. By transitivity of divisibility, one obtains P6 <D Q9,
which is already a new result. To prove Theorem 2, the cases of m odd and m = 2 are
considered separately. It should be clear from Lemma 3(d,e) that if m1∗Qq <D Qm1q

for any q and if m2 ∗ Qq <D Qm2q for any q, then m1m2 ∗ Qq <D Qm1m2q for any q,
so the cases of m odd and m = 2 suffice.

Proposition 1 m ∗Qq <D Qmq for m odd, q ≥ 1.

Before jumping into the proof, let us establish some notation for vertices and edges
of Qmq and m ∗Qq. We consider a vertex of Qmq to consist of q vectors of length m,
(view Qmq as Qq

m) i.e. α = (α(1), α(2), . . . , α(q)), α(k) ∈ V (Qm) = Zm2 . As before, 0m

is (0, . . . , 0) ∈ Zm2 and 1m is (1, . . . , 1) ∈ Zm2 .

Notation for m ∗ Qq is as follows. First, each vertex of Qq is carried over as a
vertex into m ∗ Qq, so if α = (a1, . . . , aq) ∈ V (Qq), we also view α as a vertex of
m ∗Qq. In addition, for each edge ĵ · α ∈ E(Qq), let jk :α denote the kth vertex on
the path that replaced ĵ · α, where 0 ≤ k ≤ m. We also identify j0 :α with α, and
jm :α with j ·α (which is the other endpoint of ĵ ·α). Note that the edges of m ∗Qq

connect jk−1 : α with jk : α, k = 1, . . . ,m. i The vertices and edges can be counted
coming from either end of the path, hence

jk :α = jm−k : (j · α).

So one must be careful that any definition involving jk :α is independent of choice of
notation. One way to make the above notation unique for the vertices not inherited
from V (Qq) is to apply it only to α ∈ Bq. Then

V (m ∗Qq) = V (Qq) ∪ {jk :α | 1 ≤ k < m, 1 ≤ j ≤ q, α ∈ Bq}.

Proof of Proposition 1.
Let γ = (γ(1), γ(2), . . . , γ(q)) ∈ Bq

m ⊆ Zmq2 , i.e. a vector where each length-m sub-
vector γ(i) has parity 0. Define embeddings Fγ : m ∗ Qq → Qmq as follows. If
α = (a1, . . . , aq) ∈ V (Qq), put

Fγ(α) = (am1 , a
m
2 , . . . , a

m
q ) + γ.

Otherwise, for a vertex of m ∗Qq of the form jk :α, with α ∈ Bq, put

Fγ(j
k :α) = (c(1), c(2), . . . , c(q)) + γ,
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where

c(s) =

{
ams if s 6= j
amj + 1k0m−k for s = j.

Note that Fγ(j
0 :α) = Fγ(α) by this definition and likewise Fγ(j

m :α) = Fγ(j ·α), as
needed for notational consistency and for Fγ to send edges to edges.

We will show that the {Fγ} comprise an edge partition ofQmq into copies ofm∗Qq.
Now |E(m ∗ Qq) | = m · (q · 2q−1) = mq · 2q−1, and with |Bq

m | = (2m−1)q = 2mq−q

embeddings, at most (2mq−q)(mq · 2q−1) = mq · 2mq−1 edges will be covered by the
union of their images. But this is exactly |E(Qmq) |, so the {Fγ} comprise an edge
partition if and only if ⋃

γ

Fγ(E(m ∗Qq)) ⊇ E(Qmq),

i.e. it suffices to show that every edge of Qmq is in the image of some Fγ.

Let an edge of Qmq be written as (α(1), . . . , k̂ · ζ, . . . , α(q)), where α(s) ∈ Qm and
ζ = k0 · α(j) ∈ Bm. The idea here is that the unique coordinate that changes over
the edge is at some position (call it k) of some length-m segment (call it the jth).
Put

γ(s) = (ρ(α(s)))m + α(s) for s 6= j.

Then γ(s) ∈ Bm because the parity of m copies of either 0 or 1 is (respectively) either
0 or 1. (Note: This is the only place in the proof where the premise that m is odd
is used.) Put

c = ρ(α(1)) + . . .+ ρ(α(j−1)) + ρ(α(j+1)) + . . .+ ρ(α(q))

and set
γ(j) = k0 · (cm + 1k0m−k + ζ).

Putting γ = (γ(1), γ(2), . . . , γ(q)), we have γ ∈ Bq
m. Let

bs =

{
c for s = j
ρ(α(s)) for s 6= j,

and let β = (b1, . . . , bq). Then β ∈ Bq and

Fγ(j
k :β) = (bm1 + γ(1), . . . , cm + 1k0m−k + γ(j), . . . , bmq + γ(q))

= (α(1), . . . , kρ(c+k) · ζ, . . . , α(q)).

and likewise

Fγ(j
k−1 : β) = (bm1 + γ(1), . . . , cm + 1k−10m−k+1 + γ(j), . . . , bmq + γ(q))

= (α(1), . . . , kρ(c+k−1) · ζ, . . . , α(q)).

This shows that the edge of m ∗Qq that links jk :β and jk−1 :β is sent via Fγ to

the edge (α(1), . . . , k̂ · ζ, . . . , α(q)) of Qmq. This completes the proof of Proposition 1.
2
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Proposition 2 We have 2 ∗Qq <D Q2q, for any q ≥ 1.

Proof. Again, begin with notation for vertices and edges of Q2q and 2∗Qq. This time
we set up Q2q slightly differently, namely we identify Q2q as Zq2×Zq2 so (α, β) would
be the notation for a vertex of Q2q, where α, β ∈ V (Qq). The notation for V (2 ∗Qq)
is similar to before, but there is no need for the superscript ‘k’ because k = 1, and
we will simply write j :α for the midpoint of ĵ · α. Notice that j :α = j : (j · α). A
unique notation for V (2 ∗Qq) is implicit in

V (2 ∗Qq) = V (Qq) ∪ {j :α |α ∈ Bq, 1 ≤ j ≤ q}.

Let j#α denote the unique edge of 2 ∗ Qq connecting α and j : (j0 · α). For any
γ ∈ Bq, define the embeddings F 0

γ , F
1
γ : 2 ∗Qq → Q2q by

F 0
γ (α) = F 1

γ (α) = (α, α + γ);

F 0
γ (j :α) = (j0 · α, (j1 · α) + γ);

F 1
γ (j :α) = (j1 · α, (j0 · α) + γ).

Note that |E(2 ∗ Qq) | = 2|E(Qq) | = 2q · 2q−1 = q · 2q, and there are 2q−1 elements
in Bq and so 2 · 2q−1 = 2q embeddings. Their combined images cover at most
(2q)(q · 2q) = q · 22q edges, and again |E(Q2q) | = (2q) · 22q−1 = q · 22q also, so the
family {F ε

γ | ε = 0 or 1, γ ∈ Bq } provides an edge partition of Q2q into copies of 2∗Qq

if and only if

E(Q2q) ⊆
⋃
γ,ε

F ε
γ(E(2 ∗Qq)).

To prove this we consider two cases. An edge e of Q2q is either (ĵ · α, β), where
α ∈ Bq and β ∈ Zq2, or (α, ĵ ·β), where α ∈ Zq2, β ∈ Bq. Define γ by γ = j0 · (α+β) ∈
Bq, and let α̃ = β + γ.

Suppose the edge e is (ĵ ·α, β), with α ∈ Bq and β ∈ Zq2. We split this case further
into two subcases. If ρ(β) = 0, then γ = α + β and α̃ = α ∈ Bq. We have

F 1
γ (j :α) = (j1 · α, (j0 · α) + γ) = (j · α, β)

while
F 1
γ (α) = (α, α + γ) = (α, β).

Hence F 1
γ maps j#α to (ĵ · α, β).

Otherwise, if ρ(β) = 1, then γ = j · α + β and α̃ = j · α = j1 · α. We find

F 0
γ (α̃) = (α̃, α̃ + γ) = (α̃, β) = (j · α, β)

while
F 0
γ (j : α̃) = (j0 · α̃, (j1 · α̃) + γ) = (α, α̃ + γ) = (α, β).

So F 0
γ carries the edge j#α̃ to (ĵ · α, β).



D. ANICK AND M. RAMRAS/AUSTRALAS. J. COMBIN. 61 (2) (2015), 210–226 217

Now consider the alternate situation where e = (α, ĵ · β) ∈ E(Q2q), with α ∈
Zq2, β ∈ Bq, j ∈ {1, 2, . . . , q}. Then γ = (j0 · α) + β ∈ Bq. We consider separately
subcases where ρ(α) = 0 versus where ρ(α) = 1. If ρ(α) = 0, note that j0 · α = α
and F 0

γ (α) = (α, α+ γ) = (α, β) while F 0
γ (j :α) = (j0 ·α, (j1 ·α) + γ) = (α, j · β). So

F 0
γ carries the edge j#α to (α, ĵ · β). If instead ρ(α) = 1, then α = j1 · α and

F 1
γ (j :α) = (j1 · α, (j0 · α) + γ) = (α, β)

while
F 1
γ (α) = (α, α + γ) = (α, j · β)

so again, the edge (α, ĵ · β) is covered. This completes the proof of Proposition 2,
and with it the proof of Theorem 2. 2

4 For q odd, when does Pm divide Qq?

This section is devoted to answering the question above. We will show that for q
odd, Pm <D Qq if and only if m ≤ q and m|q · 2q−1. The proof has three parts. Part
one is to reduce to the case where m is a power of 2, and this is essentially done by
Proposition 1. Part two constructs the edge decomposition for m a power of 2, for
a small range of odd values of q just above m. Part three extends the result from
this small range to all q. The second part is the hardest. We will settle part three
in Proposition 3 below, then focus on part two, and then pull the pieces together.

We begin by citing from [16], [1] and [4], the fact that Q2n has an edge-decomp-
osition into Hamiltonian cycles. In this article we will use this fact only in the special
case where 2n is a power of 2, and for that special case there is a simple and elegant
construction which we offer in the Appendix.

Theorem 3 For every n ≥ 1, Q2n has an edge decomposition into n copies of C22n,
i.e., C22n <D Q2n.

Because P2t <D C22n when t < 2n, an immediate corollary is

Corollary 1 For any t < 2n, P2t <D Q2n.

Recall that the Cartesian product of two graphs G and G ′, denoted G2G ′, is
the graph whose vertex set is V (G) × V (G ′) and whose edge set consists of pairs
that are either {(x1, y), (x2, y)}, where {x1, x2} is an edge of G and y ∈ V (G ′), or
{(x, y1), (x, y2)} where x ∈ V (G) and {y1, y2} is an edge of G ′. It should be clear that
Qq2Qq ′ ' Qq+q ′ . To begin to relate Cartesian products and edge decompositions,
we have

Lemma 4 (a) Let H, G, G ′ be graphs. If H <D G and H <D G ′ then H <D G2G ′.
(b) If Pm <D Qq and Pm <D Qq ′ then Pm <D Qq+pq ′ for any p ≥ 1.
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Proof. Part (a) is obvious because E(G2G ′) consists of |V (G) | copies of E(G ′) and
|V (G ′) | copies of E(G). Part (b) is a specialization making use of Qq2Qq ′ ' Qq+q ′

and induction on p. 2

Proposition 3 Let t < 2n and suppose that P2t <D Qq for all odd integers q in the
range 2t + 1 to 2t + 2n− 1. Then P2t <D Qq for all q ≥ 2t (q odd or even).

Proof. If q is even and 2t ≤ q, put n = q/2. It follows from Corollary 1 that
P2t <D Qq since t < 2t ≤ q = 2n. If q is odd, write q = 2t + s + p · 2n where
0 < s < 2n, and apply Lemma 4(b) and Corollary 1. 2

Proposition 3 shows that for each t only a finite number of Qq’s need to have
path decompositions constructed, to infer that P2t <D Qq for all q ≥ 2t.

The key idea for the construction is to extend paths shorter than length 2t to
paths of length 2t. The object we utilize for doing this is defined next.

Definition 3 Let G be a graph. A disjoint collection of vertex-originating paths of
length k, henceforth DVOP[k], is a collection of paths of length k {pv : Pk −→ G}
indexed by V (G), satisfying
(a) disjointness, i.e. pv(ĵ) = pv ′(ĵ ′) =⇒ v = v ′ and j = j ′, and
(b) pv(0) = v, i.e. each vertex originates one path.
Here, as above, the vertices of Pk are taken to be {0, 1, . . . , k} and ĵ denotes the edge
joining j − 1 and j. Clearly there are k|V (G) | edges in the combined images of all
the paths in a DVOP[k].

Proposition 4 For 0 ≤ k ≤ 3 and n ≥ k, there is an edge decomposition of Q2n

into n− k Hamiltonian cycles and a DVOP[k].

Proof. The case k = 0 merely reiterates Theorem 3. For k > 0 start with Theorem
3 giving an edge decomposition of Q2n into n copies of C22n . Call three of the
cycles C(1), C(2), C(3) (or stop at C(k) if k < 3), and choose a direction on each
cycle. Define set bijections hi : V (Q2n) −→ V (Q2n), 1 ≤ i ≤ k, by letting hi(v) be
the vertex reached by traveling one edge along C(i) from v, in the chosen direction.
Let pv : Pk → Q2n be the path defined by: pv(0) = v, pv(1) = h1(v), pv(2) =
h2(h1(v)), pv(3) = h3(h2(h1(v))) (stop sooner if k < 3). This is clearly a graph
map because pv(i − 1) and pv(i) are connected by an edge in C(i), and it obviously
originates on v. It is a path (i.e. an embedded copy of Pk) if the k+ 1 vertex images
are all distinct. Because adjacent vertices have opposite parity on a hypercube,
pv(0) 6= pv(1) 6= pv(2) 6= pv(3) 6= pv(0). To see that pv(0) 6= pv(2) note that these two
vertices are connected by distinct edges to pv(1) so must be distinct in Q2n. Similarly
pv(1) 6= pv(3) because they are connected by distinct edges to pv(2). Finally, if two
edges coincide, say pv (̂i) = pw(ĵ), then because pv (̂i) ∈ C(i) while pw(ĵ) ∈ C(j) we
have C(i) ∩ C(j) 6= ∅ forcing i = j. The fact that pv and pw follow the same chosen
orientations of the C(j)’s means that pv(i) = pw(i), and then bijectivity of the hj’s
leads to v = w. 2
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For generating path decompositions of length 2t for t ≤ 7 we rely on

Definition 4 Let G be a graph and m ≥ 1. Let

m#G

denote the graph obtained by drawing two copies of G, (call them G ′ and G ′′), and
connecting each vertex v ′ ∈ V (G ′) to the corresponding vertex v ′′ ∈ V (G ′′) by a
path of length m.

Lemma 5 (a) 1#G ' P12G.
(b) |V (m#G) | = (m+ 1)|V (G) |.
(c) |E(m#G) | = 2|E(G) |+m|V (G) |.

Proof. Trivial. 2

Lemma 6 If m is odd, m#Qq <D Qm+q.

Proof. Denote a vertex of Qm+q as (α, β), where α ∈ V (Qm) and β ∈ V (Qq). Utilize
the edge decomposition of Qm into copies of Pm:

{fγ : Pm −→ Qm| γ ∈ Bm}

defined in Lemma 1. Denote the embedded copies of Qq in m#Qq as Q ′q and Q ′′q .

Denote the jth point on the edge of m#Qq joining β ′ to β ′′ as β〈j〉. Thus β〈0〉 = β ′

and β〈m〉 = β ′′. Define for γ ∈ Bm

Fγ : m#Qq −→ Qm+q

by Fγ(β〈j〉) = (fγ(j), β). This is a collection of 2m−1 embeddings of m#Qq into Qm+q.
Since |E(m#Qq) | = (m+ q)2q, there are altogether 2m−1(m+ q)2q = (m+ q)2m+q−1

edge images of all the {Fγ}. Since |E(Qm+q)| = (m+ q)2m+q−1, the family {Fγ} is a
decomposition into disjoint copies if their collective images are onto E(Qm+q). But
this is easy, because an edge of Qm+q is either (ĵ ·α, β), where ĵ ·α is an edge of Qm,

or (α, k̂ ·β), where k̂ ·β is an edge of Qq. Clearly (ĵ ·α, β) ∈ im(Fγ) if ĵ ·α ∈ im(fγ).

The edge (α, k̂ · β) equals Fα(k̂ · β ′) if α has even parity, and it equals Fγ(k̂ · β ′′) for
γ = α + 1m if α has odd parity (note that m must be odd for this to work). 2

Lemma 7 Suppose G has an edge decomposition into a DVOP[k ′] and a comple-
mentary edge set E ′, as well as an edge decomposition into a DVOP[k ′′] and a
complementary edge set E ′′. Then m#G has an edge decomposition into |V (G) |
copies of Pk ′+m+k ′′ and one copy each of E ′ and E ′′.

Proof. Let {pv ′ : Pk ′ −→ G} and {pv ′′ : Pk ′′ −→ G} be the DVOP’s. Simply
concatenate the paths pv ′ ∈ G ′, the path from v ′ to v ′′ in m#G, and the path pv ′′ in
G ′′, to make the path p̃v : Pk ′+m+k ′′ −→ m#G. Then {E(p̃v) | v ∈ V (G) }∪E ′ ∪E ′′
is an edge decomposition of m#G. 2
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Proposition 5 (a) P4 <D Q5.
(b) P4 <D Q7.
(c) P8 <D Q9.
(d) P8 <D Q11.

Proof. (a). Viewing Q5 as 1#Q4, apply Proposition 4 to obtain E(Q4) as a DVOP[2]
(with an empty complementary set) and also write E(Q4) as a DVOP[1] with a
single C16 as the complementary set. We have an application of Lemma 7 with
k ′ = 2, k ′′ = 1,m = 1. Thus E(Q5) decomposes into 16 copies of P4 and one copy of
C16. Since C16 is 4 copies of P4, we have shown that P4 <D Q5.
(b) Apply Proposition 4 for a DVOP[1] and a complementary set C16 in Q4, as well
as an empty DVOP[0] and a complementary set consisting of 2 copies of C16. Then
3#Q4 has an edge decomposition into 16 copies of P1+3+0 = P4 and 3 copies of C16,
i.e. P4 <D 3#Q4. By Lemma 6, P4 <D Q7.
(c) The proof that P8 <D 5#Q4 likewise applies Lemma 7 with k ′ = 2 and k ′′ = 1,
but now with m = 5 so that paths have length k ′ + m + k ′′ = 8. It follows that
5#Q4 has an edge decomposition into 16 copies of P8 and one copy of C16, hence a
decomposition into 18 copies of P8. We have P8 <D 5#Q4 <D Q9, so P8 <D Q9.
(d) Similarly, P8 <D 7#Q4 (Lemma 7 with k ′ = 1, k ′′ = 0,m = 7), and 7#Q4 <D

Q11. 2

Corollary 2 P4 <D Qq for all q ≥ 4 and P8 <D Qq for all q ≥ 8.

Proof. This follows immediately from Propositions 3 (put n = 2) and 5. 2

Note: The first half of Corollary 2 was proved by an ad hoc method in [11].

Lemma 8 Q2n has a DVOP[n] (with an empty complementary set).

Proof. Let fγ : Pn −→ Qn be defined as before, but without the restriction that
γ ∈ Bn. Write a vertex of Q2n as (α, β), where α ∈ V (Qn), β ∈ V (Qn). Let

p(α,β)(j) =

{
(fα(j), β) if α + β has even parity
(α, fβ(j)) if α + β has odd parity.

Then p(α,β) : Pn −→ Q2n is a path and p(α,β)(0) = (α, β). The family {p(α,β)} provides
22n paths of length n, and |E(Q2n)| = n22n, so the family is edge disjoint if and only
if their images together cover E(Q2n). An edge of E(Q2n) is either (k̂ ·α, β) for some
k and for some α ∈ Bq, or (α, k̂ · β) where β ∈ Bq. For an edge that is (k̂ · α, β),

use the edge surjectivity of the {fγ} to choose γ ∈ Bq for which fγ(k̂) = k̂ · α and

put α̃ = kρ(β) · γ. Then ρ(α̃ + β) = 0 so p(α̃,β)(k̂) = (k̂ · α, β). Likewise for an

edge that is (α, k̂ · β), choose γ so that fγ(k̂) = k̂ · β and put β̃ = k1−ρ(α) · γ. Then

p(α,β̃)(k̂) = (α, k̂ · β). 2

To get results like Corollary 2 for P16, we need to make use of Q8.
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Lemma 9 For 0 ≤ k ≤ 4, Q8 has a DVOP[k] and a complementary set that consists
of 4− k copies of C256.

Proof. Use Lemma 8 (for k = 4) and Proposition 4 (for k < 4). 2

Lemma 10 For t = 4, 5, 6, 7, and for s = 1, 3, 5, 7, we have P2t <D Q2t+s.

Proof. Let m = 2t + s − 8. Put k ′ = 0 if s > 4 and put k ′ = 4 if s < 4. Put
k ′′ = 8− s− k ′, which will equal either 1 or 3 depending on s. Apply Lemmas 9, 7,
and 6 to deduce that P2t <D m#Q8 <D Qm+8 = Q2t+s. We are using the premise
that t < 8 to infer that P2t divides the complementary set consisting of copies of
C256. 2

Corollary 3 For q odd and for t = 4, 5, 6, 7, we have P2t <D Qq if and only if
q ≥ 2t.

Proof. This follows from Proposition 3 (put n = 4) and Lemma 10. 2

To extend beyond P128, two approaches were considered. Lemma 7 will do it if
we can construct DVOP[k]’s in Q2r for k up to 2r−1. The Hamiltonian cycle method
as used above can be extended, but the hard part is demonstrating that one gets
true paths rather than path images, i.e. that no vertex is repeated. As mentioned
at the end of the Introduction, an earlier version of this article did that, for r = 4
and r = 5, but we were unable to go beyond r = 5. The second approach, developed
next, is to generalize Definition 4.

Definition 5 is illustrated in Figure 1. Like a cubist painting we will break up
the “faces” of m#G, i.e. the embedded copies of G, and move the pieces around
while preserving all of them. Consider an edge partition E(G) = S1 ∪ . . . ∪ Sp and
let s ′ = (s ′1, . . . , s

′
p) and s ′′ = (s ′′1 , . . . , s

′′
p ) be two lists of positions along the path

Pm = [0, . . . ,m]. Referring to Figure 1, components of G ′ are translated to the levels
specified by s ′, and components of G ′′ are translated to the levels specified by s ′′.

Definition 5 Let m ≥ 1 and p ≥ 1. Let s ′ = (s ′1, . . . , s
′
p) and s ′′ = (s ′′1 , . . . , s

′′
p ) be

lists of integers where s ′i ∈ [0, . . . ,m] and s ′′i ∈ [0, . . . ,m]. Let G be a graph and let
E(G) = S1 ∪ . . . ∪ Sp be an edge partition of G into p parts. Define a graph

m##G

as follows. It is a subgraph of Pm2G. Its vertex set is [0, . . . ,m] × V (G). Its edge
set consists of

(E(Pm)× V (G)) ∪
p⋃
i=1

(s ′i × Si) ∪
p⋃
i=1

(s ′′i × Si).

Remark It will be convenient to refer to the induced subgraph of m##G on i×V (G)
as “level i” (cf. Figure 1). Note that s ′, s ′′, and the partition are utilized by the
definition but are suppressed from the notation. Note as well that m#G is the special
case where p = 1, s ′1 = 0, and s ′′1 = m.
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Figure 1: (a) Graph G. (b) Edge partition of G. (c) m#G (for m = 7).
(d) m##G construction for m = 7, s ′ = (0, 2, 4) and s ′′ = (6, 3, 7).

Lemma 11 Let E(Qq) = S1 ∪ . . .∪ Sp denote any edge decomposition of Qq and let
m be odd. Suppose s ′ = (s ′1, . . . , s

′
p) is a list of even integers in [0, . . . ,m] and suppose

s ′′ = (s ′′1 , . . . , s
′′
p ) is a list of odd integers in [0, . . . ,m]. Then m##Qq <D Qm+q.

Proof. The proof of Lemma 6 can be copied practically verbatim, until the very end
when one is verifying that an edge of Qm+q of the type (α, k̂ · β) lies in the image of

some Fγ. Locate k̂ · β in a part Si. If ρ(α) = 0 put γ = 1s
′
i 0m−s

′
i +α. If ρ(α) = 1 put

γ = 1s
′′
i 0m−s

′′
i + α. Then (α, k̂ · β) ∈ im(Fγ). 2

Lemma 12 Let E(G) = S1 ∪ . . . ∪ Sp be an edge decomposition of a graph G into
p parts and suppose each Si is a DVOP[1]. Let m ≥ 1 be odd, and suppose s ′ =
(s ′1, . . . , s

′
p) ∈ [0, . . . ,m]p and s ′′ = (s ′′1 , . . . , s

′′
p ) ∈ [0, . . . ,m]p have the property that

|{s ′1, . . . , s ′p, s ′′1 , . . . , s ′′p }| = 2p, i.e. the {s ′i}1≤i≤p and {s ′′j }1≤j≤p are all distinct. (This
forces m to be at least 2p− 1.) Then for any k ′, k ′′ satisfying 0 ≤ k ′, k ′′ ≤ p,m##G
has an edge decomposition into |V (G) | copies of Pm+k ′+k ′′ and a complementary set
consisting of {s ′j × Sj}j>k ′ ∪ {s ′′j × Sj}j>k ′′.

Proof. Because of {s ′i}∪{s ′′j } being distinct, at each level i ∈ [0, . . . ,m] there is either
one DVOP[1] or no edges at all. First let us consider the case where k ′ = k ′′ = p.
Given any vertex v ∈ V (G), define a path originating at v as follows. If there is a
DVOP at level 0, move along it for one edge; if no DVOP at level 0 skip that step.
Then move “vertically”, i.e. along the embedded Pm, for one edge. Repeat at level
1: if there is a DVOP traverse it for one edge, then take the unique edge to level
2. Continue to alternate DVOP’s (when present) and vertical steps. The result is
a path of length m + 2p. No vertices repeat because the path spends at most one
step within any level. The paths are pairwise edge-disjoint because there is a unique
way to go forward or backward at each stage, and they cover E(m##G) with empty
complementary set.
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If k ′ < p or k ′′ < p, perform the DVOP steps only at levels {s ′1, . . . , s ′k ′} and
{s ′′1 , . . . , s ′′k ′′}. The complementary set consists of the unused parts, and each path’s
length is m+ k ′ + k ′′. 2

The generalization of Proposition 5 and Lemma 10 is

Proposition 6 Let t ≥ 8, and choose r so that 2r−1 ≤ t < 2r. Then
(a) For s an odd integer in the range 1 ≤ s ≤ 2r − 1, P2t <D Q2t+s ; and
(b) A positive odd integer q satisfies P2t <D Qq if and only if q > 2t.

Proof. (b) follows from (a) and Proposition 3 .
For (a), as in Lemma 10 put m = 2t + s − 2r and let k ′ be either 0 if s > 2r−1, or
k ′ = 2r−1 if s < 2r−1. Put k ′′ = 2r − s − k ′. Then k ′′ is an odd number between 0
and 2r−1. Note that m + k ′ + k ′′ = 2t. Also, because t ≥ 8 we have r ≥ 4 and so
2r−1 > r + 1, from which we deduce 2t ≥ 22r−1

> 2r+1 = 2r + 2r. Hence

m = 2t + s− 2r > 2t − 2r > 2r = 2p,

where p = 2r−1.

Use the partition of Q2r into p = 2r−1 copies of C22r each of which is oriented
to make it a DVOP[1]. Put s ′ = (0, 2, 4, . . . , 2r − 2) and s ′′ = (1, 3, 5, . . . , 2r − 1),
These lists have length p and we verified above that m > 2p, so s ′ and s ′′ are
in [0, . . . ,m]p and consist of all-distinct even and odd entries respectively. Apply
Lemmas 11 and 12 and the fact that Pt divides the complementary parts that are
C22r to infer P2t <D m##Q2r <D Qm+2r = Q2t+s. 2

Combining Proposition 6 with Corollaries 2 and 3 and the trivial P2 <D Qq for
q ≥ 2, we have shown

Theorem 4 For any t ≥ 1 and for q odd, P2t <D Qq if and only if q > 2t.

2

Theorem 5 Let q be odd. A necessary and sufficient condition for Pm to divide Qq

is that m ≤ q and m | q · 2q−1.

Proof. For necessity, that m | q · 2q−1 is obvious since |E(Qq) | must be a multiple of
|E(Pm) |. Because every vertex of Qq has odd degree, at least one path must start or
end there. Each path provides just two “starts” or “ends”, and there are q · 2q−1/m
paths, hence 2(q · 2q−1/m) ≥ |V (Qq) | = 2q. This reduces to q ≥ m.

For sufficiency, let d = gcd(m, q). Because q is odd, d is odd. Consider the cases
d = 1 and d > 1 separately. If d = 1, m | 2q−1 so m is a power of 2. Let 2t be the
largest power of 2 that is smaller than q. Since m < q, m | 2t. So Pm <D P2t and we
only have to show that P2t <D Qq. This is covered by Theorem 4.

Now suppose d > 1 . We reduce to the case d = 1. Letm ′ = m/d and let q ′ = q/d.
Then m ′ | q ′ ·2q−1. But m ′ and q ′ are relatively prime so m ′ | 2q−1, making m ′ a power
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of 2. Since m ′ ≤ q ′ ≤ 2q
′−1, we see that m ′ | 2q ′−1 | q ′ · 2q ′−1. Then m ′ and q ′ are

relatively prime so fall under the previous case, hence Pm ′ <D Qq ′ , i.e. Pm/d <D Qq/d.
Apply Theorem 2 and Lemma 3(e) to see that Pm = d ∗ Pm/d <D d ∗Qq/d <D Qq. 2

Appendix: Simple construction of Hamiltonian cycle decom-
position of Q2r

For r ≥ 1, we define a set of 2r−1 Hamiltonian cycles in Q2r indexed by δ =
(d1, . . . , dr−1) ∈ Zr−12 , denoted gδ : C22r −→ Q2r , as follows. For r = 1 there is
just one cycle, denoted g : C4 −→ Q2, which traces the unique cycle starting at
02, i.e. g(0) = (0, 0); g(1) = (1, 0); g(2) = (1, 1); g(3) = (0, 1). The vertices of Cn
are identified with the integer range [0, n − 1] viewed modulo n. For r = 2 define
g0, g1 : C16 −→ Q4 by

g0(4u+ v) = (g(v − u), g(u)); g1(4u+ v) = (g(u), g(v − u)); where 0 ≤ u, v ≤ 3.

Then {g0, g1} is a set of two maps from [0, 15] to Q4 indexed by Z2. They are
illustrated in Figure 2 and their images are edge-disjoint cycles that partition E(Q4).

Figure 2: Illustration of Q4 with the cycle g0 in thicker lines and the cycle g1 in
thinner lines. For 0 ≤ w ≤ 15, vertex labeled w is g0(w). Dashed lines are edges
that wrap around to connect with the vertex on the opposite side of the diagram,
e.g. “4” is joined by an edge of Q4 to “5”, and “14” has eges joining it to “15” and
to “3”.

Now let r ≥ 2 and suppose the {gδ : C22r −→ Q2r | δ ∈ Zr−12 } have been de-
fined. The vertices of Q2r+1 will be identified with Q2r2Q2r and may be written
as (α, β), where α, β ∈ V (Q2r). For δ = (d1, . . . , dr−1) ∈ Zr−12 , let δ0 (respectively
δ1) denote (d1, . . . , dr−1, 0) (respectively (d1, . . . , dr−1, 1)) ∈ Zr2. Define the cycles
{gδ0 : C22r+1 −→ Q2r+1} and {gδ1 : C22r+1 −→ Q2r+1} by these formulas:

gδ0(2
2ru+ v) = (gδ(v − u), gδ(u)),

gδ1(2
2ru+ v) = (gδ(u), gδ(v − u)),

for u, v ∈ [0, 22r − 1]. Taken together, {gδ0} ∪ {gδ1} is a set of 2r cycles in Q2r+1 ,
indexed by Zr2, that comprises the construction for r + 1.
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[16] G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und
Würfelgitter, Abh. Math. Sem. Univ. Hamburg 20 (1955), 10–15.

[17] G. Ringel, Problem 25, Theory of Graphs and its Applications, Nakl. ČSAV,
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