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Abstract

For any positive integers k, r, n with r ≤ min{k, n}, let Pk,r,n be the family
of all sets {(x1, y1), . . . , (xr, yr)} such that x1, . . . , xr are distinct elements
of [k] = {1, . . . , k} and y1, . . . , yr are distinct elements of [n]. The families
Pn,n,n and Pn,r,n describe permutations of [n] and r-partial permutations
of [n], respectively. If k ≤ n, then Pk,k,n describes permutations of k-
element subsets of [n]. A family A of sets is said to be intersecting if every
two members of A intersect. We use Katona’s elegant cycle method to
show that a number of important Erdős–Ko–Rado-type results by various
authors generalise as follows: the size of any intersecting subfamily A of
Pk,r,n is at most

(
k−1
r−1

) (n−1)!
(n−r)! , and the bound is attained if and only if

A = {A ∈ Pk,r,n : (a, b) ∈ A} for some a ∈ [k] and b ∈ [n].

1 Introduction

For an integer n ≥ 1, the set {1, 2, . . . , n} is denoted by [n]. For a set X, the power
set {A : A ⊆ X} of X is denoted by 2X , and the uniform family {Y ⊆ X : |Y | = r}
is denoted by

(
X
r

)
. We call a set of size n an n-set.

If F is a family of sets and x is an element of the union of all sets in F , then
we call the family of all the sets in F that contain x the star of F with centre x. A
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family A is said to be intersecting if A∩B 6= ∅ for every A,B ∈ A. Note that a star
of a family is intersecting.

The classical Erdős–Ko–Rado (EKR) Theorem [11] says that if r ≤ n/2, then
an intersecting subfamily A of

(
[n]
r

)
has size at most

(
n−1
r−1

)
, which is the size of

a star of
(
[n]
r

)
. If r < n/2, then, by the Hilton–Milner Theorem [15], A attains

the bound if and only if A is a star of
(
[n]
r

)
. Two alternative proofs of the EKR

Theorem that are particularly short and beautiful were obtained by Katona [16] and
Daykin [8]. In his proof, Katona introduced an elegant technique called the cycle
method. Daykin’s proof is based on a fundamental result known as the Kruskal–
Katona Theorem [17, 18, 23]. The EKR Theorem inspired a wealth of results and
continues to do so; see [3, 10, 12, 13].

For positive integers k, r, n with r ≤ min{k, n}, let

Pk,r,n := {{(x1, y1), . . . , (xr, yr)} : x1, . . . , xr are distinct elements of [k],

y1, . . . , yr are distinct elements of [n]}.

We shall call Pk,r,n a family of generalised permutations. This is due to the fact that
the elements of Pn,n,n are permutations of the set [n]; the permutation y1y2 . . . yn
of [n] corresponds uniquely to the set {(1, y1), (2, y2), . . . , (n, yn)} in Pn,n,n. In the
more general case where k ≤ n, the family Pk,k,n describes permutations of k-subsets
of [n]; a permutation y1y2 . . . yk of a k-subset of [n] corresponds uniquely to the set
{(1, y1), (2, y2), . . . , (k, yk)} in Pk,k,n. The family Pk,k,n also describes injections from
[k] to [n]. The family Pn,r,n describes r-partial permutations of [n] (see [19]). The
ordered pairs formulation we are using follows [2] and also [4, 5], in which very general
frameworks are considered.

In the case r = k, if two sets {(1, y1), (2, y2), . . . , (k, yk)} and {(1, z1), (2, z2), . . . ,
(k, zk)} in Pk,k,n intersect, then yi = zi for some i ∈ [k], and this is exactly what we
mean by saying that the permutations y1y2 . . . yk and z1z2 . . . zk (of two k-subsets of
[n]) intersect. In general, two generalised permutations intersect if and only if they
have at least one ordered pair in common.

In this paper, we are concerned with the EKR problem for generalised permu-
tations. We need only to consider the problem with k ≤ n. To see this, define
λ : [k]× [n]→ [n]× [k] by λ(x, y) := (y, x), then Λ: Pk,r,n → Pn,r,k by

Λ({(x1, y1), . . . , (xr, yr)}) := {λ(x1, y1), . . . , λ(xr, yr)} = {(y1, x1), . . . , (yr, xr)}.

The functions λ and Λ are clearly both bijections. Moreover, any P,Q ∈ Pk,r,n are
intersecting if and only if Λ(P ),Λ(Q) ∈ Pn,r,k are intersecting. Therefore, throughout
the rest of the paper it is to be assumed that k ≤ n.

The origins of our problem lie in [9], in which Deza and Frankl proved that the size
of an intersecting family of permutations of [n] is at most the size (n−1)! of a star of
Pn,n,n. Cameron and Ku [7] extended this result by establishing that only the stars of
Pn,n,n attain the bound (other proofs of this result are found in [6, 14, 20, 24]). This
result was also proved independently by Larose and Malvenuto [21], who established
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the stronger result that the stars of Pk,k,n are the largest intersecting subfamilies of
Pk,k,n (see [21, Theorem 5.1]). These results summarise as follows.

Theorem 1.1 ([7, 9, 21]) The size of any intersecting subfamily of Pk,k,n is at most
(n−1)!
(n−k)! , and the bound is attained only by the stars of Pk,k,n.

Ku and Leader [19] solved the EKR problem for r-partial permutations of [n]
using Katona’s cycle method. Moreover, they showed that for 8 ≤ r ≤ n − 3, the
largest intersecting subfamilies of Pn,r,n are the stars. They conjectured that only the
stars are extremal for the few remaining values of r too. A proof of this conjecture,
also based on the cycle method, was obtained by Li and Wang [22].

Theorem 1.2 ([19, 22]) For r ∈ [n − 1], the size of any intersecting subfamily of

Pn,r,n is at most
(
n−1
r−1

) (n−1)!
(n−r)! , and the bound is attained only by the stars of Pn,r,n.

The scope of this paper is to show that the methods used in [19, 22] allow us to
generalise Theorems 1.1 and 1.2 as follows.

Theorem 1.3 If r ≤ k ≤ n and A is an intersecting subfamily of Pk,r,n, then

|A| ≤
(
k − 1

r − 1

)
(n− 1)!

(n− r)!
=

(
n− 1

r − 1

)
(k − 1)!

(k − r)!
,

and equality holds if and only if A is a star of Pk,r,n.

2 Proof of the result

We will prove Theorem 1.3 by extending the arguments in [19, 22] to our more general
setting. Recall that we are assuming k ≤ n and that Theorem 1.1 settles our problem
for the case r = k, so we will only consider r ≤ k−1. We will abbreviate Pk,r,n to P .

Let mod be the usual modulo operation. We will use mod* to represent the
modulo operation with the exception that for any non-zero integers a and b, the
value of bamod* a will be a rather than 0.

Let X be a set, and let m = |X|. A bijection σ : X → [m] is called an ordering
of X. An element x of X is the σ(x)-th element in the ordering. If σ is an ordering
of X and the elements of a subset A of X are numbered consecutively by σ, in the
cyclic sense, then we say that A meets σ. Thus, an r-subset A of X meets σ if and
only if we can label its elements a1, . . . , ar such that σ(ai+1) = (σ(ai) + 1) mod*m
for each i ∈ [r − 1].

Katona’s cycle method is based on the following fundamental result.

Lemma 2.1 Let X be a set of size at least 2r, and let σ be an ordering of X. Let
B := {B ∈

(
X
r

)
: B meets σ}, and let A be an intersecting subfamily of B. Then

|A| ≤ r. Moreover, if |X| > 2r, then |A| = r if and only if A is a star of B.
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The proof of the bound was given in [16] and can be extended to a proof of the whole
result (see [1]).

The union of all sets in P is the Cartesian product [k] × [n]. We say that an
ordering σ of [k] × [n] is r-good if every r elements (x1, y1), . . . , (xr, yr) of [k] × [n]
that are numbered consecutively by σ, in the cyclic sense, are such that x1, . . . , xr
are distinct and y1, . . . , yr are distinct. In an r-good ordering, any r consecutive
elements form a generalised permutation in P .

We will define an ordering of [k] × [n] that is r-good for all r ∈ [k − 1]. (It is
interesting to note that no such ordering exists if r = k = n.) Let τ : [k]× [n]→ [kn]
be defined by

τ(x, y) := k((y − x) mod n) + x.

The following is an example with k = 5 and n = 7, where each element (x, y) of
[k]× [n] is given the label τ(x, y) shown in bold superscript.

(1, 7)31 (2, 7)27 (3, 7)23 (4, 7)19 (5, 7)15

(1, 6)26 (2, 6)22 (3, 6)18 (4, 6)14 (5, 6)10

(1, 5)21 (2, 5)17 (3, 5)13 (4, 5)9 (5, 5)5

(1, 4)16 (2, 4)12 (3, 4)8 (4, 4)4 (5, 4)35

(1, 3)11 (2, 3)7 (3, 3)3 (4, 3)34 (5, 3)30

(1, 2)6 (2, 2)2 (3, 2)33 (4, 2)29 (5, 2)25

(1, 1)1 (2, 1)32 (3, 1)28 (4, 1)24 (5, 1)20

Lemma 2.2 For r ≤ k − 1, τ is an r-good ordering of [k]× [n].

Proof. Suppose that τ(x, y) = τ(u, v). Then k((y − x) mod n) + x = k((v −
u) mod n) + u, so u = kt+ x for some integer t. Since u, x ∈ [k], t = 0. Thus u = x,
and hence (y − x) mod n = (v − x) mod n. It follows that y = v.

Therefore, τ is injective. Since the domain and the co-domain of τ are of equal
size, τ is a bijection. Thus τ is an ordering of [k]× [n].

For each i ∈ {0, . . . , n− 1}, consider the 2k-tuple

Ii := ((1, (i+ 1) mod* n), (2, (i+ 2) mod* n), . . . , (k, (i+ k) mod* n),

(1, (i+ 2) mod* n), (2, (i+ 3) mod* n), . . . , (k, (i+ k + 1) mod* n)).

The entries of Ii are the (ki + 1)-th element through to the (ki + 2k)-th element in
the ordering τ .

Let r ≤ k−1, and let A be an r-set that meets τ . Then for some i ∈ {0, . . . , n−1},
A consists of r consecutive entries of Ii. Since r ≤ k − 1, any r consecutive entries
of Ii are pairs which have distinct first entries and distinct second entries, thus A is
a generalised permutation. Hence the result. 2

Let Sn denote the set of all bijections from [n] to [n]. For any (φ, ψ) ∈ Sk × Sn,
define τφ,ψ : [k]× [n]→ [kn] by

τφ,ψ(x, y) := τ(φ−1(x), ψ−1(y))
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(that is, τφ,ψ(φ(i), ψ(j)) := τ(i, j)). Note that τφ,ψ is an ordering of [k]× [n]. Let

Tk,n := {τφ,ψ : (φ, ψ) ∈ Sk × Sn}.

Further, for any (φ, ψ) ∈ Sk × Sn, define fφ,ψ : [k]× [n]→ [k]× [n] by

fφ,ψ(x, y) := (φ(x), ψ(y)).

Lemma 2.3 For r ≤ k − 1 and (φ, ψ) ∈ Sk × Sn, τφ,ψ is an r-good ordering of
[k]× [n].

Proof. Suppose that τφ,ψ is not an r-good ordering. Thus there exist two distinct
elements (a1, b1) and (a2, b2) of [k]× [n] such that

τφ,ψ(a2, b2) = (τφ,ψ(a1, b1) + p) mod* kn

for some p ∈ [r − 1], with either a1 = a2 or b1 = b2. If a1 = a2, then

τ(φ−1(a1), ψ
−1(b2)) =

(
τ(φ−1(a1), ψ

−1(b1)) + p
)

mod* kn,

contradicting Lemma 2.2. Similarly, we cannot have b1 = b2. 2

Let Z be a set, and let σ be an ordering of Z. Let m be an integer with 2 ≤
m ≤ |Z|, and suppose that z1, . . . , zm are distinct elements of Z. If σ(zi+1) =
(σ(zi) + 1) mod* |Z| for each i ∈ [m − 1], then we say that the tuple (z1, . . . , zm) is
an m-interval of σ, and we call {z1, . . . , zm} the set corresponding to (z1, . . . , zm). If
1 ≤ m1 ≤ m2 ≤ m and ` = m2−m1 + 1, then we call the `-interval (zm1 , . . . , zm2) of
σ an `-subinterval of (z1, . . . , zm). If a generalised permutation meets an ordering,
then the elements of the generalised permutation form an interval of the ordering.

Lemma 2.4 Each member of P meets exactly r!(k− r)!(n− r)!kn members of Tk,n.

Proof. Let P,Q ∈ P . Clearly, Q = {fπ,ρ(x, y) : (x, y) ∈ P} for some (π, ρ) ∈ Sk×Sn.

Let τφ,ψ ∈ Tk,n. For any (x, y) ∈ Sk × Sn,

τφ,ψ ◦ fπ−1,ρ−1(x, y) = τφ,ψ(π−1(x), ρ−1(y))

= τ(φ−1 ◦ π−1(x), ψ−1 ◦ ρ−1(y))

= τ((π ◦ φ)−1(x), (ρ ◦ ψ)−1(y)).

Thus, since π ◦ φ ∈ Sk and ρ ◦ ψ ∈ Sn, we have

τφ,ψ ◦ fπ−1,ρ−1 = τπ◦φ,ρ◦ψ ∈ Tk,n.

Note that if P meets τφ,ψ, then Q meets τφ,ψ ◦ fπ−1,ρ−1 . Thus Q meets at least as
many members of Tk,n as P does. Conversely, we can do this for every ordering that
Q meets, thus P and Q meet the same number of members of Tk,n.
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Each of the k!n! members of Tk,n contains exactly kn r-intervals, and, by Lem-
ma 2.3, the sets corresponding to these r-intervals are members of P . Thus, for each
τφ,ψ ∈ Tk,n, the number of members of P that meet τφ,ψ is kn. Since |P| =

(
k
r

)
n!

(n−r)! ,
each member of P meets exactly

k!n!kn(
k
r

)
n!

(n−r)!

= r!(k − r)!(n− r)!kn

members of Tk,n. 2

Proof of Theorem 1.3. Let A be an intersecting subfamily of P of maximum
size. Let T := Tk,n. For an ordering σ in T , a family F ⊆ P , and a set P ∈ P , let
Fσ := {F ∈ F : F meets σ} and

Φ(σ, P ) :=

{
1, if P meets σ;
0, otherwise.

Let q := r!(k − r)!(n − r)!kn. By Lemma 2.4,
∑

σ∈T Φ(σ, P ) = q. By Lemma 2.1,∑
A∈Aσ Φ(σ,A) ≤ r for each σ ∈ T . We therefore have

q|A| =
∑
A∈A

q =
∑
A∈A

∑
σ∈T

Φ(σ,A) =
∑
σ∈T

∑
A∈A

Φ(σ,A) =
∑
σ∈T

∑
A∈Aσ

Φ(σ,A) ≤
∑
σ∈T

r = r|T |,

(1)
and hence

|A| ≤ r|T |
q

=

(
k − 1

r − 1

)
(n− 1)!

(n− r)!
.

This establishes the bound in the theorem.

The intersecting family {P ∈ P : (1, 1) ∈ P} meets the bound, so the size of A
is
(
k−1
r−1

) (n−1)!
(n−r)! . Thus, equality holds in (1), and hence |Aφ,ψ| = r for each τφ,ψ ∈ T ,

where Aφ,ψ := Aτφ,ψ . By Lemma 2.1, for each τφ,ψ ∈ T , the r sets in Aφ,ψ contain a
fixed element (xφ,ψ, yφ,ψ). Thus, for each τφ,ψ ∈ T ,

Aφ,ψ = {A : A corresponds to an r-subinterval of Lφ,ψ}, (2)

where Lφ,ψ is the (2r − 1)-interval of τφ,ψ with middle entry (xφ,ψ, yφ,ψ).

Let β be the identity function from [k] to [k], and let γ be the identity function
from [n] to [n]. Thus τ = τβ,γ. We may assume that (xβ,γ, yβ,γ) = (k, k). Thus Aβ,γ
consists of the r sets corresponding to the r-subintervals of the (2r − 1)-interval

Lβ,γ = ((k − r + 1, k − r + 1), . . . , (k, k), (1, 2), . . . , (r − 1, r)).

Define
I := {(i, i) : i ∈ [k − 1]}, Ī := ([k]× [n])\(I ∪ {(k, k)}).

If P ⊆ I, then P does not intersect the set {(k, k), (1, 2), . . . , (r − 1, r)} ∈ Aβ,γ;
similarly, if P ⊆ Ī, then P does not intersect the set {(k−r+1, k−r+1), . . . , (k, k)} ∈
Aβ,γ. Thus, for each A ∈ A with (k, k) /∈ A, it is the case that A * I and A * Ī, so

1 ≤ |A ∩ I| ≤ r − 1, 1 ≤ |A ∩ Ī| ≤ r − 1. (3)



P. BORG AND K. MEAGHER/AUSTRALAS. J. COMBIN. 61 (2) (2015), 147–155 153

Define the sets

T ′ := {τπ,ρ ∈ T : π(k) = ρ(k) = k}, T ∗ := {τπ,ρ ∈ T ′ : π(i) = ρ(i), i = 1, . . . , k}.

We will first show that (xπ,ρ, yπ,ρ) = (k, k) for each τπ,ρ ∈ T ∗. From this we can show
that the same holds for each τπ,ρ ∈ T ′.

Note that for each τπ,ρ ∈ T ∗,

{(π(i), ρ(i)) : (i, i) ∈ I} = I, {(π(i), ρ(j)) : (i, j) ∈ Ī} = Ī . (4)

If (xπ,ρ, yπ,ρ) ∈ I, then, by (4), I contains an r-subset R that corresponds to an
r-subinterval of Lπ,ρ, and hence R ∈ A by (2), but this contradicts the first inequal-
ity in (3). Similarly, (xπ,ρ, yπ,ρ) ∈ Ī contradicts the second inequality in (3). So
(xπ,ρ, yπ,ρ) = (k, k) for each τπ,ρ ∈ T ∗.

Now suppose (xπ,ρ, yπ,ρ) 6= (k, k) for some τπ,ρ ∈ T ′. Then Lπ,ρ has an r-
subinterval which does not have (k, k) as one of its entries. Let B be the set cor-
responding to this interval; by (2), B ∈ A. By (3), 1 ≤ s := |B ∩ I| ≤ r − 1.
Let (a1, a1), . . . , (as, as) be the s distinct elements of B ∩ I. Let as+1, . . . , ak be the
k− s distinct elements of [k]\{a1, . . . , as}. Since (k, k) /∈ B ∩ I, we may assume that
ak = k.

Choose (π∗, ρ∗) ∈ Sk × Sn such that π∗(i) = ρ∗(i) = ai for each i ∈ [k]. Thus
τπ∗,ρ∗ ∈ T ∗, and hence (xπ∗,ρ∗ , yπ∗,ρ∗) = (k, k) = (ak, ak) (as shown above). Therefore,

Lπ∗,ρ∗ = ((ak−r+1, ak−r+1), . . . , (ak, ak), (a1, a2), . . . , (ar−1, ar)) ,

and the r-set

C := {(ak−r+s, ak−r+s), . . . , (ak, ak), (a1, a2), . . . , (as−1, as)}

corresponds to an r-subinterval of Lπ∗,ρ∗ ; by (2), C ∈ A. Since k − r + s > s, the
pairs (ak−r+s, ak−r+s), . . . , (ak−1, ak−1), (ak, ak) are not in B. Further, for each i ∈ [s],
(ai, ai+1) /∈ B since (ai, ai) ∈ B. Thus B and C do not intersect, but this contradicts
B,C ∈ A.

Therefore, for every τπ,ρ ∈ T ′,

(xπ,ρ, yπ,ρ) = (k, k). (5)

Finally, let A be a set {(x1, y1), . . . , (xr, yr)} in P that contains (k, k). We may
assume that (xr, yr) = (k, k). Let (π, ρ) ∈ Sk × Sn be such that π(i + k − r) = xi
and ρ(i + k − r) = yi for each i ∈ [r]. Then τπ,ρ ∈ T ′ and A meets τπ,ρ. By (5) and

(2), A ∈ A. Thus {P ∈ P : (k, k) ∈ P} ⊆ A. Since |A| ≤
(
k−1
r−1

) (n−1)!
(n−r)! , it follows that

A = {P ∈ P : (k, k) ∈ P}. 2
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