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Abstract

For any positive integers k, r, n with r < min{k, n}, let Py, be the family
of all sets {(x1,11), ..., (2, y,)} such that xy, ..., z, are distinct elements
of [k] ={1,...,k} and 41, ..., y, are distinct elements of [n]. The families
Prnn and Py, ., describe permutations of [n| and r-partial permutations
of [n], respectively. If k& < n, then Py, describes permutations of k-
element subsets of [n]. A family A of sets is said to be intersecting if every
two members of A intersect. We use Katona’s elegant cycle method to
show that a number of important Erdés-Ko-Rado-type results by various
authors generalise as follows: the size of any intersecting subfamily A of
Prrn is at most (fj) EZ:;:, and the bound is attained if and only if
A={A€ Py,n: (a,b) € A} for some a € [k] and b € [n].

1 Introduction

For an integer n > 1, the set {1,2,...,n} is denoted by [n]|. For a set X, the power
set {A: A C X} of X is denoted by 2%, and the uniform family {Y C X: |Y| =r}
is denoted by (f) We call a set of size n an n-set.

If F is a family of sets and z is an element of the union of all sets in F, then
we call the family of all the sets in F that contain x the star of F with centre x. A
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family A is said to be intersecting if AN B # () for every A, B € A. Note that a star
of a family is intersecting.

The classical Erdés—Ko-Rado (EKR) Theorem [11] says that if » < n/2, then

an intersecting subfamily A of ([:f]) has size at most (:fj), which is the size of

a star of ([Z]). If » < n/2, then, by the Hilton—Milner Theorem [15], A attains
the bound if and only if A is a star of (["}). Two alternative proofs of the EKR

Theorem that are particularly short and beautiful were obtained by Katona [16] and
Daykin [8]. In his proof, Katona introduced an elegant technique called the cycle
method. Daykin’s proof is based on a fundamental result known as the Kruskal-
Katona Theorem [17, 18, 23]. The EKR Theorem inspired a wealth of results and

continues to do so; see [3, 10, 12, 13].

For positive integers k,r,n with » < min{k, n}, let

Prrn = {{(z1,91),..., (®r,yr)}: @1, ..., 2, are distinct elements of [k],

Y1, - ..,y are distinct elements of [n]}.

We shall call Py, ,, a family of generalised permutations. This is due to the fact that
the elements of P, ,, are permutations of the set [n]; the permutation y19s ...y,
of [n] corresponds uniquely to the set {(1,v1),(2,v2),...,(n,y)} in Pppn. In the
more general case where & < n, the family Py, 1 ,, describes permutations of k-subsets
of [n]; a permutation y,ys ...y, of a k-subset of [n] corresponds uniquely to the set
{(L,11),(2,92),. .., (k,yk)} in Pggrn. The family Py ., also describes injections from
[k] to [n]. The family P, , describes r-partial permutations of [n] (see [19]). The
ordered pairs formulation we are using follows [2] and also [4, 5], in which very general
frameworks are considered.

In the case r = k, if two sets {(1,v1), (2,v2),...,(k,yx)} and {(1,21), (2, 2z2), ...,
(k,zi)} in Py k. intersect, then y; = z; for some ¢ € [k, and this is exactly what we
mean by saying that the permutations y;ys ...y, and 2125 . .. z; (of two k-subsets of
[n]) intersect. In general, two generalised permutations intersect if and only if they
have at least one ordered pair in common.

In this paper, we are concerned with the EKR problem for generalised permu-
tations. We need only to consider the problem with & < n. To see this, define
A [k] x [n] = [n] x [k] by Ma,y) := (y, x), then Az Py — Prpi by

A({(‘Tla yl)’ T (ZE,«, yr)}) = {/\(Il’yl)7 R )‘(xh yT)} = {(yhxl)? S (yT7 CL’T)}

The functions A and A are clearly both bijections. Moreover, any P,Q € Py, are
intersecting if and only if A(P), A(Q) € P, i are intersecting. Therefore, throughout
the rest of the paper it is to be assumed that k£ < n.

The origins of our problem lie in [9], in which Deza and Frankl proved that the size
of an intersecting family of permutations of [n] is at most the size (n —1)! of a star of
Prnn- Cameron and Ku [7] extended this result by establishing that only the stars of
Pr.nn attain the bound (other proofs of this result are found in [6, 14, 20, 24]). This
result was also proved independently by Larose and Malvenuto [21], who established
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the stronger result that the stars of Py, are the largest intersecting subfamilies of
Prrn (see [21, Theorem 5.1]). These results summarise as follows.

Theorem 1.1 ([7, 9, 21]) The size of any intersecting subfamily of Py k. is at most

EZ:B',, and the bound is attained only by the stars of P n-

Ku and Leader [19] solved the EKR problem for r-partial permutations of [n]
using Katona’s cycle method. Moreover, they showed that for 8 < r < n — 3, the
largest intersecting subfamilies of P, ,.,, are the stars. They conjectured that only the
stars are extremal for the few remaining values of 7 too. A proof of this conjecture,
also based on the cycle method, was obtained by Li and Wang [22].

Theorem 1.2 ([19, 22]) For r € [n — 1], the size of any intersecting subfamily of

Prrn ts at most (:f:ll) EZ:}&:, and the bound is attained only by the stars of Ppyn.

The scope of this paper is to show that the methods used in [19, 22] allow us to
generalise Theorems 1.1 and 1.2 as follows.

Theorem 1.3 Ifr <k <n and A is an intersecting subfamily of P, then

A< () am =00

and equality holds if and only if A is a star of Py yn.

2 Proof of the result

We will prove Theorem 1.3 by extending the arguments in [19, 22] to our more general
setting. Recall that we are assuming k£ < n and that Theorem 1.1 settles our problem
for the case r = k, so we will only consider » < k—1. We will abbreviate Py ,.,, to P.

Let mod be the usual modulo operation. We will use mod” to represent the
modulo operation with the exception that for any non-zero integers a and b, the
value of bamod” @ will be a rather than 0.

Let X be a set, and let m = | X|. A bijection ¢ : X — [m] is called an ordering
of X. An element z of X is the o(x)-th element in the ordering. If o is an ordering
of X and the elements of a subset A of X are numbered consecutively by o, in the
cyclic sense, then we say that A meets o. Thus, an r-subset A of X meets ¢ if and
only if we can label its elements ay,...,a, such that o(a;y1) = (¢(a;) + 1) mod" m
for each i € [r — 1].

Katona’s cycle method is based on the following fundamental result.

Lemma 2.1 Let X be a set of size at least 2r, and let o be an ordering of X. Let

B :={B € ()f) B meets o}, and let A be an intersecting subfamily of B. Then
|A| < r. Moreover, if | X| > 2r, then |A| = r if and only if A is a star of B.
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The proof of the bound was given in [16] and can be extended to a proof of the whole
result (see [1]).

The union of all sets in P is the Cartesian product [k] x [n]. We say that an
ordering o of [k] x [n] is r-good if every r elements (z1,v1),..., (z,,y,) of [k] X [n]
that are numbered consecutively by o, in the cyclic sense, are such that zq,..., z,
are distinct and yq,...,y, are distinct. In an r-good ordering, any r consecutive
elements form a generalised permutation in P.

We will define an ordering of [k] x [n] that is r-good for all r € [k — 1]. (It is
interesting to note that no such ordering exists if r = k = n.) Let 7: [k] x [n] — [kn]
be defined by

7(x,y) == k((y — x) mod n) + .
The following is an example with & = 5 and n = 7, where each element (z,y) of
[k] x [n] is given the label 7(z,y) shown in bold superscript.

(1’7)31 (2’ 7)27 (3’ 7)23 (4, 7)19 (5’7>15
(1,6)26 (2,6)22 (3,6)18 (47 6)14 (5,6)10
(1,5)% (2,5) (3,5)% (4,5)° (5,5)°

(L4 (242 (34 @4t (5,4F
(1,3)™ (2,3)7 (3,3)° (4,3)* (5,3)%
(L2 (227 (32 (4,2® (52
(1, 1) (2,1)% (3,1)% (4,1)* (5,1)%

Lemma 2.2 Forr <k —1, 7 is an r-good ordering of [k] x [n].

Proof. Suppose that 7(z,y) = 7(u,v). Then k((y — z) modn) +x = k((v —
u) mod n) + u, so u = kt + x for some integer t. Since u,x € [k], t = 0. Thus u = z,
and hence (y — x) mod n = (v — z) mod n. It follows that y = v.

Therefore, 7 is injective. Since the domain and the co-domain of 7 are of equal
size, T is a bijection. Thus 7 is an ordering of [k] x [n].

For each i € {0,...,n — 1}, consider the 2k-tuple
I = ((1, (i + 1) mod n), (2, (i + 2)mod” n),..., (k, (i + k) mod” n),
(1, (i 4+ 2)mod n), (2, (i + 3)mod" n), ..., (k, (i + k 4+ 1) mod n)).
The entries of I; are the (ki + 1)-th element through to the (ki + 2k)-th element in

the ordering 7.

Let r < k—1, and let A be an r-set that meets 7. Then for some i € {0,...,n—1},
A consists of r consecutive entries of I;. Since r < k — 1, any r consecutive entries
of I; are pairs which have distinct first entries and distinct second entries, thus A is
a generalised permutation. Hence the result. a

Let S,, denote the set of all bijections from [n] to [n]. For any (¢,v) € Si x Sy,
define 744 : [k] x [n] = [kn] by

Tow(2,y) == 7(07 ' (2), 0™ (y))
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(that is, 744 (¢(7), (7)) :== 7(i,7)). Note that 74, is an ordering of [k] x [n]. Let
Tk,n = {7}1571/,2 (¢, @ZJ) € Sk X Sn}
Further, for any (¢, ) € Sk X Sy, define fy, : [k] X [n] = [k] X [n] by

fd’ﬂl)(x’ y) = (¢(l’), ¢<y>>

Lemma 2.3 For r < k —1 and (¢,¢) € Sk X Sp, Tsu is an r-good ordering of
[k] % [n].

Proof. Suppose that 7, is not an r-good ordering. Thus there exist two distinct
elements (a1,by) and (ag, by) of [k] X [n] such that

To(az,b2) = (Tgp(a1,01) + p) mod” kn

for some p € [r — 1], with either a; = ay or by = by. If a3 = ay, then

(6 (@), ¥ (b2)) = (7(¢7 (ar), ¥ (b1)) + p) mod kn,

contradicting Lemma 2.2. Similarly, we cannot have b; = bs.

O

Let Z be a set, and let ¢ be an ordering of Z. Let m be an integer with 2 <
m < |Z|, and suppose that zi,...,z, are distinct elements of Z. If o(z;11) =
(0(2) +1)mod” |Z| for each i € [m — 1], then we say that the tuple (z1,..., z,) is
an m-interval of o, and we call {z,..., z,,} the set corresponding to (z1,...,zy). If
1 <my <my <mand ¢ =my—my+1, then we call the l-interval (z,,,, ..., Zm,) of
o an (-subinterval of (z1,...,2zm). If a generalised permutation meets an ordering,
then the elements of the generalised permutation form an interval of the ordering.

Lemma 2.4 FEach member of P meets exactly r!(k —r)!(n —r)lkn members of Ty, .

Proof. Let P, € P. Clearly, Q = {fx,(z,y): (z,y) € P} for some (m, p) € S, xS,.
Let 744 € Tjn. For any (x,y) € S X S,

Top © Jr1p-1(2,9) = Tou(m 7 (z), p7 (1))
=7(¢  om H(x), " o p T (y))
=7((mog) (z),(pop) " (y))

Thus, since mro ¢ € Sy and po ) € 5, we have

o © frn=1,p-1 = Trog,pop € Thpn-

Note that if P meets 74, then @ meets 74, o fr-1 ,-1. Thus () meets at least as
many members of T}, ,, as P does. Conversely, we can do this for every ordering that
() meets, thus P and ) meet the same number of members of T} ,,.
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Each of the k!n! members of T}, ,, contains exactly kn r-intervals, and, by Lem-
ma 2.3, the sets corresponding to these r-intervals are members of P. Thus, for each
Tpp € Tk n, the number of members of P that meet 7, is kn. Since |P| = (fj)(n’i—'r),,
each member of P meets exactly

klnlkn
() o

members of T ,,. O

=rl(k —r){(n—r)lkn

Proof of Theorem 1.3. Let A be an intersecting subfamily of P of maximum
size. Let T' := T}, ,,. For an ordering o in 7', a family 7 C P, and a set P € P, let
F, :={F € F: F meets 0} and

1, if P meets o;
(o, P) = { 0, otherwise.

Let ¢ := rl(k —r)!(n — r)lkn. By Lemma 2.4, > . ®
> AcA, O(0, A) <r for each o € T. We therefore have

gA=) q=> > 20, A=Y (A= > A<D r=rT]

AeA AeA ceT ocT AcA €T Ac A, €T
(1)

< 7] (k—1)u_

q r—1)(n—r)!
This establishes the bound in the theorem.
The intersecting family {P € P: (1,1) € P} meets the bound, so the size of A
is (*71) E" 1; Thus, equality holds in (1), and hence |Ag,| = r for each 74, € T,

where Ay := A;, ;. By Lemma 2.1, for each 744 € T', the r sets in Ay 4 contain a
fixed element (%4, Ysp). Thus, for each 7, € T,

(0,P) = q. By Lemma 2.1,

and hence

Ay = {A: A corresponds to an r-subinterval of L, }, (2)

where Ly, is the (2 — 1)-interval of 7,4, with middle entry (24, Yo )-

Let (3 be the identity function from [k] to [k], and let v be the identity function
from [n] to [n]. Thus 7 = 75.,. We may assume that (x3.,ys,) = (k, k). Thus Az,
consists of the r sets corresponding to the r-subintervals of the (2r — 1)-interval

Lgy=((k—r+1Lk—r+1),...,(kk),(1,2),...,(r—1,7)).
Define ~
=A@ iek =1} L=k x RPN U{(K,K)}).
If P C I, then P does not intersect the set {(k,k),(1,2),...,(r — 1,r)} € Ag

similarly, if P C I, then P does not intersect the set {(k—r+1,k—r+1),..., (k, k:z}
Ag,. Thus, for each A € A with (k, k) ¢ A, it is the case that A ¢ I and A ¢ 1, so

mf

I<|ANI|<r-—1, I<|ANI| <r—1. (3

~—
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Define the sets
T :={1:, €T: (k) =p(k) =k}, T ={1m, €T mw(i) = p(i),i=1,...,k}.

We will first show that (2, yr,) = (k, k) for each 7, € T*. From this we can show
that the same holds for each 7., € T".

Note that for each 7, , € T™,

{(m(),p(0): (i) e I} =1, {(x(i), p(j)): (i,j) € I} =1. (4)

If (zr,,yr,) € I, then, by (4), I contains an r-subset R that corresponds to an
r-subinterval of L, ,, and hence R € A by (2), but this contradicts the first inequal-
ity in (3). Similarly, (2,,¥r,) € I contradicts the second inequality in (3). So
(Zr.p, Yn,p) = (k, k) for each 7, , € T

Now suppose (Zx,,Yr,) # (k,k) for some 7., € T'. Then L., has an r-
subinterval which does not have (k, k) as one of its entries. Let B be the set cor-
responding to this interval; by (2), B € A. By (3), 1 < s:=|BnI| <r —1.
Let (a1,aq), ..., (as,as) be the s distinct elements of BN I. Let agyq,...,a; be the
k — s distinct elements of [k]\{a1,...,as}. Since (k, k) ¢ BN I, we may assume that
ap = k.

Choose (7%, p*) € Sk x S, such that 7*(i) = p*(i) = a; for each i € [k]. Thus
Tpe oo € T, and hence (z+ pr, Yrr pv) = (k, k) = (ay, ai) (as shown above). Therefore,

Ly o = ((@herg1, Gh—rs1), - - -, (ag, ar), (a1, a2), . .., (ar_1,a,)),

and the r-set

C = {(ar—ris, Op—ris),-- -, (a,ar), (a1,a2),...,(as_1,as)}

corresponds to an r-subinterval of L.« ,«; by (2), C' € A. Since k —r + s > s, the
pairs (ag_ris, Ak—ris)s -« (@g_1,ak_1), (g, ax) are not in B. Further, for each i € [s],
(a;,a;11) ¢ B since (a;,a;) € B. Thus B and C do not intersect, but this contradicts
B,C e A.

Therefore, for every 7, , € T",

(@7, Yr.p) = (K, k). (5)

Finally, let A be a set {(z1,vy1),...,(z,y-)} in P that contains (k,k). We may
assume that (z,,vy,) = (k, k). Let (m,p) € Sy x S, be such that 7(i + k —r) = x;
and p(i + k —r) = y; for each ¢ € [r]. Then 7, , € T" and A meets 7 ,. By (5) and
(2), A€ A. Thus {P € P: (k,k) € P} C A. Since |A] < (*_}) ("77135, it follows that

(n—

A={PeP: (kk)e P} 0
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