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Abstract

In a mixed (Δ, d)-regular graph, every vertex is incident with Δ ≥ 1
undirected edges and there are d ≥ 1 directed edges entering and leaving
each vertex. If such a mixed graph has diameter 2, then its order cannot
exceed (Δ+ d)2 + d+1. This quantity generalizes the Moore bounds for
diameter 2 in the case of undirected graphs (when d = 0) and digraphs
(when Δ = 0). For every d such that d − 1 is a prime power, Kautz
digraphs of in- and out-degree d are Cayley digraphs of order missing the
directed Moore bound by just 1. At the other extreme, the author and
J. Širáň (2012) proved that the undirected Moore bound for diameter 2
and degree Δ can be asymptotically approached by Cayley graphs for
an infinite set of values of Δ. We consider extensions of these results to
mixed Cayley graphs, that is, mixed (Δ, d)-regular graphs admitting a
group of automorphisms acting regularly on vertices.

1 Introduction

The degree-diameter problem has frequently been considered in its two “pure” ver-
sions, namely, undirected and directed. The version of the problem for graphs that
may contain both undirected and directed edges, however, is of interest as well. In
this paper we consider the degree-diameter problem for the latter variety, sometimes
called partially directed or mixed graphs, and further restricting the attention to Cay-
ley graphs of diameter two. We begin by setting up terminology and notation to be
able to present further details about the subject and motivation of our research.

In this paper, a graph may contain both undirected and directed edges, called
just edges and darts, respectively. An undirected graph contains no darts while a
directed graph contains no edges. As usual, the order of a graph is the number of
its vertices. The degree of a vertex is the sum of the number of edges incident to
the vertex and the number of darts leaving the vertex. A path of length � ≥ 1 from
a vertex u to a vertex v, or an u → v path for short, is a sequence u0u1 . . . u� of
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vertices such that u0 = u, u� = v, and for every j ∈ {0, . . . , �−1} the vertices uj and
uj+1 are either joined by an edge or by a dart emanating from uj and terminating at
uj+1. The diameter of a graph is the smallest positive integer k such that for every
ordered pair (u, v) of distinct vertices there is a u → v path of length at most k; if
such a k does not exist we set k = ∞.

We will confine ourselves to regular graphs in what follows, deferring the reader
to [10] for general theory. Given non-negative integers Δ and d, we say that a graph
is (Δ, d)-regular if every vertex is incident to Δ edges and is the tail of d darts. The
order of a (Δ, d)-regular graph of diameter k is bounded above by the so-calledMoore
bound Mk(Δ, d), equal to the largest order of a unicentral tree of radius k each vertex
of which is incident to at most Δ edges and at most d darts leaving the vertex. An
explicit formula for Mk(Δ, d) may be found in [10] and will not be needed here in full
generality. The (Δ, d)-regular graphs of order equal to Mk(Δ, d) are called Moore
graphs.

It is well known that Moore graphs are rare. Indeed, by the classical results of
[1] and [6] for undirected graphs, [12] and [3] for directed graphs, and a relatively
recent result of [11], Moore graphs of diameter k ≥ 3 and degree Δ + d do not exist
at all except when Δ ≤ 2 and d = 0, or Δ = 0 and d = 1. Setting these degree
values and the case of the diameter k = 1 aside leaves us with the highly interesting
instances of diameter k = 2 and degrees Δ + d such that either Δ ≥ 3 and d = 0,
or Δ = 0 and d ≥ 2, or else both Δ, d �= 0. By results of [9], [3] and [2] for the
undirected, directed and mixed cases, a Moore (Δ, d)-regular graph of diameter 2
and degree Δ + d as above can exist only if Δ ∈ {3, 7, 57} and d = 0, or when
both Δ, d �= 0 and there is a positive integer divisor t of (4d − 3)(4d + 5) such that
Δ = (t2 + 3)/4. In particular, the Moore (3, 0)- and (7, 0)-regular undirected graphs
are unique (the Petersen and the Hoffman-Singleton graphs) and the existence of a
Moore (57, 0)-regular undirected graph is still in doubt; there are no (0, d)-regular
Moore directed graphs at all if d ≥ 2, and the problem of a complete classification
of mixed Moore graphs is still unresolved.

In the (almost) absence of Moore graphs, researchers have focused on construc-
tions of infinite families of large (Δ, d)-regular graphs of a given diameter. This,
however, was done almost exclusively for undirected and directed graphs; for more
information we again refer to the recent update of the survey [10]. For manageable
orders, a combined effort of a number of authors resulted in a number of computer-
generated large undirected and directed graphs of given degree and diameter; the
current results can be found in the on-line tables [17].

Not surprisingly, most of the extremely large undirected and directed graph orders
listed in [17] have been found as Cayley graphs. We recall that given a group H and a

unit-free subset S of H , the directed Cayley graph �C(H,S) has vertex set H and for
every h ∈ H and s ∈ S there is a dart emanating from the vertex h and terminating
at the vertex hs. If S contains with every element also its inverse, then we ‘collapse’
the pair of darts from h to hs and from hs to (hs)s−1 = h to a single undirected
edge, obtaining thereby an undirected Cayley graph denoted by C(H,S).

Generation (at both theoretical and computer-assisted level) of largest Cayley
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undirected and directed graphs of a given degree and diameter remains an open prob-
lem even for the smallest non-trivial diameter, k = 2. This is the main motivation of
our paper. We will review the degree-diameter problem restricted to undirected and
directed Cayley graphs and offer some extensions of the existing results to mixed
Cayley graphs, containing both edges and darts.

2 Large undirected and directed Cayley graphs of diameter

two and given degree

Let us begin our discussion with undirected graphs. The Moore bound for undirected
regular graphs of degree Δ and diameter 2 is M2(Δ, 0) = Δ2 + 1. The known
Moore graphs of diameter 2 and degree Δ ≥ 3, the Petersen graph and the Hoffman-
Singleton graph, are well known to be vertex-transitive non-Cayley graphs. Although
the existence or otherwise of an undirected Moore graph of degree 57 is unknown,
it was proved by Higman (see [5]) that such a graph cannot be vertex-transitive.
Combining these facts with the result of [7] implies that every Cayley graph of
diameter 2 and degree Δ ≥ 3 has order at most Δ2 − 1.

The current best constructive result on large Cayley graphs of diameter 2 and
given degree was obtained in [13]. We reproduce a substantial part of it for further
reference.

For any integer n ≥ 1 let F be a Galois field of order 22n and let F+ and F ∗ be the
additive and the multiplicative group of F . Take the one-dimensional affine group
Hn = AGL(1, F ) ∼= F+

� F ∗ with multiplication given by (a, b)(c, d) = (a + bc, bd)
for all a, c ∈ F+ and b, d ∈ F ∗. Let A = {(x, x2); x ∈ F ∗}. The group F+ can
be identified with a vector space of dimension 2n over a field of order 2. Let B
be the set of all elements of Hn of the form (z, 1) where z ranges over all non-zero
vectors in F+ whose first n or last n coordinates are equal to zero. The group F ∗

is isomorphic to the cyclic group Zm of order m = 22n − 1; let ϕ : Zm → F ∗

be such an isomorphism. Let C be the subset of Hn consisting of all elements of
the form (0, ϕ(j)) for j ∈ {±i; 1 ≤ i ≤ 2n−1 − 1} ∪ {±(2n − 1)i; 1 ≤ i ≤ 2n−1}.
It can be checked that Un = A ∪ B ∪ C is an inverse-closed subset of Hn, with
|Un| = 22n + 2n+2 − 6. By [13] we have:

Proposition 1 For every n ≥ 1 the (undirected) Cayley graph C(Hn, Un) has diam-

eter 2, degree Δn = |Un| = 22n+2n+2−6 and order |Hn| = 22n(22n−1) > Δ2
n−8Δ

3/2
n ;

in particular, |Hn|/M2(Δn, 0) → 1 as n → ∞. �

In this sense we may say that the family of Cayley graphs C(Hn, Un) of diameter
2 and degree Δn asymptotically approaches the Moore bound M2(Δn, 0) = Δ2

n + 1
as Δn → ∞. In somewhat more loose terms this shows that the undirected Moore
bound for diameter 2 can be asymptotically approached by Cayley graphs.

Let us now switch to directed graphs, which we will also call digraphs for short.
We begin with recalling from [10] that the directed Moore bound for diameter 2 and
degree d is M2(0, d) = d2 + d+ 1.



JANA ŠIAGIOVÁ /AUSTRALAS. J. COMBIN. 61 (1) (2015), 73–81 76

A beautiful short argument of [3] shows that a directed Moore graph of degree
d and diameter k exists if and only if d = 1 or k = 1. In particular, there are no
directed Moore graphs of diameter 2 and degree d ≥ 2. Surprisingly, there are (even
vertex-transitive) digraphs of diameter 2 for any degree d ≥ 2 of order d2+d, namely,

the line digraphs of complete digraphs �Kd+1, known also as Kautz digraphs. We recall
that in a complete digraph �Kd+1 o order d + 1, for any ordered pair u, v of distinct
vertices there is a dart from u to v, so that every such pair forms a directed cycle of
length 2, or a digon. Its line digraph L( �Kd+1) has diameter 2, in- and out-degree d,
and order (d+1)d, which misses the directed Moore bound M2(0, d) just by 1. By a
deep result of [8], the Kautz digraphs of degree d are the only digraphs of diameter
2, degree d and order M2(0, d)− 1 for any d ≥ 3.

Note that since the complete digraphs �Kd+1 are arc-transitive, the Kautz digraphs
L( �Kd+1) are vertex-transitive. By [4] the graph L( �Kd+1) is a Cayley digraph if and

only if the automorphism group of �Kd+1 contains a sharply 2-transitive subgroup
on vertices. Since Aut( �Kd+1) is isomorphic to the symmetric group Sd+1 of degree

d + 1 in its natural action on vertices, we may use [14] to conclude that L( �Kd+1) is
a Cayley digraph if and only if d + 1 is equal to a prime power q. In such a case
the corresponding sharply 2-transitive subgroup can be identified with a copy of a
1-dimensional affine group over a near-field of order q, cf. [14] again. In particular,
if d + 1 = q and F = GF (q) is a Galois field of order q, it is easy to check that

the Kautz digraph L( �Kd+1) can be identified with a Cayley digraph �C(H,D) for the
group H = AGL(1, F ) ∼= F+

� F ∗ and the generating set D = {(ax+ b, x); x ∈ F ∗}
for any preassigned a, b ∈ F such that a+ b �= 0. Summing up, we have the following
result a special case of which (for a = 0 and b = 1) can also be found in [15, 16]:

Proposition 2 A Kautz digraph L( �Kn) is a Cayley digraph if and only if n is a
prime power. Moreover, let (qn) be an arbitrary sequence of prime powers, let Fn =
GF (qn), let Hn = AGL(1, Fn) ∼= F+

n � F ∗
n and let Dn = Dn(a, b) = {(ax+ b, x); x ∈

F ∗
n} for fixed a, b such that a+ b �= 0. For every n ≥ 1 the Cayley digraph �C(Hn, Dn)

has diameter 2, degree dn = qn − 1, order d2n + dn and is isomorphic to a Kautz
digraph. �

The Kautz digraphs �C(Hn, Dn) therefore provide a sequence showing that the
directed Moore bound for diameter 2 can be approached by Cayley digraphs. This
time we not only have |Hn|/M2(0, dn) → 1 as n → ∞ but also the defect M2(0, dn)−
|Hn| is equal to 1, the smallest non-zero defect. Comparing this with the undirected
case, observe that Proposition 1 only guarantees that the ratio of the defect and the
undirected Moore bound tends to zero.

3 Large mixed Cayley graphs of diameter two and given
degree

A (Δ, d)-regular graph will be called mixed if Δ ≥ 1 and d ≥ 1. Here we will in-
vestigate the natural question of extending the statements from the previous section
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about asymptotic approach of the undirected and directed Moore bounds for diam-
eter 2 by infinite sequences of Cayley graphs and digraphs to the class of mixed
graphs.

The Moore bound for (Δ, d)-regular graphs of diameter 2 has the form [10]

M2(Δ, d) = (Δ + d)2 + d+ 1 (1)

and, as indicated in the Introduction, can easily be obtained estimating the number
of paths of length at most two from a fixed vertex in a (Δ, d)-regular graph. It
generalizes the undirected Moore bound Δ2 + 1 for undirected graphs (in the case
d = 0) as well as the directed Moore bound d2+ d+1 for directed graphs (i.e., when
Δ = 0). A (Δ, d)-regular graph of diameter 2 with both Δ, d ≥ 1 is called a mixed
Moore graph if its order is equal to the value of the Moore bound M2(Δ, d) from (1).

Examples of mixed Moore graphs exist for all degrees from two on and can be
obtained from the Kautz digraphs L( �Kn) of degree n − 1 by replacing every digon
by an undirected edge. The resulting graphs have degree Δ + d for Δ = 1 and
d = n − 2 ≥ 1 and order n(n − 1) = (Δ + d)2 + d + 1, which is indeed the Moore
bound M2(Δ, d). In fact, this is the only infinite family of mixed Moore graphs of
diameter 2 known to date, and by [8] these are the only mixed Moore graphs with
Δ = 1. Sporadic examples exist for some other values of Δ, cf. [11].

The concepts of a Cayley graph and a Cayley digraph have a natural common
generalization in the universe of mixed graphs. Let H be a group and let X and Y be
disjoint unit-free subsets of H such that X is closed under taking inverse elements,
that is, X = X−1. The mixed Cayley graph C(H ;X, Y ) has vertex set H ; for every
vertex h ∈ H there is an undirected edge joining h with hx for every x ∈ X and a
directed edge from h to hy for every y ∈ Y .

It is obvious that a mixed Cayley graph C(H ;X, Y ) is (Δ, d)-regular for Δ = |X|
and d = |Y |. The classical concepts of an undirected and a directed Cayley graph
correspond to the extreme cases when Y = ∅ and X = ∅, respectively. Observe that
our definition does not stipulate that Y cannot contain a pair of mutually inverse
elements. If there is an y ∈ H\{1} such that both y and y−1 are in Y , then there is
a directed edge from h to hy and also a directed edge from hy to h for every vertex
h ∈ H , forming a digon between the two vertices.

Returning to the theme of this section we now show that the mixed Moore bound
for diameter 2 can be approached by mixed Cayley graphs in a rather strong sense.
The order of a (mixed) graph G is denoted by |G| in what follows.

Theorem 1 For every c such that 0 ≤ c ≤ +∞ there exists an infinite sequence of
mixed (Δn, dn)-regular Cayley graphs Gn of diameter 2 such that |Gn|/M2(Δn, dn) →
1 and Δn/dn → c as n → ∞.

Proof. For any n ≥ 1 consider the undirected Cayley graph C(Hn, Un) of diam-
eter 2 and degree kn = 22n + 2n+2 − 6, described in Proposition 1. If 0 < c < +∞,
take an arbitrary inverse-closed subset Xn of Un such that |Xn| = � c

1+c
kn�. Note
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that this is possible independently in the parity of the integer on the right because
Un contains involutions. If c = 0 and c = +∞ we may take any Xn such that
|Xn| = o(kn) and |Xn| = (1 − o(1))kn < kn, respectively. Letting Yn = Un\Xn,
the crucial but easy observation to be made is that the diameters of the undirected
Cayley graph C(Hn, Un) and the mixed Cayley graph Gn = C(Hn, Xn, Yn) are the
same, namely, 2. Straightforward calculations with the help of Proposition 1 then
show that |Gn|/M2(Δn, dn) → 1 and Δn/dn → c. �

One might argue that the proof of Theorem 1 was based on ‘cheating’ in the sense
that we took a rather strong existing result from [13] on undirected Cayley graphs
C(Hn, Un) and replaced every edge joining a vertex h ∈ Hn with hy for y ∈ Yn in
the graph C(Hn, Un) by a digon formed by darts between the vertices h and hy in
the mixed Cayley graph C(Hn, Xn, Yn). This raises the question if it is possible to
strengthen Theorem 1 to simple mixed Cayley graphs, that is, graphs without any
digon.

Before addressing this concern let us mention another type of ‘cheating’ one might
use to produce statements about approaching the mixed Moore bound for diameter
2 by Cayley graphs. Instead of replacing edges by digons one may use in a sense a
reverse procedure, namely, replacing darts by edges provided that the number of such
replacements is negligible compared to the degree. More precisely, if Gn = �C(Hn, Dn)
is a family of Cayley digraphs of diameter 2 and degree kn such that |Gn|/k2

n → 1 as
n → ∞, let Un be a subset of Dn such that |Un| = o(kn). Letting now Xn = Un∪U−1

n

and Yn = Dn\Un, with |Xn| = Δn and |Yn| = dn, and considering the mixed Cayley
graphs G′

n = C(Hn, Xn, Yn) of diameter 2 we still have |G′
n|/(Δn + dn)

2 → 1 as
n → ∞. A way to avoid this is to require our mixed Cayley graphs C(H,X, Y ) have
the property that the removal of any element from X increases the diameter. More
generally, we will say that a mixed Cayley graph is irredundant if removal of any
generator from the generating set increases the diameter of the graph.

Any proper strengthening of Theorem 1 should therefore address simple and
irredundant mixed Cayley graphs. This appears to be much harder and we offer the
following result in this direction.

Theorem 2 There is an infinite sequence of simple and irredundant mixed (Δn, dn)-
regular Cayley graphs Gn of diameter 2 such that 4dn/Δ

2
n → 1 and |Gn|/M2(Δn, dn) →

1 as n → ∞.

Proof. For Let (qn) be an increasing infinite sequence of prime powers. Consider
the Galois field K = GF (q2n) and its unique subfield F isomorphic to GF (qn); as
before, K+, F+, K∗ and F ∗ will denote the corresponding additive and multiplicative
groups. Let Hn = AGL(1, K) = K+

� K∗, with the group operation (a, b)(c, d) =
(a + bc, bd) for a, c ∈ K+ and b, d ∈ K∗. Let A = {(0, x); x ∈ F ∗, x �= 1} and
let B = {(z, 1); z ∈ F ∗}. Observe that X = A ∪ B is an inverse-closed subset of
Hn. Further, let Y = {(1, s); s ∈ K∗\F ∗}. We show that the mixed Cayley graph
Gn = C(Hn, X, Y ) has all the properties of the statement of our theorem.
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Let us begin by proving that the diameter of Gn is 2, which is equivalent to
showing that every element (a, b) ∈ Hn not equal to the unit element (0, 1) and not
contained in X ∪Y is a sum of two elements from X∪Y . We will consider two cases.

Firstly, let a ∈ K\F ; in particular, a− 1 /∈ F and so a− 1 �= 0. Suppose b ∈ K∗

is such that b(a− 1)−1 ∈ K∗\F ∗. Letting s = a− 1 and t = b(a− 1)−1 one can check
that (1, s)(1, t) = (a, b), so that (a, b) is a product of two elements from Y . The other
possibility to consider is that b(a− 1)−1 ∈ F ∗; since a− 1 /∈ F we have b /∈ F . Then,
letting z = (a− 1)b−1 ∈ F ∗ and s = b /∈ F one sees that (1, s)(z, 1) = (a, b), that is,
(a, b) is now a product of an element of Y and an element of B ⊂ X .

Secondly, let a ∈ F . If b ∈ K∗\F ∗, we only need to consider a �= 1 since we have
(1, b) ∈ Y . Taking z = a − 1 �= 0 and s = b and realizing that (z, 1)(1, s) = (a, b)
we have (a, b) as a product of an element from B ⊂ X and an element from Y . If
b ∈ F ∗ and (a, b) �= (0, 1), then either (a, b) ∈ X or (a, b) = (a, 1)(0, b) is a product
of an element from A and an element from B.

It follows that the mixed Cayley graph Gn = C(Hn, X, Y ) has diameter 2. We
now address the issue of redundancy. Suppose we remove an element (1, u) from Y .
Then there is no way to express the element v = (1 + u, u2) as a product of two
elements from X ∪ Y . Indeed, since u /∈ F , the only way to do this would be as a
product of two elements from Y , that is, (1 + u, u2) = (1, s)(1, t) = (1 + s, st), or
as a product of an element from Y and an element from B, that is, (1 + u, u2) =
(1, s)(z, 1) = (1 + sz, s), and both ways lead to immediate contradictions. If an
element (z, 1) for some z ∈ F ∗ is removed, then choose a, b ∈ K∗\F ∗ such that
z = (a − 1)b−1. It can be checked that then (a, b) would not be expressible as a
product of two elements from X ∪ Y . Finally, if (0, x) is removed for some x ∈ F ∗,
x �= 1, then (1, x) would fail to be a product of two elements from X∪Y . This shows
that our mixed Cayley graph is irredundant.

To verify the remaining items of the statement of our theorem, observe that the
sets X and Y are disjoint and Y ∪Y −1 = ∅, implying that Gn is simple. Further, we
obviously have dn = |Y | = q2n−qn darts leaving every vertex, and Δn = |X| = 2qn−3
undirected edges incident with every vertex; note that 4dn/Δ

2
n → 1 as n → ∞. Since

|Gn| = |Hn| = q2n(q
2
n − 1) = (Δn + dn)

2 + O(q3n), we have |Gn|/M2(Δn, dn) → 1 as
n → ∞, completing the proof. �

In the proof of Theorem 2 we managed to replace just an asymptotically negli-
gible proportion of darts with edges, maintaining simplicity and irredundancy. An
analogous result for mixed Cayley graphs of affine one-dimensional groups over Ga-
lois fields of characteristic 2 can be stated and proved exactly as above by replacing
the set A with the set {(x, x2); x ∈ F ∗} used in Proposition 1, ‘marrying’ thus the
generating sets from Propositions 1 and 2.

The problem of extending Theorem 1 to simple and irredundant mixed Cayley
graphs remains i open. One of the issues is lack of suitable generating sets for Cayley
graphs and digraphs approaching the Moore bound for diameter 2. In fact, to the
best of our knowledge the only such generating sets known at the time of writing
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this article were those listed in Section 2.
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