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Abstract

The dimension of a pairwise balanced design PBD(v,K) is the maximum
positive integer d such that any d of its points are contained in a proper
flat. The standard examples are affine and projective linear spaces. Also,
Teirlinck provided a nearly complete existence theory for ‘Steiner spaces’,
which is the case K = {3} and d = 3. A recent result of the first author
and A.C.H. Ling says that there exists a PBD(v,K) of dimension at least
d for all sufficiently large and numerically admissible v. Here, we consider
the detailed existence question for K = {3, 4, 5} and d = 3. A certain
problem on latin squares connects with this particular case.

1 Introduction

Let v be a positive integer and K ⊂ Z≥2 := {2, 3, 4, . . .}. A pairwise balanced design
PBD(v,K) is a pair (X,B), where X is a v-set of points and B is a family of blocks
such that

• for each B ∈ B, we have B ⊆ X with |B| ∈ K; and

• any two distinct points in X appear together in exactly one block.

Note that there are numerical constraints on v given K. First, the number of pairs of
distinct points must be a (nonnegative) integral linear combination of the number of
distinct pairs arising from blocks with sizes in K. This leads to the global condition

v(v − 1) ≡ 0 (mod β(K)), (1.1)
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where β(K) := gcd{k(k − 1) : k ∈ K}. Also, deleting any point x ∈ X from its
incident blocks must induce a partition of the remaining points. That is, v− 1 is an
integral combination of k− 1 for k ∈ K. In other words, we have the local condition

v − 1 ≡ 0 (mod α(K)), (1.2)

where α(K) := gcd{k − 1 : k ∈ K}. Wilson’s theory, [11], asserts that (1.1) and
(1.2) are sufficient for v � 0.

A flat (or subdesign) is a pair (Y,B|Y ), where Y ⊆ X and B|Y := {B ∈ B : B ⊆
Y }, which is itself a pairwise balanced design. Note that any block intersecting Y in
two or more points must be fully contained in Y , and hence a member of B|Y . Flats in
(X,B) form a lattice under intersection. So any set of points S ⊆ X generates a flat
〈S〉B (or simply 〈S〉) equal to the intersection of all flats containing S. Alternatively,
〈S〉 can be computed algorithmically starting from S by repeatedly extending pairs
by blocks.

Pairwise balanced designs are also known as ‘linear spaces’, where blocks corre-
spond with lines and flats correspond with subspaces. This innocent difference in
terminology often reflects a substantial difference in the typical research directions.
Our topic is a blend of these.

The dimension of a PBD (or linear space) is the maximum integer d such that any
set of d points generates a proper flat. For instance, the flat generated by any two
points is the line containing them. So every ‘nontrivial’ PBD(v,K) has dimension at
least two. See [5] and Chapter 7 of [1] for nice surveys of dimension in linear spaces.

There are classical examples of designs with nontrivial dimension. Let q be a
prime power and Fq the finite field of order q. We can take as points the vector
space X = F

d
q , and as flats all possible translates of subspaces x + W ⊆ X. This

forms the affine space AGd(q). Taking the one-dimensional flats as blocks, we obtain
a PBD(qd, {q}) of dimension d. For example, the case q = 3, d = 4 recovers the
popular card game ‘Set’.

Consider next the vector space F
d+1
q , where as points we take the ‘directions’ or

one-dimensional subspaces. When equipped with the full lattice of subspaces, we
have the projective space PGd(q). In particular, if B is the set of two-dimensional
subspaces, incidence given by inclusion, we obtain a PBD([d]q, {q+1}) of dimension

d, where [d]q =
qd+1−1
q−1

. With q = 2, d = 3, we have [3]2 = 15 points represented by
all nonzero binary 4-tuples; lines correspond to zero-sum sets of three points.

Recall that a Steiner triple system is a PBD(v, {3}). It is well known that Steiner
triple systems on v points exist if and only if v ≡ 1 or 3 (mod 6). A Steiner space is
defined to be a Steiner triple system of dimension at least 3. Teirlinck in [10] studied
the existence of Steiner spaces, finding that, for v 
∈ {51, 67, 69, 145}, they exist if
and only if v = 15, 27, 31, 39, or v ≥ 45. The four undecided cases are still open, to
the best of our knowledge.

Recently, the first author and Ling obtained an asymptotic existence theory for
any K and prescribed minimum dimension d.
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Theorem 1.1 ([8]) Given K ⊆ Z≥2 and d ∈ Z+, there exists a PBD(v,K) of
dimension at least d for all sufficiently large v satisfying (1.1) and (1.2).

Here, we consider in more detail the case K = {3, 4, 5} and dimension three.
Note that α(K) = 1 and β(K) = 2 in this case, so (1.1) and (1.2) disappear and all
positive integers are admissible.

Theorem 1.2 (Main theorem) There exists a PBD(v, {3, 4, 5}) of dimension
three if and only if v = 15 or v ≥ 27 except for v = 32 and possibly for v ∈
E := {33, 34, 35, 38, 41, 42, 43, 47}.

There is a natural division into cases: large values of v via recursion, small values
of v via ad hoc constructions, and nonexistence results for small v. These define
Sections 3, 4, and 5, respectively. Also, there is the need to reduce dimension to
three if it happens to be constructed as larger. This is accomplished in Section 7.
As a result of Theorem 7.1 to follow, we need not distinguish between ‘dimension
three’ and ‘dimension at least three’ in our constructions. In Section 6, there is a
discussion of other setsK and an application to latin squares in which any cell-symbol
combination can be bounded inside a proper subsquare.

2 Background

We begin by stating the basic existence result for PBDs having K = {3, 4, 5}. The
following has by now achieved ‘folklore’ status, but the interested reader can see [4]
for more information.

Theorem 2.1 There exists a PBD(v, {3, 4, 5}) if and only if v 
= 2, 6, 8.

Unless otherwise mentioned, K = {3, 4, 5}. In what follows, we occasionally
make use of structure in the smallest cases. The unique PBDs for v = 7, 9 are the
‘Fano plane’ PG2(2) and the affine plane AG2(3). The unique PBD for v = 10 is the
extension of one parallel class in AG2(3) by a point. The extended blocks have size 4.
The only PBD for v = 11 has a unique block of size 5 and all other blocks of size 3.
For v = 12, only blocks of size 3 and 4 are possible. In the case v = 13, there exists
a Steiner triple system, a projective plane PG2(3), and even systems with blocks of
size 5. For v = 14, we have a PBD with one block of size 5 and all other blocks of
size 3 or 4.

A group divisible design is a triple (X,Π,B), where X is a set of points, Π is a
partition of X into groups, and B is a set of blocks such that

• a group and a block intersect in at most one point; and

• every pair of points from distinct groups is together in exactly one block.
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For short, we refer to this as a GDD or K-GDD, the latter emphasizing that the
blocks have sizes in K ⊂ Z≥2. The type of a GDD is the list of its group sizes.
When this list contains, say, u copies of the integer g, this is abbreviated with
‘exponential notation’ as gu. Note that a K-GDD of type 1v is just a PBD(v,K).
The PBD(14, {3, 4, 5}) mentioned earlier is actually equivalent to a GDD of type
3351, where four blocks partitioning the points are turned into groups.

A transversal design TD(k, n) is a {k}-GDD of type nk. In this case, every block
meets every group in one point. For our purposes, it is convenient to state the known
existence theory for block size 5.

Theorem 2.2 There exists TD(5, n) if n 
= 2, 3, 6, 10.

Remark. Except for the case n = 10, which still remains in doubt, the converse
also holds.

The above transversal designs can be modified somewhat to yield a useful exis-
tence result on five-group GDDs. Most of the following are obtained by ‘truncation’
(see below), but some of the small cases require special constructions. For more
details, see [9].

Lemma 2.3
(a) For any integers m ≥ 3 and i ∈ {0, . . . , 5}, there exists a {3, 4, 5}-GDD of type
(m− 1)im5−i.
(b) For any i ∈ {0, . . . , 5}, there exists a {3, 4, 5}-GDD of type 1i35−i.

We now review some standard design-theoretic constructions. First, we can ‘fill’
the groups of a GDD with PBDs (sometimes as small as a single block). In fact, one
or more points can be added, provided the filled PBDs each have the extra points as
a common flat.

Construction 2.4 (Filling groups) Suppose there exists a K-GDD on v points
with group sizes in G. If, for each g ∈ G:

• there exists a PBD(g,K), then there exists a PBD(v,K);

• there exists a PBD(g + 1, K), then there exists a PBD(v + 1, K); and

• there exists a PBD(g + h,K) containing a flat of order h, then there exists a
PBD(v + h,K).

To construct a GDD, one can delete a point x and all its incident blocks Bx from
some PBD. The resulting group partition Πx := {B \ {x} : B ∈ Bx} is left behind
from the missing blocks. In reverse, adding a point and filling in groups with new
blocks, we obtain a special case of the above.

One could alternatively truncate a set of points, say A ⊆ X, replacing blocks
B ∈ B by new blocks B \A. (New blocks of size 0,1 can be ignored.) If the original
space is a PBD or GDD, then so is the truncation. However, care must be taken to
respect the desired set of block sizes.

In the next two sections, we make frequent use of the following.
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Construction 2.5 (Wilson’s fundamental construction) Suppose there exists
a ‘master’ GDD (X,Π,B), where Π = {X1, . . . , Xu}. Let ω : X → {0, 1, 2, . . . },
assigning nonnegative weights to each point in such a way that for every B ∈ B there
exists an ‘ingredient’ K-GDD of type ω(B) := [ω(x) | x ∈ B]. Then there exists a
K-GDD of type [∑

x∈X1

ω(x), . . . ,
∑
x∈Xu

ω(x)

]
.

Remark. Truncation can be viewed as a special case of Construction 2.5, where
weights 0 and 1 are used, and the ingredients are shortened blocks.

In all but one of our applications of Wilson’s fundamental construction, our mas-
ter GDD is simply a PBD. Let us call a weighting of points ω : X → Z≥0 nonde-
generate if 〈X \ ω−1(0)〉B = X. That is, in a nondegenerate weighting, there is no
proper flat containing all the points of nonzero weight. With this mild assumption,
we conclude that dimension is preserved (in a strong sense).

Proposition 2.6 Suppose a nondegenerate weighting is applied to a PBD (X,B) of
dimension d. The result of Wilson’s fundamental construction is a GDD of dimension
at least d. Moreover, every set of d points is contained in a proper subsystem that
intersects each group in zero or all points.

See [8] for a proof. It is helpful to illustrate the idea in the special case of
truncation, used heavily in Section 4. Suppose X is truncated to X ′ = ω−1(1). Any
collection of d points in X ′ generated some proper flat Y in X . Since the weighting
is nondegenerate, Y ∩X ′ remains proper in X ′.

Note if we have a GDD with the ‘strong’ dimension property as written in the
conclusion of Proposition 2.6, then filling groups as in Construction 2.4 preserves the
dimension.

3 Recursion

The purpose of this section is to settle all large values of v with the following result.

Theorem 3.1 There exists a PBD(v, {3, 4, 5}) of dimension three for all v ≥ 85
except possibly v = 86, 88 and 94.

The proof of Theorem 3.1 follows immediately from the following three proposi-
tions. Note the use of interval notation for sets of integers.

Proposition 3.2 There exists a PBD(v, {3, 4, 5}) of dimension three for all v ≥ 171.
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Proof: We regard the projective space PG3(4) as a PBD(85, {5}) of dimension
three. Give every point weight m or m − 1 and apply Wilson’s fundamental con-
struction, appealing to the existence of five-group GDDs in Lemma 2.3(a). The
result is a {3, 4, 5}-GDD of type m85−i(m− 1)i and strong dimension at least three.
Varying i ∈ [0, 85] leads to intervals of constructible values for v; however, it remains
to fill in the groups.

First, when m = 4, 5 or m ≥ 10, we can replace groups with PBDs of order m or
m − 1, which exist by Theorem 2.1. When m = 3, add a point ∞ and fill groups
with triples and quadruples identified at ∞. The case m = 9 is similar, using PBDs
of order 9 or 10. The cases m = 7, 8 can be handled by adding a triple of new points
{∞1,∞2,∞3} and filling with PBDs of order 9, 10, or 11, identifying a common
block of size three. Together, these intervals give [2×85+1, 5×85]∪ [6×85+3,∞).

The ‘gap’ above can be settled using AG3(5), which is a PBD(125, {5}) of dimension
three. Give every point weight m or m− 1 as before, where m ∈ {4, 5}. Groups can
be filled directly with blocks in {3, 4, 5}. This gives constructible values [3×125, 5×
125] ⊃ (5× 85, 6× 85 + 3). �

Proposition 3.3 There exists a PBD(v, {3, 4, 5}) of dimension three for all odd
v ∈ [85, 170].

Proof: Give some of the points of PG3(4) weight three, and the rest weight one.
Apply Wilson’s fundamental construction, using the GDDs in Lemma 2.3(b) as in-
gredients. Groups of size three in the resulting GDD get filled with blocks, and we
obtain all odd orders from 85 to 3× 85. �

Proposition 3.4 There exists a PBD(v, {3, 4, 5}) of dimension three for all even
v ∈ [85, 170] \ {86, 88, 94}.

Proof: Give one point, say x, of PG3(4) a weight of zero, and give all other points
weight one or three (to be determined later). Blocks avoiding x are replaced as
in Proposition 3.3. The 21 blocks incident with x are now carefully weighted so
that the number of points of weight three is either 0, 3 or 4 on each. With this
restriction, we can give weight three to 3, 4, 6, 7, 8, 9, . . . , 43 points. As before, fill
groups of size three with triples. We have realized a construction all for even orders
in {90, 92} ∪ [96, 84 + 2× 43], and this agrees with the stated bound. �

4 Truncation and other constructions

Recall our set E := {33, 34, 35, 38, 41, 42, 43, 47} of possible exceptions from the main
theorem. This section settles most of the remaining values under 85. The summary
result is as follows.

Theorem 4.1 If v ∈ {15} ∪ [27, 85] and v 
∈ E ∪ {32}, then there exists a PBD(v,
{3, 4, 5}) of dimension three.
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Again, we divide the proof into a few pieces. First, we recall some small values
which admit Steiner spaces. PG3(2), PG4(2), and AG3(3) give orders 15, 31, 27.
Weighting PG3(2) by 3 yields order 45.

Proposition 4.2 ([10]) There exists a PBD(v, {3}) of dimension three for all v ∈
{15, 27, 31, 45}.

Orders 46 and 94 follow from giving weight three to PG3(2) and PG4(2), plus
one new point.

Proposition 4.3 There exists a PBD(v, {3, 4}) of dimension three for all v ∈ {46,
94}.

Next we cover a wide range of small values by truncation from projective spaces of
dimension three. We would like to leave behind no line of size two. For this purpose,
it is helpful to recall that every line is contained in exactly q + 1 planes, each one
being a copy of PG2(q). First, we truncate from PG3(3), which is a PBD(40, {4}) of
dimension three.

Proposition 4.4 There exists a PBD(v, {3, 4}) of dimension three for v ∈ {28, 30,
31, 36, 37, 39, 40}.

Proof: We may truncate 0, 1, 3 or 4 points on some line, leaving all remaining lines
of size 3 or 4. This realizes the four largest values. For the small values, let Z be a
plane and L a line on Z. Truncate the nine points of Z \ L, along with 0, 1, or 3
points of L. �

Remark. Truncation of all of Z results in AG3(3), and so the latter construction
can be viewed alternatively as extending parallel classes in this space.

Next we consider PG3(4), which recall is a PBD(85, {5}) of dimension three.
Its planes are copies of PG2(4). We consider various ‘legal’ truncations in this
PBD(21, {5}).

Lemma 4.5 It is possible to truncate PG2(4) to obtain a PBD(v, {3, 4, 5}) for each
v ∈ [0, 21], v 
= 2, 6, 8, 10.

Proof: For the low values, 0, 1, 3, 4 or 5 collinear points can be chosen. For the
large values, we can delete up to 9 points from two intersecting lines L1, L2. It is
possible to ensure that neither Li is reduced to two points; moreover, any other line
has at most one point in common with each Li. It remains to consider the three
remaining values between 5 and 12.

(7): There is a Fano plane PG2(2) lying in PG2(4) as a ‘Baer subplane’ via the
containment F2 ⊂ F4.
(9): Let L1, L2, L3 be lines forming a triangle and consider their symmetric difference
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S = ⊕Li. To be clear, this is the set of points lying on exactly one Li. It is easy to
check that S induces a copy of the affine plane AG2(3), since a generic fourth line
cuts the triangle in exactly three points.
(11): This construction is essentially taken from [10] in the discussion preceding
Theorem 2. An ‘oval’ of PG2(4) consists of 5 points, no three collinear. There is a
unique point outside every oval, called a ‘nucleus’, such that every line through the
nucleus is tangent to the oval. Choose a set T consisting of an oval, its nucleus, and
an additional line L disjoint from the oval and nucleus. Pairs of points in T \ L,
whether involving the nucleus or not, are covered uniquely by truncated lines of size
three. �

Proposition 4.6 There exists a PBD(v, {3, 4, 5}) of dimension three for all v ∈
[48, 85].

Proof: Let Z1 and Z2 be two planes in PG3(4). We have |Z1∪Z2| = 21+21−5 = 37.
If Z1∪Z2 can be truncated down to r points so that no lines in those planes become
size two, then we have a PBD(48+ r, {3, 4, 5}) of dimension three. It suffices to find
such subsets for all r ∈ [0, 37].

Let L = Z1 ∩ Z2. Truncating from two other lines (in each Zi) as in the proof
of Lemma 4.5 settles r ∈ [21, 37]. Alternatively, we can remove all 16 points of
Z1 \ L and leave behind any allowed number of points from Z2. This settles all
but r = 2, 6, 8, 10. The first three of these values can be realized by leaving behind
just 1, 3, 4 collinear points, respectively, in each Zi \ L. Leaving behind exactly 10
points can be accomplished with a combination of a Baer subplane in Z1 and three
additional collinear points in Z2. �

Remark. With a careful analysis, it may be possible to avoid using the planar
truncations down to 9 and 11 points.

Finally, we conclude with three more intricate constructions.

Proposition 4.7 There exists a PBD(44, {3, 4, 5}) of dimension three.

Proof: In PG3(4), take a line L and consider its incident planes. Let x 
∈ L. On one
of the four planes other than 〈L, x〉, leave behind an oval-nucleus PBD(11, {3, 5}),
say with points T . Then include all points on {xt : t ∈ T}, which induce oval-nucleus
configurations in all four planes. This space has 45 points, but we may delete x since
it is incident only with lines of size 5. �

Proposition 4.8 There exists both a PBD(29, {3, 5}) and a PBD(88, {3, 4, 5}) of
dimension three.

Proof: Start from PG4(2), on 31 points. Delete a block B and the seven Fano
planes containing it. Fill the resulting groups of size four with blocks of size five
incident at a common new point ∞. The resulting space has 29 points. Any three
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points either are contained in a Fano plane, or, in the case that ∞ is chosen, a flat
on 13 points.

Now, for order 88, simply give weight three and add a point. �

Proposition 4.9 There exists a PBD(86, {3, 4, 5}) of dimension three.

Proof: Start from AG3(3), which is also a {3}-GDD of type 39. Give every point
weight 3 and apply Wilson’s fundamental construction. We obtain a GDD of type
99 so that the flats generated by three points are proper and intersect groups along
tripled points. Add a block of 5 points and fill groups with PBD(14, {3, 4, 5}), which
recall admits its own group type 3351. Identify the group of size 5 on the new points,
and align the groups of size 3 on the tripled points. The result is a dimension three
PBD on 9× 9 + 5 = 86 points. �

5 Nonexistence

Here, we prove the negative results in Theorem 1.2.

Theorem 5.1 There does not exist PBD(v, {3, 4, 5}) of dimension three for v = 32
or for v < 27, v 
= 15.

The proofs are largely carried by the following bound on the size of proper flats.
In what follows, it is convenient to say that a block touches a flat when it intersects
that flat in exactly one point.

Lemma 5.2 In a PBD(v,Z≥3) with a proper flat W of size w, we have v ≥ 2w+1,
with equality if and only if every block intersects W , and all blocks touching W have
size exactly three.

Proof: Consider a point x in the complement of W , and let Bx denote the set of
blocks incident with x. We have |Bx| ≤ (v − 1)/2, with equality if and only if every
block at x has size three. Next, since no block intersects W in more than one point,
it follows that there are exactly w blocks in Bx which also touch W . So |Bx| ≥ w,
with equality if and only if every block in Bx touches W . �

This already delivers a nonexistence result for small v.

Corollary 5.3 For v < 22, the only PBD(v, {3, 4, 5}) of dimension three is the
Steiner space PG3(2).

Proof: It is reported in [10] that there do not exist Steiner spaces of order v < 27,
except for PG3(2). So take a PBD(v, {3, 4, 5}) of dimension three with v < 27 and
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assume there is a block B of size four or five. Two points on B and one off B must
generate a proper flat of size at least 10. By Lemma 5.2, we have v ≥ 21.

Moreover, the condition for equality in the lemma rules out v = 21. This is because
a hypothetical flat of order 10 is touched only by triples, yet each point in the flat
must get covered with 11 points outside the flat. �

Suppose we delete a block B from a PBD(v, {3, 4, 5}), say (X,B), of dimension
at least three. For each x ∈ X \ B, the flat Fx = 〈B, x〉 is proper in X. Hence, we
can partition X \ B according to such flats. Deleting B and these flats results in
a {3, 4, 5}-GDD whose groups are Fx \ B. The number of groups must be at least
three; if it is exactly three, then all groups have the same size. Finally, this GDD
has dimension three.

The above argument is particularly useful in ruling out small cases in the presence
of blocks of size 5. By (1.1) and (1.2), a PBD(v, {3, 4, 5}) with v ≡ 2 (mod 3)
necessarily contains a block B of size 5. Accordingly, we obtain nonexistence results
for v = 23, 26, 32 by analysis of the above GDD.

Proposition 5.4 There does not exist PBD(26, {3, 4, 5}) of dimension three.

Proof: There is no possible GDD structure here, since (26 − 5)/3 = 7 and there
does not exist a PBD(12, {3, 4, 5}) containing a block of size 5. �

Proposition 5.5 There does not exist PBD(23, {3, 4, 5}) of dimension three.

Proof: Take a block B of size 5 and consider the {3}-GDD of type 63 resulting from
deletion of B and its incident proper flats of size 11. Further analysis shows that
any three non-collinear points, one in each group, generates a Fano plane with one
point touching B and two points in each of the three groups. In different language,
this is a latin square of order six such that every selection of a row, column, and
symbol is contained in a proper 2× 2 subsquare. (For more on this correspondence,
see Section 6.) But such latin squares can only exist for orders a power of two; see
for instance [2]. �

Proposition 5.6 There does not exist PBD(32, {3, 4, 5}) of dimension three.

Proof: Again, let B be a block of size 5 and consider the GDD resulting from
the deletion of B and its incident proper flats. Possible sizes for such flats are
11, 13, 14, 15. It is enough to find some three-point generated flat which exhausts an
entire group of this GDD. Let’s divide the remainder of the argument into two cases
according to the type of the GDD. Twice we rely on the fact that a PBD(v, {3, 4})
with a block of size 4 must have v ≥ 10.

Case 1: (a 3-GDD of type 93) Let the groups be G1, G2, G3. There exist points
x ∈ B, a1 ∈ G1, and a2 ∈ G2 such that block 〈x, a1〉 has size three and block 〈x, a2〉
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has size four. Consider W = 〈x, a1, a2〉. This flat is a PBD with blocks of size 3 and
4. It follows by the pigeonhole principle that W meets some B ∪Gi in more than a
block, and hence W = V .

Case 2: (a {3, 4}-GDD of type 6391) Let the groups be Gi, i = 1, . . . , 4, with
|G4| = 9. It is clear from parity considerations that a block of size 4 must exist in
this GDD; call such a block A. Put {ai} := A ∩ Gi. For each point x ∈ B, we
consider 〈A, x〉. For each i, {x, ai} defines a block, say Ai, in the subsystem B ∪Gi.
Let yi 
= ai, x be a third point in Ai. It follows that 〈A, x〉 contains at least the points
x, ai, yi, i = 1, . . . , 4 and a block A of size four. Therefore, this flat must include an
additional (tenth) point, say z. If z ∈ Gi for i = 1, 2, 3, we obtain more than a block
in B ∪Gi. On the other hand, suppose z ∈ G4 for each choice of x ∈ B. This leads
to five blocks of size four intersecting (only) at a4 in the 14-point system B ∪ G4.
Since 14 < 5 · 3 + 1, we have a contradiction. �

Remark. Note the case of group sizes 8, 9, 10 is not possible.

It remains to prove nonexistence for 22, 24, 25. From the above GDD argument,
there cannot exist a block of size 5 in a hypothetical such PBD of dimension three.
Moreover, since there is no Steiner space of order 25, we conclude the existence of a
block of size four in each case. A structural result is helpful here.

Lemma 5.7 In a PBD(v, {3, 4}) of dimension three with v ≤ 27, if every flat con-
taining a block of size 4 has size 10, then all the blocks of size 4 intersect in a single
point.

Proof: We will first show that any two blocks of size 4 intersect. If not, suppose B1

and B2 are disjoint blocks of size four. Consider the flats 〈B1, x2〉, where x2 varies
in B2. These are four 10-point flats which pairwise intersect in exactly one of the
blocks of size 4. This requires v ≥ 28, a contradiction.

Now suppose at least three blocks of size four meet at x. That is, x belongs to a
10-point flat Y . Consider any other block B of size four. If x 
∈ B, then |B ∩Y | ≥ 3.
But B 
⊂ Y by the unique structure of PBD(10, {3, 4}). This contradicts that Y is a
flat, and we conclude that x ∈ B. �

Proposition 5.8 There does not exist PBD(v, {3, 4, 5}) of dimension three for v =
22, 24, 25.

Proof: By the above remarks, it suffices to consider block sizes in {3, 4} with at
least one block of size 4. For v even, every point is incident with an odd number
of blocks of size 4. This easily rules out order 24 since 24 
≥ 2 · 12 + 1 and 24 
≡ 1
(mod 3). For v = 22, deletion of the point common to all blocks of size 4 results in a
Steiner space of order 21, a contradiction. Finally, for v = 25, every point is incident
with an even number of blocks of size 4. Also, the existence of a flat W of order
12 is numerically impossible, since all other blocks are triples in view of Lemma 5.2.
Therefore, all blocks of size 4 intersect in a point, and this is a contradiction. �
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6 Applications

Here, we briefly look at how our existence results on block sizes K = {3, 4, 5} imply
the existence of various related objects. Consider first the question of other block
sizes.

Corollary 6.1
(a) There exist PBD(v, {3, 5}) of dimension three for all odd integers v ≥ 97.
(b) There exist PBD(v, {3, 4}) of dimension three for all v ≡ 0, 1 (mod 3), v ≥ 144.

Proof: For (a), take a PBD(u, {3, 4, 5}) of dimension three for u = v−1
2

≥ 48. Give
every point weight two and replace blocks with {3, 5}-GDDs of type 2i, which exist
for i = 3, 4, 5. The result, by Wilson’s fundamental construction, is a {3, 5}-GDD
of type 2u. Add a point and fill groups with blocks of size three to get the desired
PBD.

For (b), apply a similar proof with weight three, {3, 4}-GDDs of type 3i, and using
either zero or one extra point. �

In fact, Steiner spaces – the case K = {3} – can also be constructed in this way.
For example, we can give weight six to a PBD(v, {3, 4, 5}) of dimension three and
add a point, using 3-GDDs of types 6i, i = 3, 4, 5, as ingredients. Of more interest,
the existence of PBD(v, {3, 4}) for v = 33, 34 ∈ E would imply the existence of
Steiner spaces for two undecided orders: 67 and 69. This is via weight 2 and GDDs
of types 23, 24.

Recall that a latin square of order n is an n × n array on n symbols such that
every row and every column exhuasts the symbols (with no repetition). A (latin)
subsquare is a sub-array which is itself a latin square.

We often assume symbols (and row/column indices) are [n] := {1, . . . , n}. A latin
square is idempotent if the entry in diagonal cell (i, i) is i for each i ∈ [n].

Let us call a latin square L localized if, for every cell (i, j) and every symbol k,
there exists a proper subsquare of L containing both cell (i, j) and symbol k. The
smallest example of a localized latin square is the Boolean latin square of order 4,
shown below.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

This property is reminiscent of ‘rank four’ finite groups, in which no three-element
set generates the entire group. But, in fact, any rank two (that is, non-cyclic) group
G yields a localized latin square as its operation table. For a, b, c ∈ G, consider cell
(a, b) and symbol c of its operation table. There is a proper subgroup H containing
a−1cb−1. Entries in rows aH and columns Hb define a subsquare containing c ∈ aHb.
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The above discussion fails to obtain localized latin squares of ‘cyclicity-forcing’
orders (primes in particular). However, we can use PBD(v, {3, 4, 5}) of dimension
three to settle almost all orders.

Corollary 6.2 There exist localized latin squares of every order n ≥ 48.

Proof: Take a PBD(n, {3, 4, 5}), which exists by Theorem 1.2. We may assume the
set of points is [n] := {1, . . . , n}; let the set of blocks be B. For each B ∈ B, there
exists an idempotent latin square on the symbols of B; call it LB. Now, define an
(idempotent) latin square L by

Lij =

{
i if i = j;

LB
ij if i 
= j with {i, j} ⊆ B ∈ B.

For any selection 1 ≤ i, j, k ≤ n, the points {i, j, k} generate a proper flat, say Y , with
respect to B. It follows by construction of L that its restriction to Y (row/column
indices and symbols) forms a subsquare. This subsquare covers both cell (i, j) and
entry k. �

The truth is surely better than 48, although we refrain from a detailed analysis
of the small cases. The only orders in question are 15, 33, 35, and primes less than
48; see http://oeis.org/A003277.

7 Reducing dimension

The purpose of this section is to observe that dimension can be reduced, following a
‘flat swapping’ technique of Teirlinck in [10].

Theorem 7.1 If there exists a PBD(v, {3, 4, 5}) of dimension d ≥ 3 then there exists
one of dimension exactly three.

Most of Section 2 in [10], which proves a similar result for K = {3}, goes through
for general K. However, we must remark the existence of planes in our case; that is,
the existence of PBDs of dimension exactly two (for all possible orders). Later, this
is useful to reduce dimension in larger PBDs.

Lemma 7.2 There exists a PBD(v, {3, 4, 5}) of dimension two if and only if v 
=
2, 6, 8.

Proof: From Theorem 5.1, no PBD(v, {3, 4, 5}) of dimension greater than 2 exists
with v ≤ 26, except for PG3(2) with v = 15. In that case, any of the 79 other Steiner
triple systems (see [4] for instance) are planes.

Suppose, then, that v ≥ 27. Take a circulant latin square of order n regarded as a
3-GDD of type n3. Without loss of generality, row 1, column 1 and symbol 1 form

http://oeis.org/A003277
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a block. If we instead try to bound row 1, column 1, and symbol 2 in a subsquare,
then the circulant structure forces us to take the entire square.

Add i = 0, 1, or 5 points and fill the groups of this GDD with PBD(n+ i, {3, 4, 5}),
identifying i points (forming a block if i = 5). For i = 0 or 1, and n ≥ 9, we
cover all v ≥ 27 in congruence classes 0, 1 (mod 3). For i = 5 and n ≥ 8, we cover
the remaining values in the 2 (mod 3) class. Note, however, that this relies on the
existence of PBD(n+5, {3, 4, 5}) with a mandatory block of size 5 for all n ≥ 8. This
follows for n ≥ 46 from truncating up to four points from a TD(5, m), m ≥ 11. Small
values are not hard to find using various truncations of BIBD(n, 5, 1) or truncations
and fillings of TD(k,m) for k ∈ {3, 4, 5}. Details are left to the interested reader.

In any case, by the circulant structure and bound in Lemma 5.2, the three above
points still fail to generate a proper flat in the resulting filled PBDs. �

Surely, there are other possible proofs of Lemma 7.2, perhaps even ‘probabilistic’
ones. Now we move on to the key replacement lemmas, adapted from [10].

Lemma 7.3 Let (X,B) be a PBD(v,K). If in B we replace a maximal proper flat
B|Y by a plane (Y, C), then the resulting PBD (X,B) has dimension at most three.

Proof: Pick three points x1, x2, x3 ∈ Y that generate Y in C. Let y ∈ X \ Y . Put
U = 〈x1, x2, x3, y〉B. We have U ⊃ Y via x1, x2, x3. By maximality of Y in (X,B), it
follows that U = X. Since 4 points generate X in B, the claim follows. �

Recall the set of flats in a linear space forms a lattice under inclusion and inter-
section. Following Teirlinck, let us define the length of a linear space (X,B) to be the
length of a maximum chain in this lattice. For example, the length of AGd(q) is d+1;
any maximum chain looks like a point included in a line included in a plane, and so
on. A space of length exactly 3 is necessarily a plane, and is called nondegenerate to
indicate that it contains no proper planes.

We now show that swapping flats which have small length can have only mild
impact on dimension.

Lemma 7.4 Let (X,B) be a PBD(v,K) of dimension d containing a nondegenerate
plane (Z,B|Z). If in B we replace B|Z by any linear space (Z, C), then the resulting

PBD (X, B̂) has dimension at least d− 1.

Proof: Suppose for contradiction that some d − 1 points a1, . . . , ad−1 generate X
in B̂. Put W = 〈a1, . . . , ad−1〉B and consider W ∩ Z. If W ∩ Z = ∅, a point, or Z
itself, we have a contradiction. So suppose W ∩Z is a line L of Z. Pick any point z
in Z \L and let W ′ = 〈a1, . . . , ad−1, z〉B. Since W ′ contains both L and z and B|Z is

nondegenerate, it follows that Z ⊆ W ′. Therefore, W ′ is also a flat of X in B̂. Since
it contains a1, . . . , ad−1, we must have W ′ = X. This contradicts dimB = d. �
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Proposition 7.5 If, in some PBD(v,K), replacing every flat of length at most l
by another linear space with block sizes in K fails to reduce the dimension, then
replacing a flat of length l + 1 results in dimension at least d− 1.

Proof: [Outline] Use induction on l, with the basis case being furnished by Lemma
7.4. The proof technique is also similar to the lemma. If some d− 1 points generate
the whole space after replacement, then we consider what those points generate in
the original space B and obtain a contradiction. See [9, 10] for details. �

We are now ready to wrap up the argument on reducing dimension.

Proof:[Proof of Theorem 7.1] Let (X,B) be a PBD(v, {3, 4, 5}) of dimension d > 3.
Starting l from 3, either replacing some flat of length l can reduce the dimension to
d−1, or we can increment l as in Proposition 7.5. Since by Lemmas 7.2 and 7.3 there
is some replacement of a proper flat which reduces the dimension, at some value l
we must be able to reduce the dimension by exactly one. The result then follows by
induction on d. �

Remark. In fact, one obtains out of this proof spaces of all dimensions between 3
and d.

8 Discussion

For PBDs having no divisibility restrictions on their order v, the first case of interest
is when the allowed block sizes are in {3, 4, 5}. We have shown that such spaces
exist with dimension three whenever v ≥ 48, leaving a set E of only eight possible
unsettled cases between 33 and 47. These exceptions could break in either direction.
For v = 35, existence appears doubtful, while the large values in E are likely more
promising. This compares nicely with the state of the art for Steiner spaces, in which
there are four unsettled cases between 51 and 145. Computer search for the unsettled
cases has not been attempted, but it is also unlikely to help due to the scarcity of
examples in dimension three.

With no extra effort, we obtain a nearly complete existence theory when the same
question is asked for K = {3, 4}, {3, 5}, and also for latin squares.

We have also shown the existence of planes and, by flat swapping, that there are
no gaps in the possible dimensions for a given order v. It would be interesting to
prove the existence of nondegnerate planes of all possible orders for K = {3, 4, 5}. A
strategy similar to the proof of Lemma 7.2 might work in many cases. Alternatively,
one could try to adapt Doyen’s technique [6], which handles K = {3}.

Finally, one could take a slightly different viewpoint and instead ask for upper
bounds on f(v) such that, in some PBD(v, {3, 4, 5}), every set of three points belongs
to a flat of size at most f(v). From [7], we have f(v) < 1000, but a much better
bound is to be expected. The same approach can be used in the context of localized
latin squares to obtain a universal bound on their generated subsquares.



P.J. DUKES AND J. NIEZEN /AUSTRALAS. J. COMBIN. 61 (1) (2015), 98–113 113

References

[1] L.M. Batten and A. Beutelspacher, The theory of finite linear spaces: combina-
torics of points and lines, Cambridge University Press, 1993.

[2] P.J. Cameron, Minimal edge-colourings of complete graphs, J. London Math.
Soc. 11 (1975), 337–346.
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