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Abstract

For a vector R = (r1, r2, . . . , rm) of non-negative integers, a mixed hy-
pergraph H is a realization of R if its chromatic spectrum is R. In this
paper, we determine the minimum number of vertices of 3-uniform bi-
hypergraphs which are realizations of a special kind of vector R2. As a
result, we partially solve an open problem proposed by Král’ in 2004.

1 Introduction

A mixed hypergraph on a finite set X is a triple H = (X, C,D), where C and D
are families of subsets of X. The members of C and D are called C-edges and D-
edges, respectively. A set B ∈ C ∩ D is called a bi-edge. A bi-hypergraph is a
mixed hypergraph with C = D, denoted by H = (X,B), where B = C = D. If
X ′ ⊂ X, C′ = {C ∈ C|C ⊆ X ′} and D′ = {D ∈ D|D ⊆ X ′}, then the hypergraph
H′ = (X ′, C′,D′) is called the induced sub-hypergraph of H on X ′, denoted by H[X ′].

The distinction between C-edges and D-edges becomes substantial when colorings
are considered. A proper k-coloring of H is a partition of X into k color classes
such that each C-edge has two vertices with a Common color and each D-edge has
two vertices with Distinct colors. A strict k-coloring is a proper k-coloring with k
nonempty color classes, and a mixed hypergraph is k-colorable if it has a strict k-
coloring. For more information, see [5, 6, 7]. The set of all the values k such that H
has a strict k-coloring is called the feasible set of H, denoted by F(H).

A coloring may also be viewed as a partition (feasible partition) of the vertex
set, where the color classes (partition classes) are the sets of vertices assigned to
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the same color. A mixed hypergraph has a gap at k if its feasible set contains
elements larger and smaller than k but omits k. For each k, let rk denote the
number of feasible partitions of the vertex set into k nonempty color classes. The
vector R(H) = (r1, r2, . . . , rχ) is called the chromatic spectrum of H, where χ is the
largest possible number of colors in a strict coloring ofH. If S is a finite set of positive
integers, we say that a mixed hypergraph H is a realization of S if F(H) = S. A
mixed hypergraph H is a one-realization of S if it is a realization of S and all the
entries of the chromatic spectrum of H are either 0 or 1. Moreover, for a vector R
of positive integers, a mixed hypergraph H is called a realization of R if R(H) = R.

It is readily seen that if 1 ∈ F(H), then H cannot have any D-edges. Let S be
a finite set of positive integers with min(S) ≥ 2. Jiang et al. [3] proved that a set S
of positive integers is a feasible set of a mixed hypergraph if and only if 1 /∈ S or S
is an interval. They also discussed the bound on the number of vertices of a mixed
hypergraph with a gap, in particular, the minimum number of vertices of realization
of {s, t} with 2 ≤ s ≤ t − 2 is 2t − s. Moreover, they mentioned that the question
of finding the minimum number of vertices in a mixed hypergraph with feasible set
S of size at least 3 remains open. Král’ [4] proved that there exists a one-realization
of S with at most |S| + 2max(S) − min(S) vertices, and proposed the following
problem: What is the number of vertices of the smallest mixed hypergraph whose
spectrum is equal to a given spectrum (r1, r2, . . . , rm)? Bacsó et al. [1] discussed
the properties of uniform bi-hypergraphs H which are one-realizations of S when
|S| = 1, in this case we also say that H is uniquely colorable. Recently, Bujtás and
Tuza [2] gave a necessary and sufficient condition for S being the feasible set of an
r-uniform mixed hypergraph, and they raised the following open problem: determine
the minimum number of vertices in r-uniform bi-hypergraphs with a given feasible
set. Zhao et al. [8] constructed a family of 3-uniform bi-hypergraphs with a given
feasible set, and obtained an upper bound on the minimum number of vertices of the
one-realizations of a given set. In [9] they improved Král’s result and proved that
the minimum number of vertices of mixed hypergraphs with a given feasible set S is
2max(S)−min(S) if max(S)− 1 /∈ S or 2max(S)−min(S)− 1 if max(S)− 1 ∈ S.
Recently, Zhao et al. proved in [10] that the minimum number of vertices of 3-
uniform bi-hypergraphs with a given feasible set S is 2max(S) if max(S)− 1 /∈ S or
2max(S)− 1 if max(S)− 1 ∈ S.

We denote by [n] the vertex set {1, 2, . . . , n} for any positive integer n.

In this paper, we determine the minimum number of vertices of 3-uniform bi-
hypergraphs which are realizations of a special kind of vector R2, and we obtain the
following result.

Theorem 1.1 For integers s ≥ 2, n1 > n2 > · · · > ns ≥ s and t1 = 0, t2, . . . , ts ≥ 0,
let R2 = (r1, r2, . . . , rn1) be a non-negative vector with rn1 = 1, rni

= 2ti , i ∈ {2, . . . , s}
and rj = 0, j ∈ [n1] \ {n1, n2, . . . , ns}. If ni−1 − ni > ti, i ∈ {2, . . . , s}, then

δ3(R2) =

⎧⎨
⎩

6, if n1 = 3, n2 = 2,
2n1, if n1 > n2 + 1,
2n1 − 1, otherwise,
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where δ3(R2) is the minimum number of vertices of a 3-uniform bi-hypergraphs which
is a realization of R2.

This paper is organized as follows. In Section 2, we prove that the number
in Theorem 1.1 is a lower bound for δ3(R2). In Section 3, we introduce a basic
construction of 3-uniform bi-hypergraphs and discuss the coloring property of 3-
uniform bi-hypergraphs. In Section 4, we construct 3-uniform bi-hypergraphs which
are realizations of R2 and meet this lower bound in each case.

2 The lower bound

In this section we shall show that the number δ3(R2) given in Theorem 1.1 is a lower
bound on the minimum number of vertices of 3-uniform bi-hypergaphs which are
realizations of R2.

Lemma 2.1

δ3(R2) ≥
⎧⎨
⎩

6, if n1 = 3, n2 = 2,
2n1, if n1 > n2 + 1,
2n1 − 1, otherwise.

Proof. Assume that H = (X,B) is a 3-uniform bi-hypergraph which is a realization
of R2. Note that |X| ≥ 4. We divide our proof into the following two cases.

Case 1 t2 ≥ 1.

That is to say, H has a gap at n1 − 1. Suppose |X| = 2n1 − 1. For any strict
n1-coloring c = {C1, C2, . . . , Cn1} of H, if there exist two color classes, say C1 and
C2, such that |C1| = |C2| = 1, then c′ = {C1 ∪ C2, C3, . . . , Cn1} is a strict (n1 − 1)-
coloring of H, a contradiction. Since |X| = 2n1 − 1, there exists one color class,
say C1, such that |C1| = 1, and |Ci| = 2, i = 2, 3, . . . , n1. Let C1 = {x1} and
Ci = {xi, yi}, i = 2, 3, . . . , n1. Then, c′′ = {{x1, x2, x3, . . . , xn1}, {y2, y3, . . . , yn1}} is
a strict 2-coloring of H, which implies that ns = 2. Note that each element of

{{{a1, a2, . . . , an1}, {b2, b3, . . . , bn1}}|a1 = x1, ai, bi ∈ {xi, yi}, ai 
= bi, i ∈ [n1] \ {1}}

is a strict 2-coloring of H. It follows that rns ≥ 2n1−1 > 2ts , a contradiction to that
rns = 2ts . If |X| ≤ 2n1 − 2, then we can get a strict (n1 − 1)-coloring of H from a
strict n1-coloring of H, also a contradiction.

Case 2 t2 = 0.

That is to say, rn2 = 2t2 = 1. If n1 > n2 + 1, by Case 1, we have δ3(R2) ≥ 2n1.
If n1 = n2 + 1, we have two possible cases as follows:

Case 2.1 S = {3, 2}.
Note that the complete 3-uniform bi-hypergraph K3

5 is uncolorable, and the bi-
hypergraph obtained by deleting any edge from K3

5 is 2-colorable but not 3-colorable.
Furthermore, the bi-hypergraph obtained by deleting any two edges from K3

5 has two
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strict 2-colorings but not 3-coloring. We have a similar conclusion for the complete
3-uniform bi-hypergraph K3

4 . Therefore, H which is a realization of R2 has at least
6 vertices.

Case 2.2 S 
= {3, 2}.
That is to say, n1 ≥ 4, ns > 2. Suppose |X| ≤ 2n1 − 2. For any strict n1-

coloring c = {C1, C2, . . . , Cn1} of H, if there exist three color classes, say C1, C2 and
C3, such that |C1| = |C2| = |C3| = 1, then c′ = {C1 ∪ C2, C3, . . . , Cn1} and c′′ =
{C1, C2 ∪ C3, C4, . . . , Cn1} are two distinct strict n2-colorings of H, a contradiction
to that rn2 = 1. Noticing that |X| ≤ 2n1 − 2, there exist at least two color classes
each of which has one vertex, and each of the other color classes has two vertices.
Similar to Case 1, H has a strict 2-coloring, a contradiction.

The proof is complete. �

3 The basic construction

In this section, we shall construct a family of 3-uniform bi-hypergraphs and discuss
their coloring properties. This construction plays an important role in construct-
ing 3-uniform bi-hypergraphs which are realizations of R2 and meet the bounds in
Lemma 2.1.

Construction I. Suppose ni−1 − ni > ti, i ∈ {2, . . . , s}, ns ≥ s. Let li = s − i + 1,
and write

α0
a = (a, a, . . . , a︸ ︷︷ ︸

s∑

w=1
2tw

, 0) and

α1
a = (a, a, . . . , a︸ ︷︷ ︸

s∑

w=1
2tw

, 1), a ∈ [ns],

β0
ih = (ni + h, . . . , ni + h︸ ︷︷ ︸

i−1∑

w=1
2tw

, li, . . . , li︸ ︷︷ ︸
s∑

w=i
2tw

, 0) and

β1
ih = (ni + h, . . . , ni + h︸ ︷︷ ︸

i−1∑

w=1
2tw

, ni, . . . , ni︸ ︷︷ ︸
2ti

, . . . , ns, . . . , ns︸ ︷︷ ︸
2ts

, 1),

i ∈ [s] \ {1}, h ∈ {0, ti + 1, ti + 2, . . . , ni−1 − ni − 1},
γ0
ik = (ni + k, . . . , ni + k︸ ︷︷ ︸

i−1∑

w=1
2tw

, li, . . . , li︸ ︷︷ ︸
2k−1

, ni, . . . , ni︸ ︷︷ ︸
2k−1

, . . . , li, . . . , li︸ ︷︷ ︸
2k−1

, ni, . . . , ni︸ ︷︷ ︸
2k−1︸ ︷︷ ︸

2ti

, li, . . . , li︸ ︷︷ ︸
s∑

w=i+1
2tw

, 0)
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and

γ1
ik = (ni + k, . . . , ni + k︸ ︷︷ ︸

i−1∑

w=1
2tw

, ni, . . . , ni︸ ︷︷ ︸
2k−1

, li, . . . , li︸ ︷︷ ︸
2k−1

, . . . , ni, . . . , ni︸ ︷︷ ︸
2k−1

, li, . . . , li︸ ︷︷ ︸
2k−1︸ ︷︷ ︸

2ti

,

ni+1, . . . , ni+1︸ ︷︷ ︸
2ti+1

, ni+2, . . . , ns︸ ︷︷ ︸
s∑

w=i+2
2tw

, 1), i ∈ [s] \ {1}, k ∈ [ti],

β1
1 = (n1, n2, . . . , n2︸ ︷︷ ︸

2t2

, n3, . . . , ns︸ ︷︷ ︸
s∑

w=3
2tw

, 1), and

X =
ns⋃
a=1

{α0
a, α

1
a} ∪

s⋃
i=2

{β0
i0, β

1
i0} ∪

s⋃
i=2

ni−1−ni−1⋃
h=ti+1

{β0
ih, β

1
ih} ∪

s⋃
i=2

ti⋃
k=1

{γ0
ik, γ

1
ik} ∪ {β1

1},

B = {{θ1, θ2, θ3}|θl ∈ X, l ∈ [3], |{θ1(j), θ2(j), θ3(j)}| = 2, j ∈ [

s∑
w=1

2tw + 1]}

∪ {{α0
1, β

0
s0, α

0
ns
}},

where θl(j) is the j-th entry of the vertex θl. Then H = (X,B) is a 3-uniform
bi-hypergraph with 2n1 vertices.

Note that, for any i ∈ [s], g ∈ [2ti ], cgi = {Xg
i1, X

g
i2, . . . , X

g
ini
} is a strict coloring of

H, where Xg
ij consists of vertices

(x1
1, x

1
2, . . . , x

2t2
2 , . . . , x1

i , . . . , x
g−1
i , j, xg+1

i , . . . , x2ti
i , . . . , x1

s, . . . , x
2ts
s , x) ∈ X.

In the following, for a strict coloring c of a 3-uniform bi-hypergraph H = (X,B),
we denote by c(v) the color of the vertex v under c.

Lemma 3.1 Let c = {C1, C2, . . . , Cm} be a strict coloring of H. Then we may re-
order the color classes such that the following conditions hold:

(i) α0
a, α

1
a ∈ Ca, a ∈ [ns];

(ii) γ0
ik, γ

1
ik, β

0
ih /∈ Ca, for a ∈ [ns − 1] \ {li};

(iii) β1
ih, β

1
1 /∈ Ca for a ∈ [ns − 1];

(iv) β0
s0 ∈ C1 ∪ Cns.

Proof. (i) We claim that c(α0
a) = c(α1

a) for each a ∈ [ns]. If not, there exists a
t ∈ [ns] such that c(α0

t ) 
= c(α1
t ). Without loss of generality, assume that α0

1 ∈ C1

and α1
1 ∈ C2. From the edge {α0

ns
, α0

1, α
1
1}, we have α0

ns
∈ C1 ∪ C2. Suppose α0

ns
∈

C1. The edges {α1
ns
, α0

1, α
1
1}, {α1

ns
, α0

ns
, α0

1}, {β0
s0, α

0
ns
, α1

1}, {β0
s0, α

0
ns
, α0

1} imply that
α1
ns
, β0

s0 ∈ C2. Therefore, the three vertices of the edge {β0
s0, α

1
ns
, α1

1} fall into a
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common color class, a contradiction. We have the same conclusion for the case of
α0
ns

∈ C2. Hence our claim is valid.

From the edge {α0
p, α

1
p, α

0
q}, we have c(α0

p) 
= c(α0
q) for p, q ∈ [ns] if p 
= q. Hence,

we may reorder the color classes such that α0
a, α

1
a ∈ Ca for any a ∈ [ns], from which

it follows that (i) holds.

(ii) For any a ∈ [ns − 1] \ {li}, the edges {γ1
ik, α

0
a, α

1
a}, {γ0

ik, α
0
a, α

1
a}, {β0

ih, α
0
a, α

1
a}

imply that γ0
ik, γ

1
ik, β

0
ih /∈ Ca. Hence, (ii) holds.

(iii) For any a ∈ [ns − 1], from the edges {β1
ih, α

0
a, α

1
a} and {β1

1 , α
0
a, α

1
a}, one gets

β1
ih,β

1
1 /∈ Ca. Hence, (iii) holds.

(iv) The edge {β0
s0, α

0
ns
, α0

1} implies that β0
s0 ∈ C1∪Cns, and so the result follows.

�

Lemma 3.2 Let c = {C1, C2, . . . , Cm} be a strict coloring of H satisfying the con-
ditions (i)–(iv) in Lemma 3.1.

(i) Suppose c(β0
php

) 
= c(β1
php

) for some p ∈ [s] \ {1} and hp ∈ {0, tp+1, . . . , np−1−
np − 1}. Then for every i ∈ [p] \ {1} and h ∈ {0, ti + 1, . . . , ni−1 − ni − 1}, we
have β0

ih ∈ Cli and β1
1 , β

1
ih ∈ Cd for some d ∈ [m] \ [ns].

(ii) Suppose c(β0
qhq

) = c(β1
qhq

) for some q ∈ [s] \ {1} and hq ∈ {0, tq + 1, . . . , nq−1 −
nq − 1}. Then for every i ∈ [s] \ [q − 1], h ∈ {0, ti + 1, . . . , ni−1 − ni − 1} and
k ∈ [ti], we have c(β0

ih) = c(β1
ih) i and c(γ0

ik) = c(γ1
ik).

Proof. (i) From the edge {α0
lp
, β0

php
, β1

php
}, we have β0

php
∈ Clp. For any i ∈ [p −

1] \ {1}, the edges {β1
php

, β0
php

, β1
ih} and {β1

php
, β0

php
, β1

1} imply that c(β1
ih) = c(β1

php
) =

c(β1
1). Suppose β1

ih ∈ Cd for some d ∈ [m] \ [ns]. Then since {β1
ih, β

0
ih, β

1
1} and

{β1
ih, β

0
ih, α

1
li
} are edges, we have β0

ih ∈ Cli. Hence, (i) holds.

(ii) If there exist p ∈ {q, . . . , s} and hp ∈ {0, tp + 1, . . . , np−1 − np − 1} such that
c(β0

php
) 
= c(β1

php
), then by (i) we have c(β0

ih) 
= c(β1
ih) for any i ∈ [p] \ {1}. It follows

that c(β0
qhq

) 
= c(β1
qhq

), a contradiction. Hence, c(β0
ih) = c(β1

ih) for i ∈ {q, . . . , s}.
Moreover, for i ∈ {q, . . . , s}, from the edges {γ0

ik, β
0
ih, β

1
ih} and {γ1

ik, β
0
ih, β

1
ih}, we

have c(γ0
ik) 
= c(β1

ih) and c(γ1
ik) 
= c(β1

ih); and the edge {γ0
ik, γ

1
ik, β

1
ih} implies that

c(γ0
ik) = c(γ1

ik). Hence, (ii) holds. �

Lemma 3.3 Let c = {C1, C2, . . . , Cm} be a strict coloring of H satisfying c(β0
p0) 
=

c(β1
p0) for some p ∈ [s] \ {1}. Then there exists an integer d ∈ [m] \ [ns] such that

(i) γ0
pk, γ

1
pk ∈ Clp ∪ Cd and c(γ0

pk) 
= c(γ1
pk);

(ii) γ0
qk ∈ Clq and γ1

qk ∈ Cd for any q ∈ [p− 1] \ {1}.

Proof. For any i ∈ [p]\{1}, by Lemma 3.2, we have β0
i0 ∈ Cli and β1

i0 ∈ Cd for some
d ∈ [m] \ [ns]. Since {γ0

ik, β
0
i0, β

1
i0}, {γ1

ik, β
0
i0, β

1
i0} are edges, we have γ0

ik, γ
1
ik ∈ Cli ∪Cd;
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and the edges {γ0
ik, γ

1
ik, β

0
i0}, {γ0

ik, γ
1
ik, β

1
i0} imply that c(γ0

ik) 
= c(γ1
ik). Specially, we

have γ0
pk, γ

1
pk ∈ Clp ∪ Cd and c(γ0

pk) 
= c(γ1
pk). Hence,(i) holds.

For any q ∈ [p − 1] \ {1}, from the edge {γ0
pk, γ

1
pk, γ

1
qk}, we have γ1

qk ∈ Cd. Since
γ0
qk ∈ Clq ∪ Cd and c(γ0

qk) 
= c(γ1
qk), we have γ0

qk ∈ Clq .

The proof is complete. �

Lemma 3.4 Let c = {C1, C2, . . . , Cm} is a strict coloring of H satisfying the con-
ditions (i)-(iv) in Lemma 3.1. Let b ∈ [s] \ {1} be the minimum number such that
c(β0

b0) = c(β1
b0). Then we may reorder the color classes such that the following con-

ditions hold:

(i) {β0
ih, β

1
ih} ⊆ Cni+h for i ∈ [s] \ [b− 1];

(ii) {γ0
ik, γ

1
ik} ⊆ Cni+k for i ∈ [s] \ [b− 1].

Proof. By Lemma 3.2, we have c(β0
ih) = c(β1

ih) and c(γ0
ik) = c(γ1

ik) for each i ∈
[s] \ [b − 1]. For i1, i2 ∈ [s] \ [b − 1] and i1 > i2, the edges {β0

i1h1
, β1

i1h1
, β1

i2h2
},

{β0
i1h1

, β1
i1h1

, γ1
i2k2

}, {γ0
i1k1

, γ1
i1k1

, β1
i2h2

} and {γ0
i1k1

, γ1
i1k1

, γ1
i2k2

} imply that c(β1
i1h1

) 
=
c(β1

i2h2
), c(β1

i1h1
) 
= c(γ1

i2k2
), c(β1

i2h2
) 
= c(γ1

i1k1
) and c(γ1

i1k1
) 
= c(γ1

i2k2
) for any kj ∈

[ti], hj ∈ {0, ti + 1, ti + 2, . . . , ni−1 − ni − 1}, j ∈ {1, 2}. Moreover, for i ∈ [s] \
[b − 1], the edge {β0

ih1
, β1

ih1
, β1

ih2
} implies that c(β1

ih1
) 
= c(β1

ih2
) if h1 
= h2; the edge

{β0
ih, β

1
ih, γ

1
ik} implies that c(β1

ih) 
= c(γ1
ik); and from the edge {γ0

ik1
, γ1

ik1
, γ1

ik2
}, we

have c(γ1
ik1
) 
= c(γ1

ik2
) if k1 
= k2. Hence, we may reorder the color classes such that

{β0
ih, β

1
ih} ⊆ Cni+h,{γ0

ik, γ
1
ik} ⊆ Cni+k for i ∈ [s] \ [b − 1], which implies that (i) and

(ii) holds. �

4 Proof of Theorem 1.1

Next, we shall prove that all the strict colorings of the 3-uniform bi-hypergraph H
are c11, c

1
2, . . . , c

2t2
2 , c13, . . . , c

2ts
s .

Theorem 4.1 H is a realization of R2, where H satisfying the conditions (i)-(iv) in
Lemma 3.1.

Proof. Suppose c = {C1, C2, . . . , Cm} is a strict coloring of H. Then H satisfying
the conditions (i)-(iv) in Lemma 3.1. In particular, β0

s0 ∈ C1 ∪ Cns.

Case 1 β0
s0 ∈ C1.

In this case, we shall prove that c ∈ {cgs|g ∈ [2ts ]}. Note that β1
s0 ∈ Cns. For any

i ∈ [s] \ {1}, by Lemma 3.2, we have β0
ih ∈ Cli and β1

1 , β
1
ih ∈ Cns. By Lemma 3.3, one

gets that

(i) γ0
sk, γ

1
sk ∈ C1 ∪ Cns and c(γ0

sk) 
= c(γ1
sk);
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(ii) γ0
qk ∈ Clq and γ1

qk ∈ Cns for any q ∈ [s− 1] \ {1}.

Then we have c ∈ {cgs|g ∈ [2ts ]}.
Case 2 β0

s0 ∈ Cns.

Then c satisfies the condition (ii) in Lemma 3.2. In this case, we shall prove that
c ∈ {cgi |i ∈ [s − 1], g ∈ [2ti ]}. Let b ∈ [s] \ {1} be the minimum number such that
c(β0

b0) = c(β1
b0). So c satisfies the conditions in Lemma 3.4.

Case 2.1 If b = 2, we claim that β1
1 fall into a new color class Cl = ∅, l ∈ [m] \ [ns].

Suppose Cl 
= ∅. Without loss of generality, there exists a vertex β1
p0 such that β1

p0 ∈
Cl for p ∈ [s]\{1}. Then we have β0

p0 ∈ Cl. The edge {β0
p0, β

1
p0, β

1
1} is monochromatic,

a contradiction. Hence, our claim is valid. Then we have β1
1 ∈ Cn1 and c = c11.

Case 2.2 If b > 2, that is to say, for each p ∈ [b− 1] \ {1}, c(β0
p0) 
= c(β1

p0). Similarly
to Case 2.1, and so we have β1

b−1,0 fall into a new color class Cl = ∅. Hence, we may
assume that β1

b−1,0 ∈ Cnb−1
and then β0

b−1,0 ∈ Clb−1
. By lemma 3.2, we have β0

ih ∈ Cli

and β1
1 , β

1
ih ∈ Cnb−1

for i ∈ [b− 1] \ {1}; and then by Lemma 3.3, one gets that

(i) γ0
b−1,k, γ

1
b−1,k ∈ Clb−1

∪ Cnb−1
and c(γ0

b−1,k) 
= c(γ1
b−1,k);

(ii) γ0
qk ∈ Clq and γ1

qk ∈ Cnb−1
for any q ∈ [b− 2] \ {1}.

Hence c ∈ {cgb−1|g ∈ [2tb−1 ]}.
The proof is complete. �

Note that H is a desired 3-uniform bi-hypergraph when n1 > n2 + 1. Then we
focus on the case of n1 = n2 + 1.

Construction II. Suppose ni−1 − ni > ti, i ∈ {2, . . . , s}, ns ≥ s. For s ≥ 3 and
n1 = n2 + 1, let X ′ = X \ {β0

20} and H′ = H[X ′].

Theorem 4.2 Suppose s ≥ 3 and n1 = n2 + 1. Then H′ is a realization of R2.

Proof. We have t2 = 0 from the condition n1 = n2 + 1.

Let Y = X ′\{β1
1} ⊂ X, then we have that G = H[Y ] is a induced sub-hypergraph

of H on Y .

By Theorem 4.1, all the strict colorings of G are as follows:

egi = {Y g
i1, Y

g
i2, . . . , Y

g
ini
}, i ∈ [s] \ {1}, g ∈ [2ti ],

where Y g
ij consists of vertices

(x1
2, x

1
2, x

1
3, . . . , x

2t3
3 , . . . , x1

i , . . . , x
g−1
i , j, xg−1

i , . . . , x2ti
i , . . . , x1

s, . . . , x
2ts
s , x) ∈ X.

Let c = {C1, C2, . . . , Cm} be a strict coloring of H′. Then H′ satisfying the
conditions (i)-(iv) in Lemma 3.1. There are the following two possible cases.

Case 1 c|Y = e12.
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In this case, we shall prove that c ∈ {c1, c2}. For i ∈ [s] \ {1, 2}, from the edges
{β0

ih, β
1
ih, β

1
1} and {γ0

ik, γ
1
ik, β

1
1}, we have β1

1 /∈ Cni+k ∪ Cni+h. Therefore, we have
c = c12 if β1

1 ∈ Cn2 and c = c11 if β1
1 /∈ Cn2.

Case 2 c|Y = egp, p ∈ [s] \ {1, 2}, g ∈ [2tp].

Note that β0
p0 ∈ Clp and β1

p0 ∈ Cnp. The edge {β1
1 , β

0
p0, β

1
p0} implies that β1

1 ∈ Cnp.
Therefore, c = cgp, g ∈ [2tp ]. �

For the case of s = 2, n2 > 2 and n1 = n2 + 1, Zhao et al. constructed a 3-
uniform bi-hypergraph H∗ [10, Construction III] with 2n1 − 1 vertices and obtained
the following result.

Theorem 4.3 ([10, Theorem 2.6]) Suppose s = 2, n2 > 2 and n1 = n2 + 1. Then
H∗ is a one-realization of {n1, n2}.

Note that, when s = 2, n2 > 2 and n1 = n2 + 1, any one-realization of {n1, n2} is
a realization of R2. Hence, we get the following result.

Theorem 4.4 Suppose s = 2, n2 > 2 and n1 = n2 + 1. Then H∗ is a realization
of R2.

Combining Theorems 4.1, Theorems 4.2 and Theorem 4.4, the proof of Theo-
rem 1.1 is now complete.
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