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Abstract

For a vector R = (ry,79,...,7) of non-negative integers, a mixed hy-
pergraph H is a realization of R if its chromatic spectrum is R. In this
paper, we determine the minimum number of vertices of 3-uniform bi-
hypergraphs which are realizations of a special kind of vector Ry. As a
result, we partially solve an open problem proposed by Kral” in 2004.

1 Introduction

A mized hypergraph on a finite set X is a triple H = (X,C, D), where C and D
are families of subsets of X. The members of C and D are called C-edges and D-
edges, respectively. A set B € C N D is called a bi-edge. A bi-hypergraph is a
mixed hypergraph with C = D, denoted by H = (X, B), where B = C = D. If
X cX,0={CeCCCX'}and D ={D € D|D C X'}, then the hypergraph
H = (X',C', D) is called the induced sub-hypergraph of H on X', denoted by H[X'].

The distinction between C-edges and D-edges becomes substantial when colorings
are considered. A proper k-coloring of H is a partition of X into k color classes
such that each C-edge has two vertices with a Common color and each D-edge has
two vertices with Distinct colors. A strict k-coloring is a proper k-coloring with k
nonempty color classes, and a mixed hypergraph is k-colorable if it has a strict k-
coloring. For more information, see [5, 6, 7]. The set of all the values k such that H
has a strict k-coloring is called the feasible set of H, denoted by F(H).

A coloring may also be viewed as a partition (feasible partition) of the vertex
set, where the color classes (partition classes) are the sets of vertices assigned to
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the same color. A mixed hypergraph has a gap at k if its feasible set contains
elements larger and smaller than k& but omits k. For each k, let r, denote the
number of feasible partitions of the vertex set into k nonempty color classes. The
vector R(H) = (r1,72,...,rg) is called the chromatic spectrum of H, where X is the
largest possible number of colors in a strict coloring of H. If S is a finite set of positive
integers, we say that a mixed hypergraph #H is a realization of S if F(H) = S. A
mixed hypergraph H is a one-realization of S if it is a realization of S and all the
entries of the chromatic spectrum of H are either 0 or 1. Moreover, for a vector R
of positive integers, a mixed hypergraph # is called a realization of R if R(H) = R.

It is readily seen that if 1 € F(H), then H cannot have any D-edges. Let S be
a finite set of positive integers with min(S) > 2. Jiang et al. [3] proved that a set S
of positive integers is a feasible set of a mixed hypergraph if and only if 1 ¢ S or S
is an interval. They also discussed the bound on the number of vertices of a mixed
hypergraph with a gap, in particular, the minimum number of vertices of realization
of {s,t} with 2 < s <t —2is 2t —s. Moreover, they mentioned that the question
of finding the minimum number of vertices in a mixed hypergraph with feasible set
S of size at least 3 remains open. Krél’ [4] proved that there exists a one-realization
of S with at most [S| + 2max(S) — min(S) vertices, and proposed the following
problem: What is the number of vertices of the smallest mixed hypergraph whose
spectrum is equal to a given spectrum (ry,r,...,7,)? Bacsé et al. [1] discussed
the properties of uniform bi-hypergraphs H which are one-realizations of S when
|S| = 1, in this case we also say that H is uniquely colorable. Recently, Bujtds and
Tuza [2] gave a necessary and sufficient condition for S being the feasible set of an
r-uniform mixed hypergraph, and they raised the following open problem: determine
the minimum number of vertices in r-uniform bi-hypergraphs with a given feasible
set. Zhao et al. [8] constructed a family of 3-uniform bi-hypergraphs with a given
feasible set, and obtained an upper bound on the minimum number of vertices of the
one-realizations of a given set. In [9] they improved Kral’s result and proved that
the minimum number of vertices of mixed hypergraphs with a given feasible set S is
2max(S) — min(9) if max(S) —1 ¢ S or 2max(S) — min(S) — 1 if max(S) —1 € S.
Recently, Zhao et al. proved in [10] that the minimum number of vertices of 3-
uniform bi-hypergraphs with a given feasible set S is 2max(S) if max(S) —1 ¢ S or
2max(S) — 1 if max(S)—1€ S.

We denote by [n] the vertex set {1,2,...,n} for any positive integer n.

In this paper, we determine the minimum number of vertices of 3-uniform bi-
hypergraphs which are realizations of a special kind of vector Ry, and we obtain the
following result.

Theorem 1.1 For integers s > 2, ny >ng > --->ng > s andt; = 0,t9,...,15 >0,
let Ry = (r1,72, ..., 7n,) be a non-negative vector withry, = 1,1, = 2% i€ {2,...,s}
andr; =0,j € [m] \ {n1,ne,...,ns}. If niy —my > t;,0€{2,...,s}, then

6, Zf ny = 3,712 = 2,
(53(R2) = 2nq, Zf ny >ns + 1,
2ny — 1, otherwise,
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where d3(Ry) is the minimum number of vertices of a 3-uniform bi-hypergraphs which
s a realization of Rs.

This paper is organized as follows. In Section 2, we prove that the number
in Theorem 1.1 is a lower bound for d3(Rs). In Section 3, we introduce a basic
construction of 3-uniform bi-hypergraphs and discuss the coloring property of 3-
uniform bi-hypergraphs. In Section 4, we construct 3-uniform bi-hypergraphs which
are realizations of Ry and meet this lower bound in each case.

2 The lower bound

In this section we shall show that the number d3(Rs) given in Theorem 1.1 is a lower
bound on the minimum number of vertices of 3-uniform bi-hypergaphs which are
realizations of Rs.

Lemma 2.1
67 Zf n1:37n2:27

53(R2) 2 277/17 Zf ny >ng + ]-7
2ny — 1, otherwise.

Proof. Assume that H = (X, B) is a 3-uniform bi-hypergraph which is a realization
of Ry. Note that | X| > 4. We divide our proof into the following two cases.

Case 1ty > 1.
That is to say, H has a gap at n; — 1. Suppose |X| = 2n; — 1. For any strict

ni-coloring ¢ = {C4,Cy, ..., Cy, } of H, if there exist two color classes, say C7 and
Cy, such that |Cy] = |Cy] = 1, then ¢ = {C1 U Cy,Cs, ..., Cy, } is a strict (ng — 1)-
coloring of #H, a contradiction. Since |X| = 2n; — 1, there exists one color class,

say Cf, such that |Cy| = 1, and |C;| = 2, i = 2,3,...,ny. Let C; = {1} and

Ci =A{xi,yi},i = 2,3,...,n1. Then, ' = {{z1,29,23,..., 20, },{¥2, U3, - .-, Yn, } } 18
a strict 2-coloring of H, which implies that ns = 2. Note that each element of

{{{ala ag, ..., an1}> {b27 b3a B bn1}}|a'1 = Iy, Gy, bz S {xiay’i}7 a; 7é blal € [nl] \ {1}}

is a strict 2-coloring of H. It follows that r, > 2"~! > 2! a contradiction to that
Tp, = 2. If | X| < 2ny — 2, then we can get a strict (n; — 1)-coloring of H from a
strict ny-coloring of H, also a contradiction.

Case 2 t5 = 0.

That is to say, r,, = 22 = 1. If ny > ny + 1, by Case 1, we have d3(Rz) > 2n;.
If ny = no + 1, we have two possible cases as follows:
Case 2.1 S = {3,2}.

Note that the complete 3-uniform bi-hypergraph K3 is uncolorable, and the bi-

hypergraph obtained by deleting any edge from K73 is 2-colorable but not 3-colorable.
Furthermore, the bi-hypergraph obtained by deleting any two edges from K2 has two



XIAO ZHU AND XTAOXIAO DUAN /AUSTRALAS. J. COMBIN. 61 (2) (2015), 182-191 185

strict 2-colorings but not 3-coloring. We have a similar conclusion for the complete
3-uniform bi-hypergraph K3. Therefore, H which is a realization of Ry has at least
6 vertices.

Case 2.2 S # {3,2}.

That is to say, ny > 4,ns > 2. Suppose |X| < 2n; — 2. For any strict n;-
coloring ¢ = {C1,Cy, ..., Cy, } of H, if there exist three color classes, say C1, Cy and
Cjs, such that |Cy] = |Cy| = |C3] = 1, then ¢ = {C, Uy, Cs,...,C,, } and ¢ =
{C1,Cy U C3,Cy,...,C, } are two distinct strict ng-colorings of #H, a contradiction
to that r,, = 1. Noticing that | X| < 2n; — 2, there exist at least two color classes
each of which has one vertex, and each of the other color classes has two vertices.
Similar to Case 1, H has a strict 2-coloring, a contradiction.

The proof is complete. U

3 The basic construction

In this section, we shall construct a family of 3-uniform bi-hypergraphs and discuss
their coloring properties. This construction plays an important role in construct-
ing 3-uniform bi-hypergraphs which are realizations of R, and meet the bounds in
Lemma 2.1.

Construction I. Suppose n; 1 —n; > t;, i € {2,...,8}, ng > s. Let ; =s —i+ 1,
and write

o = (a,a,...,a,0) and
w=1
1
a, = (a,a,...,a,1), a € [ng
> ot
w=1
0
ih — (Z’I,Z—i-h,,nz—i_]}’l”,l“o)a’nd
z‘il - i'Qtw
w=1 w=1
1
L= ((Li+h,...,ni+fﬁ,ni,...,ni,...,ns,...,ns,l),
i1 2ti 2ts
S 2t
w=1
ZE [S]\{l},he {O,tz—l—l,tz—l—Q,,nz,l—nz—l},
0
Yik = (ILi+k:,...,ni—I—li,li,...,li,ni,...,ni,...,li,...,li,ni,...,ni,li,...,li,O)
i—r 2k—1 2k—1 2k—1 2k—1 s
Z 2tw ~ ~ _ Z 2tw
w=1 w=1i+1
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and
1
Yik — (ni+k:,...,nl-+k:,ni,...,ni,li,...,li,...,ni,...,ni,li,...,li,
~ ~~ 7 N—— ~——
i—1 ok—1 ok—1 ok—1 ok—1
3 2w - < -
w=1 2t;
Mir1y e ooy i1, Ngy2, ..., N, 1),2 € [S] \ {1}, ke [tz],
A\ ~ A ~ >
oti+1 i 9w
w=1i+2
1
Bi = (ni,ng,...,n9,ns3,...,ng 1), and
N ~ 7 ~ e
2t2 XS: :
w=3

s Mi—1—n;—1

X = U{aa,al}uu{ 0.5 0l) U (8 h o UGSt U {8

=2 h=t;+1 1=2 k=1

B = {{01.02,0:}|0r € X1 € [3].1{015), Oy, O }| = 2,5 € [_ 2 + 11}
w=1

U {{ah Bsoa 25}}7

where 0y is the j-th entry of the vertex 6. Then H = (X,B) is a 3-uniform
bi-hypergraph with 2n; vertices.

Note that, for any i € [s], g € [2%],¢] = {X], X5, ..., X}, } is a strict coloring of
‘H, where XZ-gj consists of vertices

1 .1 2t2 1 g—1 g+1 2ti 1 ots
(et ol a2 ol ot gt e ek Y ) e X

In the following, for a strict coloring ¢ of a 3-uniform bi-hypergraph H = (X, B),
we denote by ¢(v) the color of the vertex v under c.

Lemma 3.1 Let ¢ = {C1,Cy,...,Cy} be a strict coloring of H. Then we may re-
order the color classes such that the following conditions hold:

(i) a2, al € C,,a € [ny;

(iL) Yo Yirs Bip & Cas for a € [ng — 1)\ {li};

(iii) Bh, 81 ¢ C, fora € [ng—1];
) B

(IV 80 E Cl U Cns

Proof. (i) We claim that c¢(a?) = c(al) for each a € [n,]. If not, there exists a
te [ns] such that c(a?) # c(a}). Without loss of generality, assume that of € C;
and oy € Cy. From the edge {a) 041,041} we have o) € CiU 02 Suppose ay €

Ci. The edges {o,_, o, a;}, {ozns 0, al}, {B8%, ab ozl} {B%, a2 ,al} imply that
o, , B € Co. Therefore, the three vertices of the edge {52, o, ! ,ap} fall into a
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common color class, a contradiction. We have the same conclusion for the case of

a? € Cy. Hence our claim is valid.

From the edge {a}, oy, a0}, we have ¢(ap) # (o) for p,q € [n,] if p # ¢. Hence,
we may reorder the color classes such that o, ol € C, for any a € [n,], from which
it follows that (i) holds.

(ii) For any a € [ns - 1] \ {li}a the edges {Vz‘lk’ ag’ aclz}v {%Qk’ 1} {Bzh’ }
imply that v, v, B, € C.. Hence, (ii) holds.
(iii) For any a € [ng — 1], from the edges {8},,a°, al} and {5}, a2, al}, one gets

L 81 ¢ C,. Hence, (iii) holds.

(iv) The edge {8%, @ , al} implies that 84, € C;UC,,, and so the result follows.
O

ns

Lemma 3.2 Let ¢ = {C1,Cy,...,Cy} be a strict coloring of H satisfying the con-
ditions (i)—(iv) in Lemma 3.1.

(i) Suppose c(Bpn,) # c(Byy,) for some p € [s]\{1} and h, € {0, 1, +1,...,np 1 —
—1}. Then for everyi ep]\ {1} and h e {0,t; +1,...,n—1 —n; — 1}, we
haveﬁhECl and B, 3% € Cyq for some d € [m] \ [ng].

(i) Suppose c(By,, ) = c(By,) for some q € [s]\ {1} and hy € {0,t,+1,...,ng1 —
ng — 1}. Thenfor everyz €ls]\lg—1], he{0,t;+1,...,n,1 —n; — 1} and
k € [ti], we have ¢(B,) = c(By,) i and c(vg) = c(Vir)-

Proof. (i) From the edge {al, Bon, Bon, }» we have 80, € Cp,. For any i € [p —
1]\ {1}, the edges {ﬁ;hpa phyp 'lh} and {ﬁ;hpa phyp , A1} imply that c(5},) = ;h,,) =
(ﬁl) Suppose Bl € C4 for some d € [m]\ [ng]. Then since {3}, 55,51} and

{8l Bips af } are edges, we have 3, € Cj,. Hence, (i) holds.

(i) If there exist p € {¢,...,s} and h, € {0,1, —|— 1,...,n,-1 —n, — 1} such that
(Bpn,) 75 c(B}y,); then by (i) we have ¢(fj,) # c( ) for any i € [p] \ {1}. It follows
that c(j3p, hy) 75 C(B;hq), a contradiction. Hence, e( 0) = e( L) for i € {q,...,s}.

Moreover, for i € {q,...,s}, from the edges {3, 8%, 85} and {~v, B, B} we

have ¢(v3.) # c(8},) and e(%k) # ¢(B},); and the edge {%k,%k, L} implies that
c(79,) = ¢(v4,). Hence, (ii) holds. O

Lemma 3.3 Let ¢ = {C,Cy,...,Cn} be a strict coloring of H satisfying c(By) #
c(Byy) for some p € [s|\ {1}. Then there exists an integer d € [m] \ [ng] such that

(i) Ypr» Yox € C1, U Cq and c(v3,) # (1)
(ii) ygr € Ci, and g, € Cq for any q € [p— 1]\ {1}.

Proof. For any i € [p]\ {1}, by Lemma 3 2 we have 3, € (), and ﬁzO € Cy for some
d € [m]\ [ns]. Since {viy, By, Bio} Vi Biv: Bio } are edges we have 79, v}, € Ci, UCy;
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and the edges {7V, Vi B0} {7iks Vi Bio} imply that e(vj,) # c(v;,). Specially, we
have vy, v € Ci, U Cq and () 7 (7). Hence, (i) holds.

For any ¢ € [p — 1]\ {1}, from the edge {7, Vi Vgt We have vy, € Cy. Since
Yor € C1, U Cq and c(vgy) # c(74,), we have v, € (.

The proof is complete. O

Lemma 3.4 Let ¢ = {C1,Cs,...,Cy} is a strict coloring of H satisfying the con-
ditions (i)-(iv) in Lemma 3.1. Let b € [s] \ {1} be the minimum number such that
c(Byy) = c(Bly). Then we may reorder the color classes such that the following con-
ditions hold:

(i) {83, Bin} € Cusn fori € [s]\ [b—1];

(1) {7k i}  Cni fori € [s]\ [b—1].

Proof. By Lemma 3.2, we have ¢(8%) = c(8}) and c¢(7%) = c(y}) for each i €
[s] \ [b—1]. For iy,ip € [s] \ [b — 1] and iy > iy, the edges {800, Bins Bhns by
{ﬁgfn’Billhl’,yilng}’ {/y?lk‘17/yi11k1’ ilghg} a’nd {,7?1]{1’,7@'11]{17732]62} lmply that C( illhl) ?é
(Bishy)s c(Biny) # (Vighy)s €(Biny) # c(Virw,) and c(viy,) # (Vigy,) for any k; €
[til,h; € {0,t; + 1, t; +2,...,n,1 —n; — 1}, € {1,2}. Moreover, for i € [s]\
[b — 1], the edge {8, B, Bl } implies that c(3}, ) # c(B,,) if by # he; the edge

% Blns Vit implies that c(Bj,) # c(vj,); and from the edge {9, , ik, Vik, }> We
have ¢(vy,) # ¢(Viy,) if k1 # ko. Hence, we may reorder the color classes such that

0 B5 Y C Coin A5, vt © Chiay for i € [s]\ [b — 1], which implies that (i) and
(ii) holds. 0

4 Proof of Theorem 1.1

Next, we shall prove that all the strict colorings of the 3-uniform bi-hypergraph H
are cl,ch, ..., 3% k20

Theorem 4.1 # is a realization of Ry, where H satisfying the conditions (i)-(iv) in
Lemma 3.1.

Proof. Suppose ¢ = {C4,Cy, ...,Cy,} is a strict coloring of H. Then H satisfying
the conditions (i)-(iv) in Lemma 3.1. In particular, 8% € C; UC,,,.

Case 1 Y, € C.

In this case, we shall prove that ¢ € {¢?|g € [2]}. Note that 3L, € C,,,. For any
i € [s]\ {1}, by Lemma 3.2, we have 39, € C, and 3}, 8}, € C,,,. By Lemma 3.3, one
gets that

(1) Yo Yar € CLUCy, and c(vg,) 7 c(Vap);
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(i) Y9, € Ci, and vy, € Cy,, for any g € [s — 1]\ {1}.

Then we have ¢ € {?|g € [2"]}.
Case 2 8% € C,..
Then ¢ satisfies the condition (ii) in Lemma 3.2. In this case, we shall prove that

ce{die[s—1],g € [2%]}. Let b € [s]\ {1} be the minimum number such that
c(Byy) = c(BY)- So ¢ satisfies the conditions in Lemma 3.4.

Case 2.1 If b = 2, we claim that 3} fall into a new color class C; = (),1 € [m] \ [ng].

Suppose C; # (). Without loss of generality, there exists a vertex B;O such that 5;0 €

Ci for p € [s]\ {1}. Then we have 3, € C. The edge {2, B, 41 } is monochromatic,

a contradiction. Hence, our claim is valid. Then we have 3] € C,, and ¢ = c}.

Case 2.2 If b > 2, that is to say, for each p € [b— 1]\ {1}, c¢(8}) # c(B,). Similarly
to Case 2.1, and so we have Bl}—l,o fall into a new color class C; = (). Hence, we may

assume that 8, o € Cp, | and then £, ; € (y,_,. By lemma 3.2, we have 3, € C,
and 1,8}, € C,, , for i € [b— 1]\ {1}; and then by Lemma 3.3, one gets that

ny_1
(i) 71?71,1{’71}71,1{ €C, ,UC,,  and C(%?q,k) # C(%}q,k)?
(ii) 79, € C1, and vy, € C,,_, for any g € [b— 2]\ {1}.

Hence ¢ € {c]_,|g € [2"-]}.
The proof is complete. U

Note that H is a desired 3-uniform bi-hypergraph when n; > ns + 1. Then we
focus on the case of n; = ny + 1.

Construction II. Suppose n,_1 —n; > t;, 1 € {2,...,s}, ng > s. For s > 3 and
ny=ng+1,let X' =X\ {8%} and H = H[X'].

Theorem 4.2 Suppose s > 3 and ny = no + 1. Then H' is a realization of Rs.

Proof. We have ty = 0 from the condition n; = ny + 1.

Let Y = X’\{B{} C X, then we have that G = H[Y] is a induced sub-hypergraph
of HonY.

By Theorem 4.1, all the strict colorings of G are as follows:

of = (Y, Yg,.... Y2 i[5\ {1}.g € 2],

) Ling
where Y7 consists of vertices

1,1 .1 2t3 1 g-1 .  g-1 2ti 1 2ts
(g, Ty Tgy ooy Ty yeeey Ty e, Xy gy xy o xl Ty 2y o) € XL

Let ¢ = {C},Cy,...,Cp} be a strict coloring of H'. Then #H' satisfying the
conditions (i)-(iv) in Lemma 3.1. There are the following two possible cases.

L
Case 1 |y = €.
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In this case, we shall prove that ¢ € {¢1,c2}. For i € [s]\ {1,2}, from the edges
0 Bins B} and {49, v, 81}, we have 8} ¢ C,,4x U Cy,yp. Therefore, we have
c=chif Bl € Cp, and c =} if 8] & C,,,.
Case 2 cly =¢f,p € [s]\ {1,2},9 € [2%].
Note that 3, € C, and 3}, € Cy,,. The edge {f], 52y, By} implies that 5} € Cy,, .
Therefore, ¢ = ¢, g € [2%]. 0

For the case of s = 2,no > 2 and n; = ny + 1, Zhao et al. constructed a 3-
uniform bi-hypergraph H* [10, Construction ITI] with 2n; — 1 vertices and obtained
the following result.

Theorem 4.3 ([10, Theorem 2.6]) Suppose s = 2,n5 > 2 and ny = ny + 1. Then
H* is a one-realization of {ni,ns}.

Note that, when s = 2,ny > 2 and ny = ns + 1, any one-realization of {ny,ny} is
a realization of Ry. Hence, we get the following result.

Theorem 4.4 Suppose s = 2,ny > 2 and ny = ny + 1. Then H* is a realization
Of RQ.

Combining Theorems 4.1, Theorems 4.2 and Theorem 4.4, the proof of Theo-
rem 1.1 is now complete.
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