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Abstract

In the eternal dominating set problem, guards form a dominating set on
a graph and at each step, a vertex is attacked. After each attack, if the
guards can “move” to form a dominating set that contains the attacked
vertex, then the guards have successfully defended against the attack. We
wish to determine the minimum number of guards required to successfully
defend against any possible sequence of attacks, the eternal domination
number.

Since the domination number for grid graphs has been recently deter-
mined [Gonçalves et al., SIAM J. Discrete Math. 25 (2011), 1443–1453]
grid graphs are a natural class of graphs to consider for the eternal dom-
inating set problem. Though the eternal domination number has been
determined for 2×n grids and 4×n grids, it has remained only bounded
for the 3×n grid. The results in this paper provide major improvements
to both the upper and lower bounds of the eternal domination number
for 3 × n grid graphs. In particular, we show the conjectured value in
[Goldwasser et al., Util. Math. 91 (2013), 47–64] is too small for certain
values of n.
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1 Introduction and Definitions

In graph protection, mobile agents or guards are placed on vertices in order to defend
against a sequence of attacks on a network. Interest began on the topic with a se-
ries of papers appearing in Scientific American, John Hopkins Magazine, American
Mathematical Monthly, and Military Operations Research in the late twentieth cen-
tury. These papers considered Emperor Constantine’s strategies for defending the
vast Roman Empire against enemy attacks. See the survey [10] for more background
and the state of the art of graph protection.

In this paper, we consider the “all guards move” model of the eternal dominating
set problem. Informally, a set of guards initially form a dominating set on a graph,
where each vertex either contains a guard or is adjacent to one containing a guard.
At each step, a vertex is attacked. After each attack, if the guards can “move” so
that a guard is located on the attacked vertex and the set of guards again forms
a dominating set on the graph, then we say the guards have successfully defended
against the attack. We note, however, that the guards’ movements are restricted:
after an attack, each guard may remain where it is or move to a neighbouring vertex.
We wish to find the minimum number of guards to defend against any possible
sequence of attacks on a particular graph G. We denote this parameter γ∞

all(G) and
refer to it as the “eternal domination number” of G. This “all guards move model”
or “multiple guards move version” was introduced by Goddard et al.[3], where it was
called the “eternal m-security number” and γ∞

all(G) was denoted σm(G).

General bounds of γ(G) ≤ γ∞
all(G) ≤ α(G) were determined in [3], where γ(G)

denotes the minimum cardinality among all dominating sets of G and α(G) the
maximum cardinality among all independent sets of G (sets of vertices where no two
vertices in the set are adjacent). The exact eternal domination number for various
classes of graphs was also given in [3]. Though γ∞

all(G) = γ(G) for all Cayley graphs
G (see [3]), a characterization of those graphs G for which γ∞

all(G) = γ(G) remains
unknown. The eternal domination number of trees was determined in [9], and shows
the upper bound of the inequality given by [3] is tight. We consider previous results
on the grid graphs below, but for additional results, see [1, 2, 3, 4, 5, 8, 9], or the
survey [10].

The m× n grid graph is often denoted Pm �Pn as it is the Cartesian product of
two paths Pm and Pn. The domination number of Pm �Pn has been well-studied over
the past thirty years and is known for all values of m and n. Indeed, the first results
appeared thirty years ago in [7] and the final results appeared two years ago in [6].
Consequently, grid graphs are a natural class of graphs to consider for the eternal
dominating set problem, with the domination number providing a lower bound for
γ∞
all(G).

Although the values for all n are known for γ∞
all(P2 �Pn) (see [5]) and γ∞

all(P4 �Pn)
(see [2]), the values for γ∞

all(P3 �Pn) are largely unknown. After determining

γ∞
all(P3 �Pn) = n for 2 ≤ n ≤ 8,
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Goldwasser, Klostermeyer and Mynhardt [5] found the surprising result of

γ∞
all(P3 �P9) = 8,

which provides the general upper bound

γ∞
all(P3 �Pn) ≤

⌈8n
9

⌉
for n ≥ 9. (1)

Ultimately, they made the following conjecture.

Conjecture 1 [5] For n > 9, γ∞
all(P3 �Pn) =

⌈
4n
5

⌉
+ 1.

The main contribution of this paper is a significant improvement to both the
upper and lower bound on the eternal domination number for P3 �Pn. We improve
the lower bound from �3n+4

4
� (the domination number, see [7]) to �4n+1

5
�+ 1 and we

improve the upper bound from (1) to �6n+2
7

� for n ≥ 2.

The organization of the paper is as follows. In Section 2, we determine various
bounds on γ∞

all(P3 �Pn) to be used in subsequent sections and prove the lower bound
of �4n

5
�+1 in Theorem 6. In Section 3, we determine the eternal domination number

of P3 �P15 and a lower bound for P3 �Pn when n ≥ 20 is a multiple of 5. This gives a
new lower bound of �4n+1

5
�+1 (Theorem 14). These results provide counterexamples

to Conjecture 1. Finally, in Section 4, we state the eternal domination number for
some n values and derive a new upper bound of �6n+2

7
� for n ≥ 2 in Theorem 16.

We conclude this section with formal definitions. Let G = (V,E) be a graph. A
dominating set of G is a subset of V whose closed neighbourhood is V . The smallest
cardinality of a dominating set is denoted γ(G) and is called the domination number
of G. Let Dq(G) be the set of all dominating sets of G which have cardinality q. Let
D,D′ ∈ Dq(G). We will say D can be transformed to D′ (or D transforms to D′) if
D = {v1, v2, . . . , vq}, D′ = {u1, u2, . . . , uq} and ui ∈ N [vi] for i = 1, 2, . . . , q.

In the “eternal dominating set problem”, a defender is given q guards to protect
the graph from a series of attacks on vertices made by an attacker. An eternal
dominating family of G is a subset E ⊆ Dq(G) for some q so that for every D ∈ E
and every possible attack v ∈ V (G), there is a dominating set D′ ∈ E so that v ∈ D′

and D transforms to D′. When the value of q in the above definition is known
we will refer to this family as an eternal dominating family with q guards. A set
D ∈ Dq(G) is an eternal dominating set if it is a member of some eternal dominating
family. Note that the set of all eternal dominating sets of a particular cardinality is
an eternal dominating family, provided the family is non-empty.

The Cartesian product of graphs G and H is denoted by G�H . The vertex set
of G�H is V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)}, and two vertices (u, v) and
(u′, v′) are adjacent if and only if u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).
When G = Pm and H = Pn, these graphs are also known as grids or grid graphs of
dimensions m× n. Label the vertices of Pm (respectively Pn) in their usual ordering
u1, u2, . . . , um (resp. v1, v2, . . . , vn). In this paper, we discuss the eternal domination
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numbers of grid graphs with m = 3. Each copy of P3, corresponding to a vertex of
Pn is referred to as a column. We refer to each of the columns as the first column,
second column, etc. and as column 1, column 2, etc. starting from one the columns
corresponding to a leaf of Pn and proceeding consecutively.

In constructing eternal dominating families we make use of the symmetries of the
3× n grid graph. Given a dominating set D ∈ Dq(P3 �Pn), a vertical reflection of D
(about the horizontal line of symmetry) is denoted Dv, while a horizontal reflection
(about the vertical line of symmetry) is denoted Dh. A rotation of a dominating set
D by 180◦ (which is the same as both the vertical reflection of Dh and the horizontal
reflection of Dv) is denoted Dr. When we wish to discuss an arbitrary symmetry of
a dominating set D, we denote it Ds.

For example, in the eternal dominating family for P3 �P4 illustrated in Table 1,
there are four dominating sets, or one set and its three symmetries. In each set, a
vertex containing a guard is denoted by a bullet (•). Each vertex not containing a
guard is labeled with the name of the set to which to transform in order to protect
against an attack on that vertex. In the table, any of the sets can transform to
any of the other sets; thus the protection against an attack on the middle vertex of
the first column of set D by transformation to Dh could also be accomplished by a
transformation to Dr.

1 2 3 4 1 2 3 4

• Dv Dr Dh D Dv Dr •
D Dh Dh • • Dh • • D D

Dv • Dh Dr Dv D • Dr

D • Dr Dh D Dv • Dh

Dv Dr Dr • • Dr • • Dv Dv

• D Dh Dr Dv D Dh •

Table 1: Eternal dominating family for P3 �P4 with 4 guards.

Theorem 2 [2] Given dominating sets D,E ∈ Dq(Pm �Pn) and any arbitrary sym-
metry s resulting from a reflection or rotation, D transforms to E if and only if Ds

transforms to Es.

2 A Lower Bound on the Number of Guards

We begin with an observation of Goldwasser et al. [5]. We note that, by symmetry,
statements and arguments referring to the first i columns also apply to the last i
columns, for any i.

Lemma 3 [5] The 3 × n grid graph, n > 5, cannot be defended if at any time the
first six columns have at most four guards.
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Lemma 3 implies that in an eternal dominating set of P3 �Pn there are at least
five guards in the first six columns. To obtain a lower bound we extend this result.

Lemma 4 Let E be an eternal dominating family of P3 �Pn. If there are at least k
guards in the first i columns for each dominating set D ∈ E , then for any set D′ ∈ E
all of the following hold.

1. If there are at most k guards in the first i+1 columns, then there are k guards
in the first i columns, no guards in column i + 1 and three guards in column
i+ 2.

2. If there are at most k+1 guards in the first i+2 columns, then there are k+1
guards in the first i + 1 columns, no guards in column i + 2 and at least two
guards in column i+ 3.

3. If there are at most k+2 guards in the first i+3 columns, then there are k+2
guards in the first i + 2 columns, no guards in column i + 3 and at least two
guards in column i+ 4.

4. If there are at most k+3 guards in the first i+4 columns, then there are k+3
guards in the first i + 3 columns, no guards in column i + 4 and at least one
guard in column i+ 5.

5. There are at least k + 4 guards in the first i+ 5 columns.

Proof: Assume the guards are positioned on the vertices of D′ ∈ E . As E is an
eternal dominating family, we can insist that after an attack the defender moves the
guards in such a way that D′ is transformed to a set in E .

1. There are k guards in the first i columns and hence there are no guards in
column i+1. If an attack occurs in column i+1 and a guard from column i responds,
then there remains at most k−1 guards in the first i columns, a contradiction. Thus,
the response to any attack in column i+1 must be made by a guard in column i+2,
requiring three guards in column i+ 2.

2. If there are at most k guards in the first i + 1 columns, then by 1., there
are k guards in the first i + 1 columns and 3 guards in column i + 2, which yields
a contradiction (of k + 3 guards in the first i + 2 columns). Thus, there are k + 1
guards in the first i+1 columns and no guards in column i+2. As there are at least
k guards in the first i columns, there is at most one guard in column i + 1 (which
dominates at most one vertex in column i+2). Consequently, there must be at least
2 guards in column i+ 3 (to dominate the remaining two vertices in column i+ 2).

3. If there are at most k + 1 guards in the first i + 2 columns, then by 2., there
are k + 1 guards in the first i+ 1 columns and at least two guards in column i+ 3,
which yields a contradiction in the number of guards. Thus, there are k + 2 guards
in the first i + 2 columns and no guards in column i + 3. If there are two or more
guards in column i+2 there are at most k guards in the first i+1 columns and hence
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by 1., k guards in the first i columns, no guards in column i+1 and three guards in
column i+2. This yields a contradiction (of k+3 guards in the first i+2 columns);
therefore, there is at most one guard in column i+ 2 (which dominates at most one
vertex in column i + 3). Consequently, there must be at least 2 guards in column
i+ 4 (to dominate the remaining two vertices in column i+ 3).

4. If there are at most k+2 guards in the first i+3 columns, then by 3., there are
k+2 guards in the first i+2 columns and at least two guards in column i+4, which
yields a contradiction in the number of guards. Thus, there are exactly k+3 guards
in the first i+3 columns and no guards in column i+4. If there are three guards in
column i + 3, then there are at most k guards in the first i + 1 columns and hence
by 1., k guards in the first i columns and three guards in column i+ 2. Thus, there
are k + 6 guards in the first i+ 3 columns, a contradiction. Consequently, there are
at most two guards in column i + 3 (each dominates at most one vertex in column
i + 4), and there is at least one guard in column i + 5 (to dominate the remaining
vertex in column i+ 4).

5. If there are more than k + 3 guards in the first i+ 4 columns, then the result
follows. If there are at most k + 3 guards in the first i+ 4 columns, then 4. implies
there are k + 3 guards in the first i + 3 columns and at least one guard in column
i+ 5; the result follows.

Corollary 5 In any eternal dominating set of P3 �Pn, for any � ≥ 2, the first �
columns contain at least

⌈
4�−3
5

⌉
guards.

Proof: We proceed with strong induction on �. For each � = 2, . . . , 7, the result
is either implied by Lemma 3 or is easy to check. Suppose the result holds for
all � = 2, 3, . . . , s − 1, for some s > 7. Recall that the non-empty set of all eternal
dominating sets of a particular cardinality forms an eternal dominating family. Then

all eternal dominating sets have at least
⌈
4(s−5)−3

5

⌉
guards in the first s− 5 columns.

By Lemma 4 (5.), all eternal dominating sets have at least
⌈
4(s−5)−3

5

⌉
+ 4 =

⌈
4s−3
5

⌉
guards in the first s columns.

We now show the conjectured value for γ∞
all(P3 �Pn) given by Goldwasser et al.

[5] in Conjecture 1 is, in fact, a lower bound.

Theorem 6 For n ≥ 10, γ∞
all(P3 �Pn) ≥

⌈
4n
5

⌉
+ 1.

Proof:

Claim: Let E be an eternal dominating family of P3 �Pn with fewer than
⌈
4n
5

⌉
+ 1

guards and n ≥ 10. Then for any 1 ≤ � ≤ n − 3, there are at least � − 1 guards in
the first � columns in every dominating set in E .
Proof of Claim: By Lemmas 3 and 5, the claim is true for 1 ≤ � ≤ 6. Therefore,
let � ≥ 7 be the smallest counterexample. That is, there is a set D ∈ E such that
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there are �− 2 guards in the first � columns of D, but in every set in E , there are at
least �− 2 guards in the first �− 1 columns. By apply Lemma 4 (1.) (applied with
i = �− 1 and k = �− 2), D has �− 2 guards in the first �− 1 columns, no guards in
column � and three guards in column � + 1. Hence D has � + 1 guards in the first

� + 1 columns. Since n − (� + 1) ≥ 2, by Corollary 5, D has at least
⌈
4(n−(�+1))−3

5

⌉
guards in the last n− (�+ 1) columns. Therefore,

|D| ≥ �+ 1 +

⌈
4(n− (�+ 1))− 3

5

⌉
=

⌈
4n + �− 2

5

⌉
.

As � ≥ 7, this implies |D| ≥ ⌈
4n
5

⌉
+1 guards, which contradicts the assumption that

E is an eternal dominating family with fewer than
⌈
4n
5

⌉
+1 guards, thus proving the

Claim. �

If γ∞
all(P3 �Pn) <

⌈
4n
5

⌉
+ 1, then there is an eternal dominating family, E , with

fewer than
⌈
4n
5

⌉
+ 1 guards. By the Claim, for any 1 ≤ � ≤ n− 3, there are at least

�− 1 guards in the first � columns in every dominating set in E . Let � = n − 3 and
observe there are at least � − 1 = n − 4 guards in the first � − 3 columns in every
dominating set in E . By Corollary 5, there are at least 2 guards in the last 3 columns,
giving a total of at least n − 2 guards. However, if n ≥ 15, then n − 2 ≥ �4n

5
� + 1,

which contradicts the assumption that a dominating set in E has fewer than
⌈
4n
5

⌉
+1

guards and the result follows. The result also holds for 10 ≤ n ≤ 14 (the values for
γ∞
all(P3 �Pn) were determined in [5]).

3 Improving the Lower Bound

In this section, we improve the bound given in Theorem 6. The following lemma
provides a tool to identify cases in which the number of guards used is larger than
the conjectured bound. This lemma is then used to show Conjecture 1 fails when
n = 15 (and subsequently, when n ≡ 0 mod 5 for n ≥ 15).

Lemma 7 For n ≥ 12, suppose that in each set in some eternal dominating family
E of P3 �Pn there are at least six guards in the first seven columns. Then E is an
eternal dominating family with at least

⌈
4n+7

5

⌉
guards.

Proof: The proof is similar to Theorem 6. Suppose for some n ≥ 12, there is an
eternal dominating family E with fewer than

⌈
4n+7

5

⌉
guards.

Claim 1: For any � ≥ 3 and any set D ∈ E , there are at least
⌈
4�−2
5

⌉
guards in the

first � columns.

Proof of Claim 1: We proceed with strong induction on �. For each � = 3, . . . , 7, the
result is assumed by the premise of the Lemma or was proven in Corollary 5. Suppose
the result holds for all � = 3, . . . , s − 1, for some s > 7. Then for each dominating
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set in E , there are at least
⌈
4(s−5)−2

5

⌉
guards in the first s− 5 columns. By Lemma 4

(5.), for each dominating set in E there are at least
⌈
4(s−5)−2

5

⌉
+ 4 =

⌈
4s−2
5

⌉
guards

in the first s columns, proving Claim 1. �

Claim 2: For any 1 ≤ � ≤ n − 4 and any set D ∈ E , there are at least �− 1 guards
in the first � columns.

Proof of Claim 2: By Lemma 3 and Corollary 5, the claim holds for 1 ≤ � ≤ 6.
Therefore, let � ≥ 7 be the smallest counterexample. That is, there is a D ∈ E such
that there are at least � − 2 guards in the first � columns, but for every set in E ,
there are � − 2 guards in the first � − 1 columns. By the assumption given in the
statement of the Lemma, there are at least 6 guards in the first 7 columns, so � ≥ 8.
By Lemma 4 (1.) (applied with i = �− 1 and k = �− 2), D has �− 2 guards in the
first �− 1 columns, no guards in column � and three guards in column �+ 1. Hence
D has � + 1 guards in the first � + 1 columns. By Claim 1 and symmetry, D has at

least
⌈
4(n−(�+1))−2

5

⌉
guards in the last n− (�+ 1) columns. Therefore,

|D| ≥ �+ 1 +

⌈
4(n− (�+ 1))− 2

5

⌉
=

⌈
4n + �− 1

5

⌉
.

Since � ≥ 8, this implies E has at least
⌈
4n+7

5

⌉
guards, a contradiction that proves

Claim 2. �

Recall the assumption that E is an eternal dominating family with fewer than
�4n+7

5
� guards. By Claim 2 (with � = n− 4), every dominating set in E has at least

n − 5 guards in the first n − 4 columns. As a consequence, there can be at most
3 guards in the last 4 columns; otherwise, at least n − 1 ≥ �4n+7

5
� guards are used

(as n ≥ 12). By Corollary 5 and symmetry, there are exactly 3 guards in the last
4 columns. By Lemma 4 (3.) (applied with k = n − 5 and i = n − 4), for any
D ∈ E , if there are at most n − 3 in the first n − 1 columns, then there are n − 3
in the first n− 1 columns and two guards in column n, hence n− 1 guards in total,
a contradiction. Otherwise for every dominating set in E , there are n− 2 guards in
the first n− 1 columns and there are no guards in the last column. This contradicts
the assumption that E is an eternal dominating family and can respond to attacks
in the last column, showing that E can not exist.

The next two results consider the domination number of a graph G, denoted
γ(G), and a minimum dominating set (as opposed to an eternal dominating set).
The first is due to Jacobson and Kinch [7].

Theorem 8 [7] γ(P3 �Pn) = �3n+4
4

�.

Observation 9 The unique minimum dominating set (up to reflection) on P3 �P6

is the following.
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1 2 3 4 5 6

•
• • •

•

Proof: By Theorem 8, a minimum dominating set on P3 �P6 is of size 5.

No column contains 3 guards since this would leave three columns with only 2
guards, which is insufficient. With 5 guards in six columns, at least one column
contains no guards. Having one guard in each of the other five columns leaves at
least one vertex in the column with no guards that are not dominated. Thus at least
one column must contain 2 guards.

Suppose column 1 (or by symmetry column 6) contains 2 guards. By Theorem 8,
4 guards must be located on the remaining 3×4 grid formed by the last four columns.
Such a dominating set, containing 6 guards, is not minimum.

Suppose column 2 (or by symmetry 5) contains 2 guards. There remains one
vertex in column 1 that is not dominated, thus one vertex of column 1 must contain
a guard. By Theorem 8, 3 guards must be located on the 3 × 3 grid formed by the
last three columns. Such a dominating set, containing 6 guards, is not minimum.

Therefore, only column 3 (or by symmetry 4) contains 2 guards. There is one
vertex in column 2 and three vertices in column 1 that are not dominated. Thus,
at minimum, the middle vertex of column 1 must contain a guard. This forces the
guards in column 3 to be located at the top and bottom vertices. Note that the
middle vertex in column 4 and all vertices in columns 5 and 6 are not yet dominated.
Consequently, the last two guards must be placed at the middle vertices of columns
5 and 6.

Lemma 10 No eternal dominating set of P3 �P15 with at most 13 guards will have
exactly two guards in the eighth column.

Proof: Suppose D is an eternal dominating set of P3 �P15 with exactly two guards
in the eighth column and |D| ≤ 13. Of the remaining (at most eleven) guards,
without loss of generality, there are at most five guards in the first seven columns.
However, Lemma 3 and Lemma 4 (1.) imply that D has three guards in the eighth
column.

In the following lemma, we show that every eternal dominating set of P3 �P15 with
13 guards does not have three guards in the eighth column. If one did, Lemma 3 and
Observation 9 shows there are exactly three possible configurations of guards, up to
symmetry, which we label A, B,C as shown below. We show these configurations
are not eternal dominating sets.

Lemma 11 No eternal dominating set of P3 �P15 with at most 13 guards will have
exactly three guards in the eighth column.
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Proof: Suppose D is an eternal dominating set of P3 �P15 with exactly three
guards in the eighth column and |D| ≤ 13. By Lemma 3, there are at least five
guards in the first six columns and five guards in the last six columns. It follows
that |D| = 13 and there are no guards in the seventh column and no guards in
the ninth column. It now follows that the five guards in the first six columns must
form a dominating set in the first six columns. By Observation 9, there are exactly
two possible configurations of guards in the first six columns. Analogously, there are
exactly two possible configurations of guards in the last six columns and hence, up to
symmetry, there are exactly three possible configurations of guards, which we label
A, B,C as shown in Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• • •
A • • • • • • •

• • •

• • •
B • • • • • • •

• • •

• • •
C • • • • • • •

• • •

Figure 1: The three possible eternal dominating sets with three guards in column 8.

We wish to show that A is not an eternal dominating set. To establish this
we first consider a sequence of two attacks. This sequence and the corresponding
responses by the defender (the guards) are depicted in Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• • •
A • • • • • • •

• • •

• • •
A′ • • • • • • •

• • •

• • •
A′′ • • • • • • •

• • •

Figure 2: Two attacks and defender responses, starting from A.

The first attack is in the middle vertex of column 13. To successfully defend
against the attack, the defender must move the guards to transform A to a set
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A′ ∈ D13(P3 �P15) which contains the attacked vertex. In particular, the defender
must:

• move the guard in column 14 to the attacked vertex.

• leave the guard in the last column stationary so that A′ has a vertex in the
neighbourhood of each of the vertices of the last column.

• move the two guards in column 12 to column 13 so that A′ has guards in the
neighbourhood of all the vertices in column 14.

• move the guard in column 10 to column 11 so that A′ has guards in the
neighbourhood of all the vertices in column 11.

• move the guards in the top and bottom vertices in column 8 to column 9 so
that A′ has guards in the neighbourhood of all the vertices in column 9 and
column 10.

• move the guard in the middle vertex of column 8 to the middle vertex of column
7 so that A′ has guards in the neighbourhood of all the vertices in column 8
and column 7. Note: not moving one of the guards in column 8 of A to column
7 would result in A′ containing only five guards in the first seven columns and,
by Lemma 3 and Lemma 4 (1.), three guards in column 8, which is not possible.

As each guard must remain stationary or move to an adjacent vertex, the guard
on the middle vertex of column 6 in A must be in the closed neighbourhood of the
middle vertex of column 6 in A′. Thus having that vertex dominated by the guard
in the middle vertex of column 7 does not affect that the remaining five guards
dominate each vertex in the first six columns in A′. By Observation 9, it can be seen
that the defender does not move these five guards in the transformation from A to
A′. (Also, one can easily see that A′ will not form a dominating set if any of these
last five guards in A is moved to a different vertex in A′.)

The guards are now located on the vertices of A′. The middle vertex of column
2 is now attacked. To successfully defend against the attack, the defender must
transform A′ to a dominating set A′′ ∈ D13(P3 �P15) which contains the attacked
vertex. That is, the defender must:

• move the guard in column 1 to the attacked vertex.

• move the guards at the top and bottom of column 3 to the top and bottom of
column 2 so that A′′ has guards in the neighbourhood of all the vertices in the
first column.

• move the guard in column 5 to the adjacent vertex in column 4 so that A′′ has
guards in the neighbourhood of all the vertices in column 4.

• move the guard in column 6 to the adjacent vertex in column 5 so that A′′ has
guards in the neighbourhood of all the vertices in column 5.
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• move the guard in column 7 to the adjacent vertex in column 6 so that A′′ has
guards in the neighbourhood of all the vertices in column 6.

• move the guards at the top and bottom of column 9 to the top and bottom
of column 8 so that A′′ has guards in the neighbourhood of all the vertices in
column 7.

• move the guard in column 11 to the adjacent vertex in column 10 so that A′′

has guards in the neighbourhood of all the vertices in column 9.

• move the guards at the top and bottom of column 13 to the top and bottom
of column 12 so that A′′ has guards in the neighbourhood of all the vertices in
column 11.

• move the guard on the middle vertex of column 13 to the adjacent vertex in
column 14 so that A′′ has guards in the neighbourhood of all the vertices in
column 14.

• leave the guard on the middle vertex of column 15 so that A′′ has guards in
the neighbourhood of all the vertices in column 15.

Starting at dominating set A, the attacker can force the guards to be positioned
at the vertices of A′′. Therefore, any eternal dominating family which contains A
must also contain A′′. By Lemma 10, A′′ is in no eternal dominating family of
P3 �P15 and hence A is in no eternal dominating family. By definition, A is not an
eternal dominating set for P3 �P15.

An almost identical method can be used to show B and C are not eternal domi-
nating sets. We omit most of the details. To see B is not an eternal dominating set,
one considers the defender’s response to a sequence of two attacks: first the middle
vertex of column 3 and then the middle vertex of column 13. Then Lemma 10 can be
used to show the guards form a dominating set which is not an eternal dominating
set. In the case of C, two attacks which force the defender to move the guards to
such a set are: first the middle vertex of column 2 and then the middle vertex of
column 14.

We are now ready to disprove Conjecture 1.

Theorem 12 γ∞
all(P3 �P15) = 14.

Proof: Let E be an eternal dominating family of P3 �P15 which uses 13 guards.
Recall from Lemma 3, for all D ∈ E there are at least 5 guards in the first 7 columns.
If there exists D ∈ E such that D contains exactly 5 guards in the first 7 columns,
then by Lemma 4 (1.), D has three guards in column 8, which contradicts Lemma 11.
Consequently, for all D ∈ E there are at least 6 guards in the first 7 columns. By
Lemma 7, E has at least

⌈
4n+7

5

⌉
= 14 guards, which is a contradiction. Thus,

γ∞
all(P3 �P15) ≥ 14. The upper bound of 14 is proved in [5].

In fact, the Conjecture fails for all n ≡ 0 mod 5 when n ≥ 15.
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Theorem 13 If n ≡ 0 mod 5 and n ≥ 20, then γ∞
all(P3 �Pn) ≥ 4n

5
+ 2.

Proof: Suppose E is the eternal dominating family of all eternal dominating sets of
P3 �Pn with 4n

5
+1 guards. It follows from (the contrapositive of) Lemma 7 that there

must be a D ∈ E with exactly five guards in the first seven columns. By Lemma 3
and Lemma 4 (1.), D has no guards in the seventh columns and three guards in the
eighth column. Consequently, D has 4n

5
− 7 guards in the last n − 8 columns. But

by Corollary 5 and symmetry, for every dominating set in E , there are at least:

(1)
⌈
4(n−9)−3

5

⌉
= 4n

5
− 7 guards in the last n− 9 columns

(2)
⌈
4(n−14)−3

5

⌉
= 4n

5
− 11 guards in the last n− 14 columns

(3)
⌈
4(n−15)−3

5

⌉
= 4n

5
− 12 guards in the last n− 15 columns

From (1), it follows that D has no guards in the ninth column and hence there are
4n
5
− 7 guards in the last n − 9 columns. Therefore, by (2), there are at most four

guards in column 10 through column 14. As γ(P3 �P4) = 4, (in order to dominate
column 10 through column 13) D has exactly four guards in column 10 through
column 14. By (2) and (3) we conclude, that D has at most one guard in column 15.

We now argue there are four possible configurations of the four guards in column
10 through column 14 in D. It is easily seen that none of these columns can contain
three guards (as there is at most one guard in column 15) and at least one of column
10 through column 14 must contain no guards. Any column containing no guards
must be adjacent to a column containing at least two guards and hence two of
column 10 through column 14 contain no guards. It follows that either column 11
and column 13 contain no guards (with column 12 containing two guards) or column
12 and column 14 contain no guards (with column 13 containing two guards). This
leads to three cases (up to symmetry) shown in Figure 3.

In Case 1, consider an attack at the top vertex of column 14 and in Case 2,
consider an attack at the middle vertex of column 14. The defender responds by
transforming D to a set in E . In both cases, the defender is forced to move the guard
in column 15 to the attacked vertex. The result is an eternal dominating set with 13
guards in the first 14 columns. By (2), any set in E has 4n

5
− 11 guards in the last

n− 14 columns and hence there are at least 4n
5
− 11 + 13 = 4n

5
+ 2 guards in total.

In Case 3, we must consider the five guards in D in the first seven columns. As
there is no guard in the seventh column, the five guards in the first six columns must
form a dominating set in the first six columns. By Observation 9, there are exactly
two possible configurations of guards in the first six columns. Consider an attack
at the middle vertex of column 13. The defender responds by transforming D to a
set D′ ∈ E . The defender is forced to move the guard in column 14 to the attacked
vertex. Thus D′ is a set with 12 guards in the first 13 columns and exactly 4n

5
− 11

guards in the last n− 13 columns. By (2), any set in E has at least 4n
5
− 11 guards

in the last n − 14 columns and consequently, Lemma 4 (1.) (with k = 4n
5
− 11 and
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7 8 9 10 11 12 13 14 15

• • •
Case 1 • •

• • •

• •
Case 2 • • • •

• •

• •
Case 3 • • •

• •

Figure 3: The three possible configurations (up to symmetry) of guards in column 7
through column 14 in D. In Case 1 and Case 2 the guard in column 15 is included.

i = n− 14) implies D′ has no guards in column 14 (which is the (n − 13)th column
from last) and three guards in column 13 (which is the (n− 12)th column from last).

Therefore, to transform D to D′ the defender must:

• move the two guards in column 12 to the adjacent vertices in column 13,

• move the guard on column 10 to the adjacent vertex in column 11 (to dominate
the top and bottom vertices of column 11),

• move the top and bottom guards in column 8 to the adjacent vertices in column
9 (to dominate the top and bottom vertices of column 10),

• move the middle guard in column 8 to the adjacent vertex in column 7 (else
there are 5 guards in the first 7 columns, which requires there be 3 guards in
column 8 by Lemma 3 and Lemma 4 (1.)).

The guard which was on the middle vertex of column six in D must be on a
vertex in the closed neighbourhood of the middle vertex of the sixth column in D′.
It follows that the five guards in the first six columns of D′ must form a dominating
set in the first six columns and hence, by Observation 9, remain stationary. The two
possible configurations of D′ are shown in Figure 4.

The remaining logic of the guard movements is similar to the logic presented in
the proof of Lemma 11 and hence the details are omitted. Consider an attack in the
middle row of the second column or third column (as appropriate), followed by an
attack in the middle of column 9. This forces the defender to move the guards into a
dominating set with 9 guards in the first 9 columns. By (1), there are at least 4n

5
−7

guards in the last n − 9 columns of this dominating set. Hence there are at least
4n
5
+ 2 guards.

Each case leads to a contradiction, completing the proof.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

• • •
• • • • • •

• • •

• • •
• • • • • •

• • •

Figure 4: The two possible configurations for guard in the first fourteen columns
of D′.

We end this section by summarizing our lower bounds in one theorem.

Theorem 14 For any n ≥ 11, γ∞
all(P3 �Pn) ≥

⌈
4n+1
5

⌉
+ 1.

Proof: For n = 11, 12, 13, 14, the result was found in [5]. If n ≡ 0 mod 5, the result
follows from Theorem 12 and Theorem 13. If n �≡ 0 mod 5,

⌈
4n+1
5

⌉
+ 1 =

⌈
4n
5

⌉
+ 1

and hence the result follows from Theorem 6.

4 A New Upper Bound

The previously known values of γ∞
all(P3 �Pn) from [5] are given in Table 2. In this

section, we add new values to the Table and include a new upper bound.

n γ∞
all(P3 �Pn)

1 2
2 2
3 3
4 4
5 5
6 6
7 7

n γ∞
all(P3 �Pn)

8 8
9 8
10 9
11 10
12 11
13 12
14 13

n γ∞
all(P3 �Pn)

15 ∈ {13, 14}
16 ∈ {14, 15}
17 ∈ {15, 16}
18
19 17
20
21

Table 2: Values for P3 �Pn determined in [5].

By Theorem 12, γ∞
all(P3 �P15) = 14. Using the new lower bounds obtained by

Theorem 14, we obtain the following:

γ∞
all(P3 �P18) ≥ 16;

γ∞
all(P3 �P20) ≥ 18.

Lemma 15 [5] If t guards can defend the 3× n grid graph and r guards can defend
the 3× s grid graph, then t+ r guards can defend the 3× (n+ s) grid graph.
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Using two copies of a 3× 9 eternal dominating family, where γ∞
all(P3 �P9) = 8 [5],

Lemma 15 defines an eternal dominating family for 3× 18, thus γ∞
all(P3 �P18) = 16.

Adding a copy of a 3 × 2 family gives γ∞
all(P3 �P20) = 18. With the assistance of

a computer program, eternal dominating families were generated which achieve the
lower bounds for n = 16, 17, 21, 22 defined by Theorem 14, as shown in Table 3. We
provide such a family for P3 �P16 in Table 4 and for P3 �P21 in Table 5, using the
notation introduced in Table 1.

Using a copy of a 3×21 eternal dominating family, along with copies of a 3×2, a
3× 3, and a 3× 4 family, Lemma 15 provides the values for n = 23, 24, 25 matching
those lower bounds defined by Theorem 14. The remaining ranges (and value) in
Table 3 are obtained from the lower bounds obtained by Theorem 14, along with
combinations of copies of smaller eternal dominating families for known values of n.

n γ∞
all(P3 �Pn)

15 14

16 14

17 15

18 16

19 17

20 18

21 18

n γ∞
all(P3 �Pn)

22 19

23 20

24 21

25 22

26 ∈ {22, 23}
27 ∈ {23, 24}
28 ∈ {24, 25}

n γ∞
all(P3 �Pn)

29 ∈ {25, 26}
30 26

31 ∈ {26, 27}
32 ∈ {27, 28}
33 ∈ {28, 29}
34 ∈ {29, 30}
35 ∈ {30, 31}

Table 3: Known values for P3 �Pn.

The values of γ∞
all(P3 �Pn) for n up to 25 given in Table 3 and, in particular, the

result γ∞
all(P3 �P20) = γ∞

all(P3 �P21) = 18, improves the upper bound to the following.

Theorem 16 For n ≥ 2,

γ∞
all(P3 �Pn) ≤

⌈6n
7

⌉
+

{
1 if n ≡ 7, 8, 14, or 15 (mod 21)

0 otherwise.

5 Conclusion

We have closed the gap between the upper and lower bounds considerably to⌈4n + 1

5

⌉
+ 1 ≤ γ∞

all(P3 �Pn) ≤
⌈6n + 2

7

⌉
for n ≥ 11 (note this version of the upper bound is a bit relaxed from that in
Theorem 16).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• Av Br Bv B Ev • Bh B Br • B Br B • Bh

A Br Gr • • • E B J • Br E B • Br • B

Av • Br B Br E • Br Bv B • Br Bh B • Br

• Bv Br Bv • Ar Br F • Br A • Br • Br Ah

B Br Ar • A Br Dr • Ar A Br Ev • A Br A •
Bv • Br • Br Ar • Br Bv • A Br Dr • A Br

• Cr Br Ch • Cr Ch Ch • • Cv Cr • Dv Cr •
C Br Dr • Cr Br Dr • K Fr Cr Dv I • Cr Dv Dv

Cr • Br Cr • Ch Cr • Ch Cv • Cr Cv E • Cr

• Dv Dr • Cv Dr • Dv • Br Dr Cr • Dv Dr Ch

D Dr Dr Cv • Br Dr Cv F Hv Br • G Dr Br • •
Dv • Br Dr Br • Dv • Dv Dr • Br Dr • Ch Dr

A Ar • • Bh Ar A • C Ar • Bh C • A Ah

E • Ar A A A • Bv Ar A Bh • Ar A Ar A •
Av A • Cr Bv • A C • Ar A Bv • • A Ar

B Fh • D B • D • Fh Fv • B Fv Fh • Fv

F • Hh B • Iv Ev B • Fh Cr D B • Cr D Fh

Fh B • Fh Iv • Fh Fv Jr • Fh Cr • Fh Fv •

B Ar • Bv B • Br Bh B • Dv B Br B • Ah

G • Ar B • Br E B • Jr Br D • • Ar • B

Bv Ar • B Br • B Br Bv • D Br Bh B • Ar

A Hr • Bv • Hr Hv • Hh Hr • Hh Br Hr • Bh

H • Hr A Hr • E Bv Hr • Br Dv Hr • Br • Hr

Av Hr • Dv Hv Hr • Hv Hr Hh • Hr Bh Hr • Br

C Ar • Bv • Ar Bv • Ih Ir Cv Ih C • Ar Ah

I • Ar Bv Ar • Ir Ir Ar Jr • • • Ar Ar G •
Bv Ar • Kh Bv Ar • Ih • Ih C Ir Cv • Ah Ar

A Av • Ch H Cr Jh • Jh • Jv Cr Kv • A Ch

J • Gh A A • • Ir • Jh Cr Jh • A Cr A •
Av A • Cr Hv Jh A • Jh Jv • Cr K • A Cr

C Kh • D C Kh • • Kh Kh • Cr Kv Kh • Kv

K • Hh C Kh • Ih C • Kh Cr D Kh • Cr D Kh

Kh C • Kh C • Kh Kv Jr • Kh Cr • Kh Kv •

Table 4: Eternal dominating family for P3 �P16 with 14 guards.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Cr B • Cr Fr C B • C Fh Cr • C Cv Cr C • Cr Fr C Cr

A • B Dr B • • Gr • B • C Fr Cr • • I Fr C • • •
C B • C Fh Cr B • Cr Fr C • Cr C C Cr • C Fh Cr C

Dr • A Er Ev Eh • A Eh E Hh • E Er Eh E • Ev E Dh Dr

B A • Dr • • A Gr A • • Hr Er Ir • • E Er Gr • • •
Dh • A Eh E Er • A Er Eh Hr • Ev E Er Ev • E Er Dr Dh

Cr • A Cr Ah • Cr Cr • Ah Cr A • Cv Cr • A Cr Ah • Cr

C A Ah Ah • A A Ah A • A • Ah Cr A A Ah Ah • A A A

• Cr A • Ah Cr • A Cr Ah • A Cr • • Cr A • Ah Cr •

Dv • Fh Er • G Fh Er Fr • H Ev Fv Ah • Hv Er Ev Ah • Dv

D Ah Ah • G Ev Er • • I Ev H • • Ah G Ah • • • Bh Ah

• Dv Er G • Er Ev Fh Er • Hr Er Ev Ah • Ev F Hv Ah Dv •

Dr B • Kv Bh Eh • F Eh • Iv Eh • Lv Eh • B Kr • Bh Dr

E • B Bh B • Eh Bh Bh B • Hr Eh Bh B B • Eh Bh B B •
Eh • F Eh • Kv B • Kv Eh Hr • F • Bh Kr Eh • Lv Eh •

Dr • E Er • K Dr • K Ah Ir • E Ah • E Dr Gr • D •
F Ah Ah Ah Dr • Er Ah Ah Dr • Ir Ah D Ah Dr Ah • D D Iv Ah

• Dr • K Ah Er • E Er • Iv Dr • • D Gr • E Ah • D

Gv • Gr Gv Ah • Gv Gr Gh • Cr Gr • Gv Gr Gh Hh Gr • Gh Gr

G Gr Ah Ah • Gr Gr Gr • C Gr C • Bh Gr • • • Gr D Bh •
• Gv Gr • Ah Gv • Gh Gr • C Gr Gv • Gh Gr Fr Gh • Gr Gh

Dr • Hh Hh • C Dr • C Bh • Dr C • Bh C Hh • • Hh Dr

H Hh Bh Bh C • Hh Bh Bh C Dr • Bh Bh Dr Dr • Hh Bh D Bh •
• Dr • C Bh Hh • Ch • Bh C Dr • C Hh • Dr C • Bh Hh

Iv • A Ir Bh • Iv Ir • Bh Ir A • Iv Ir • A Ir • Bh Ir

I Ir Ir Bh • A Ir Bh A • A • Bh Ir A A • Bh Ir A • •
• Iv Ir • Bh Ir • A Ir Bh • A Ir • Bh Ir A • Iv Ir D

Cv Jv • Cv Jr Eh • Jv Eh E • Eh E Jr Jh E • Cv Jh Jr Cv

J • Jr Jr Cv • Eh Jr Jr • E Cv Eh • • • E Jr Cv • • •
Eh • Jv Eh • Cv Jv • Cv Eh • E Cv Jh Jr Cv • E Jr Jh E

Kr • A Kv Kr • Kv A • Kr Cr • Kh Cv Kr Kh • Kr F • Kr

K A Ir Kr • A A Kr Kr • • C Kr Kr • • Ev Er Kr • A A

• Kr A • Kr Kv • A Kv Kr C • Kr C Kh Kr • Kh Er Kr •

Lr • Hr Lr • Hr Cr Lr Fr • Cr Lr • Lv Bh • Lr Lv • Bh Lr

L Lr Bh • Cr Ev Lr • • Cv Lr Cr • Bh Lr Lr • Bh Bh Lr Bh •
• Lv Lr Hr • Lr Ev Hr Lr • Hr Lr Lv • Bh Lv Lr • Lv Lr •

Table 5: Eternal dominating family for P3 �P21 with 18 guards.
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