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Abstract

For a graph G a bijection from the vertex set and the edge set of G to
the set {1, 2, . . . , |V (G)| + |E(G)|} is called a total labeling of G. The
edge-weight of an edge is the sum of the label of the edge and the labels
of the end vertices of that edge. The vertex-weight of a vertex is the
sum of the label of the vertex and the labels of all the edges incident
with that vertex. A total labeling is called edge-antimagic total (vertex-
antimagic total) if all edge-weights (vertex-weights) are pairwise distinct.
If a labeling is simultaneously edge-antimagic total and vertex-antimagic
total it is called a totally antimagic total labeling. A graph that admits
totally antimagic total labeling is called a totally antimagic total graph.

In this paper we deal with the problem of finding totally antimagic
total labeling of some classes of graphs. We prove that paths, cycles, stars,
double-stars and wheels are totally antimagic total. We also show that
a union of regular totally antimagic total graphs is a totally antimagic
total graph.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G is a
graph, then V (G) and E(G) stand for the vertex-set and edge-set of G, respectively.
Let |V (G)| = p and |E(G)| = q. Let Kn denote the complete graph on n vertices,
Pn the path on n vertices, Cn the cycle on n vertices.

A labeling of a graph G is any mapping that sends a certain set of graph elements
to a certain set of positive integers. If the domain is the vertex-set, or the edge-set,
respectively, the labeling is called a vertex labeling, or an edge labeling, respectively. If
the domain is V (G)∪E(G) then the labeling is called a total labeling. More precisely,
for a graph G a bijection f : V (G) ∪ E(G) → {1, 2, . . . , p+ q} is a total labeling of
G. Moreover, if the vertices are labeled with the smallest possible numbers, i.e.,
f(V (G)) = {1, 2, . . . , p}, then the total labeling is called super.

Under the labeling f , the associated edge-weight of an edge uv, uv ∈ E(G), is
defined by

wtf(uv) = f(uv) + f(u) + f(v).

The associated vertex-weight of a vertex v, v ∈ V (G), is defined by

wtf(v) =
∑

u∈N(v)

f(uv) + f(v),

where N(v) is the set of the neighbors of v.

In other words, the edge-weight of an edge is the sum of the label of the edge
and the labels of the end vertices of that edge, while the vertex-weight of a vertex is
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the sum of the label of the vertex and the labels of all the edges incident with that
vertex.

A labeling f is called edge-antimagic total (vertex-antimagic total), for short EAT
(VAT), if all edge-weights (vertex-weights) are pairwise distinct. A graph that admits
EAT (VAT) labeling is called an EAT (VAT) graph. If the edge-weights (vertex-
weights) are all the same then the total labeling is called edge-magic total (vertex-
magic total), for short EMT labeling (VMT labeling).

In 1990, Hartsfield and Ringel [18] introduced the concept of an antimagic la-
beling of a graph, that is, in our terminology, a vertex-antimagic edge labeling, i.e.,
according to Hartsfield and Ringel, an antimagic labeling of a graph G is an edge
labeling, where all the vertex-weights are required to be pairwise distinct. For an
edge labeling, a vertex-weight is the sum of the labels of all edges incident with
the vertex. Hartsfield and Ringel [18] conjectured that every tree except P2 admits
a vertex-antimagic edge (VAE) labeling and, moreover, every connected graph ex-
cept P2 has a VAE labeling. Alon, Kaplan, Lev, Roditty and Yuster [2] showed that
this conjecture is true for all graphs having minimum degree Ω(log |V (G)|).

If a VAE labeling satisfies the condition that the set of all the vertex-weights is
{a, a + d, . . . , a + (p − 1)d}, where a > 0 and d ≥ 0 are two fixed integers, then
the labeling is called an (a, d)-VAE labeling. The (a, d)-VAE labeling was defined by
Bodendiek and Walther [9] as (a, d)-antimagic labeling.

Motivated by results of Bodendiek and Walther (see [9] and [10]), Bača, Bertault,
MacDougall, Miller, Simanjuntak and Slamin [3] introduced the concept of an (a, d)-
VAT labeling. A VAT labeling is called an (a, d)-VAT labeling if the vertex-weights
form an arithmetic sequence starting from a and having common difference d, i.e.,
the set of all the vertex-weights is {a, a + d, . . . , a + (p − 1)d}, for some integers
a > 0 and d ≥ 0. The basic properties of an (a, d)-VAT labeling and its relationships
to other types of magic-type and antimagic-type labelings are investigated in [3].
In [27], it is shown how to construct super (a, d)-VAT labelings for certain families
of graphs, including complete graphs, complete bipartite graphs, cycles, paths and
generalized Petersen graphs. If d = 0 then the labeling is called a (super) vertex-
magic total, simply (super) VMT. The concept of VMT and super VMT graph was
introduced by MacDougall, Miller, Slamin and Wallis in [22]. There are several
results known for regular VMT graphs. A VMT labeling for Kn, for odd n, can be
found in [21], [22] and [24], and for Kn, with n even, in [13] and [17]. A construction
for VMT labeling of complete bipartite graphs Km,m is presented in [22]. In [16],
it is completely determined which complete bipartite graphs have VMT labelings.
Constructions of VMT labelings of certain regular graphs are given in [14], [15] and
[19]. The existence of super (a, d)-VAT labeling for disconnected graphs is examined
in [1]. The existence of antimagic labelings for plane graphs is studied in [4] and [8].

An (a, d)-EAT labeling of a graph G is a total labeling with the property that
the edge-weights form an arithmetic sequence starting from a and having common
difference d, where a > 0 and d ≥ 0 are two integers. The notion of (a, d)-EAT
labeling was introduced by Simanjuntak, Bertault and Miller in [26] as a natural
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extension of magic valuation defined by Kotzig and Rosa in [20]. Magic valuation
is also very often known as edge-magic labeling. Kotzig and Rosa [20] showed that
all caterpillars have magic valuations and conjectured that all trees have magic val-
uations. In [26] Simanjuntak, Bertault and Miller gave constructions of (a, d)-EAT
labelings for cycles and paths. Bača, Lin, Miller and Simanjuntak [5] presented some
relationships between (a, d)-EAT labeling and other labelings, namely, edge-magic
vertex labeling and edge-magic total labeling.

For further results on graph labelings see [6], [12] and [23].

There are known characterizations of all EAT and VAT graphs: In [25] Miller,
Phanalasy and Ryan proved

Proposition 1 ([25]). All graphs are (super) EAT.

Proposition 2 ([25]). All graphs are (super) VAT.

Since all graphs are EAT and VAT, naturally we can ask whether there exist
graphs possessing a labeling that is simultaneously vertex-antimagic total and edge-
antimagic total. We will call such a labeling a totally antimagic total labeling (TAT
labeling) and a graph that admits such a labeling a totally antimagic total graph
(TAT graph). If, moreover, the vertices are labeled with the smallest possible labels
then, as is customary, the labeling is referred to as super. The definition of totally
antimagic total labeling is a natural extension of the concept of totally magic labeling
defined by Exoo, Ling, McSorley, Phillips and Wallis in [11]. They showed that such
graphs appear to be rare. They proved that the only connected totally magic graph
containing a vertex of degree 1 is P3, the only totally magic trees are K1 and P3, the
only totally magic cycle is C3, the only totally magic complete graphs are K1 and
K3, and the only totally magic complete bipartite graph is K1,2.

In this paper we will deal with the following question. For a graph G does there
exist a total labeling that is both edge-antimagic and vertex-antimagic?

2 Join of graphs

We say that a labeling g is ordered (sharp ordered) if wtg(u) ≤ wtg(v) (wtg(u) <
wtg(v)) holds for every pair of vertices u, v ∈ G such that g(u) < g(v). A graph that
admits a (sharp) ordered labeling is called a (sharp) ordered graph.

Let G ∪ H denote the disjoint union of graphs G and H . The join G ⊕ H of
the disjoint graphs G and H is the graph G ∪H together with all the edges joining
vertices of V (G) and vertices of V (H). In this section we will deal with a totally
antimagic total labeling of G⊕K1. According to Proposition 1 we have that every
graph G is super EAT. If there exists a super EAT labeling of a graph G satisfying
the additional condition that it is also ordered we are able to prove that the join
G⊕K1 is TAT.

Theorem 1. Let G be an ordered super EAT graph. Then G⊕K1 is a TAT graph.
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Proof. Let g be an ordered super EAT labeling of G. As g is super, we can denote
the vertices of G by the symbols v1, v2, . . . , vp such that

g(vi) = i, for i = 1, 2, . . . , p.

Since g is ordered then for i = 1, 2, . . . , p− 1, we have

wtg(vi) ≤ wtg(vi+1).

By the symbol u we denote the vertex of G⊕K1 not belonging to G.

We define a new labeling f of G⊕K1 such that

f(x) = g(x) x ∈ V (G) ∪ E(G)

f(u) = 2p+ q + 1

f(viu) = p+ q + i i = 1, 2, . . . , p.

It is easy to see that f is a bijection from V (G ⊕ K1) ∪ E(G ⊕ K1) to the set
{1, 2, . . . , 2p+ q + 1}.

For the vertex-weights under the labeling f we have the following.

wtf(u) = f(u) +

p∑
i=1

f(uvi)

=
(
2p+ q + 1

)
+

p∑
i=1

(
p+ q + i

)

=

p+1∑
i=1

(
p+ q + i

)

=

(
p+ 1

)(
3p+ 2q + 2

)
2

.

For i = 1, 2, . . . , p we get

wtf(vi) = f(vi) +
∑

v∈NG(vi)

f(viv) + f(viu)

= g(vi) +
∑

v∈NG(vi)

g(viv) +
(
p + q + i

)
= wtg(vi) + p+ q + i

≤ wtg(vi+1) + p + q + i

< wtg(vi+1) + p + q + i+ 1 = wtf(vi+1).
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Moreover, as g is a super EAT labeling of G, we get

wtf(vp) = g(vp) +
∑

v∈NG(vp)

g(vpv) +
(
2p+ q

)

≤ p+

p−1∑
j=1

(
p+ q + 1− j

)
+ 2p+ q

= 3p+ q +

(
p− 1

)(
p+ 2q + 2

)
2

< wtf(u).

Thus, the vertex-weights are all different.

The edge-weights of the edges in E(G) under the labeling f are all different as g
is an EAT labeling of G. More precisely, we have

wtf(e) = wtg(e), for every e ∈ E(G).

Moreover, as g is super, for the upper bound on the maximum edge-weight of e ∈
E(G) under the labeling f , we have

wtmax
f (e) = wtmax

g (e) ≤ p+
(
p− 1

)
+
(
p+ q

)
= 3p+ q − 1.

For i = 1, 2, . . . , p, we get

wtf(uvi) = f(u) + f(uvi) + f(vi)

=
(
2p+ q + 1

)
+
(
p+ q + i

)
+ g(vi)

= 3p+ 2q + 1 + 2i > 3p+ q − 1 ≥ wtmax
f (e),

where e ∈ E(G).

It is easy to see that the edge-weights are also all different.

Thus f is a TAT labeling of G⊕K1.

The labeling method presented in Theorem 1 allows us to find TAT labeling for
G ⊕ K1 if we can find an ordered super EAT labeling of G. In some cases, if we
consider a given graph G with the corresponding (not ordered) super EAT labeling,
after applying the labeling method presented in Theorem 1 the obtained labeling
can be also TAT. However, also when the obtained labeling is not TAT it seems to
be very easy to modify the obtained labeling by swapping some labels and to get a
TAT labeling of G⊕K1. Thus we state the following conjecture.

Conjecture 1. Every graph G⊕K1 is TAT.

We also formulate the weaker version of the Conjecture 1.

Conjecture 2. Every complete graph is TAT.
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Let mG denote the disjoint union of m copies of graph G. In the following
lemmas we prove that certain families of graphs are totally antimagic total. These
include totally disconnected graphs on m vertices, m copies of K2, paths, and cycles.
Furthermore, the totally antimagic total labelings of these graphs have useful extra
properties.

Observation 1. For every positive integer m the graph mK1 is sharp ordered super
TAT.

Proof. Trivial.

Lemma 1. For every positive integer m the graph mK2 is sharp ordered super TAT.

Proof. We denote the vertices of mK2 by the symbols vi, i = 1, 2, . . . , 2m, such that
its edge set is

E(mK2) = {v1v2, v3v4, . . . , v2m−1v2m}.
Let us consider the labeling g of mK2 defined in the following way.

g(vi) = i i = 1, 2, . . . , 2m

g(vivi+1) = 2m+ i+1
2

i = 1, 3, . . . , 2m− 1.

It is easy to see that g is a super TAT labeling of mK2, as the edge-weight of the
edge vivi+1, i = 1, 3, . . . , 2m− 1, is

wtg(vivi+1) = g(vi) + g(vivi+1) + g(vi+1) = i+
(
2m+ i+1

2

)
+ (i+ 1)

= 2m+ 5i+3
2

and for the vertex-weights we get

wtg(vi) =

{
2m+ 3i+1

2
i = 1, 3, . . . , 2m− 1

2m+ 3i
2

i = 2, 4, . . . , 2m.

This concludes the proof.

Lemma 2. The graph Pn, n ≥ 2, is sharp ordered super TAT.

Proof. We denote the vertices of Pn by the symbols vi, i = 1, 2, . . . , n, such that

E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.
It is easy to check that the labeling g, g : V (Pn)∪E(Pn) → {1, 2, . . . , 2n−1} satisfies
the above mentioned condition, when

g(vi) =

{
2i− 1 i = 1, 2, . . . ,

⌈
n
2

⌉
2n + 2− 2i i =

⌈
n
2

⌉
+ 1,

⌈
n
2

⌉
+ 2, . . . , n

g(vivi+1) =

{
n− 1 + 2i i = 1, 2, . . . ,

⌊
n
2

⌋
3n− 2i i =

⌊
n
2

⌋
+ 1,

⌊
n
2

⌋
+ 2, . . . , n− 1.
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Lemma 3. The graph Cn, n ≥ 3, is sharp ordered super TAT.

Proof. We denote the vertices of Cn by the symbols vi, i = 1, 2, . . . , n, such that the
edge set of Cn is

E(Cn) = {v1v2, v2v3, . . . , vnv1}.
Let us consider the labeling g : V (Cn) ∪ E(Cn) → {1, 2, . . . , 2n}, defined as

g(vi) =

⎧⎪⎨
⎪⎩
1 i = 1

2i− 2 i = 2, 3, . . . ,
⌊
n
2

⌋
+ 1

2n+ 3− 2i i =
⌊
n
2

⌋
+ 2,

⌊
n
2

⌋
+ 3, . . . , n

g(vivi+1) =

{
n− 1 + 2i i = 1, 2, . . . ,

⌈
n
2

⌉
3n+ 2− 2i i =

⌈
n
2

⌉
+ 1,

⌈
n
2

⌉
+ 2, . . . , n− 1

g(vnv1) = n + 2.

It is a simple mathematical exercise to check that g is a sharp ordered super TAT
labeling of Cn with the desired properties.

A wheel Wn with n spokes is isomorphic to the graph Cn ⊕ K1. The vertex of
degree n is called the central vertex. The edges not incident to the central vertex are
called rim edges. Immediately from Lemma 3 and Theorem 1, we get the following
result.

Corollary 1. The wheel Wn is TAT for n ≥ 3.

The friendship graph Fn is a graph isomorphic to (nK2)⊕K1. Alternatively, the
friendship graph Fn can be obtained from the wheel W2n by removing every second
rim edge.

Corollary 2. The friendship graph Fn is TAT for n ≥ 1.

Proof. The result follows from Lemma 1 and Theorem 1.

If one rim edge is removed from Wn, the resulting graph is called a fan, denoted
by Fn. Alternatively, a fan Fn is isomorphic to the graph Pn ⊕K1. From Lemma 2
and Theorem 1, we get

Corollary 3. The fan Fn is TAT for n ≥ 2.

Corollary 4. The star Sn is TAT for n ≥ 1.

Proof. The star Sn is isomorphic to (nK1)⊕K1. The result follows from Observation
1 and Theorem 1.
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3 Corona graph

If G has order p, the corona of G with a graph H , denoted by G 	H , is the graph
obtained by taking one copy of G and p copies of H and joining the ith vertex of
G with an edge to every vertex in the ith copy of H . A cycle of order m with n
pendant edges attached at each vertex, i.e., Cm 	 nK1, is called an n-crown with
cycle of order m.

Theorem 2. Let G be a regular ordered super EAT graph. Then the graph G	 nK1

is TAT for every n ≥ 1.

Proof. Let G be a regular graph. Let g be an ordered super EAT labeling of G. As
g is super, we can denote the vertices of G by the symbols v1, v2, . . . , vp, such that

g(vi) = i, for i = 1, 2, . . . , p.

Since g is ordered, this means that wtg(vi) ≤ wtg(vi+1), for i = 1, 2, . . . , p− 1.

We denote the vertices of G 	 nK1 not belonging to G by the symbols ui,j,
i = 1, 2, . . . , p, j = 1, 2, . . . , n, such that ui,jvi ∈ E(G	 nK1).

We define a labeling f of G	 nK1 in the following way.

f(x) = g(x) + 2pn x ∈ V (G) ∪ E(G)

f(ui,j) = (i− 1)n+ j i = 1, 2, . . . , p, j = 1, 2, . . . , n

f(ui,jvi) = (i− 1)n+ j + np i = 1, 2, . . . , p, j = 1, 2, . . . , n.

It is easy to see that f is a bijection from the union of the vertex set and the edge
set of G 	 nK1 to the set {1, 2, . . . , p+ q + 2pn}. For the edge-weight of the edge
vivk, i = 1, 2, . . . , p, k = 1, 2, . . . , p, i 
= k, under the labeling f , we have

wtf(vivk) = f(vi) + f(vivk) + f(vk)

=
(
g(vi) + 2pn

)
+
(
g(vivk) + 2pn

)
+
(
g(vk) + 2pn

)
= wtg(vivk) + 6pn.

As g is an EAT labeling, the weights of all the edges e ∈ E(G) are different under
the labeling f as well.

For the edge ui,jvi, i = 1, 2, . . . , p, j = 1, 2, . . . , n, we obtain

wtf(ui,jvi) = f(ui,j) + f(ui,jvi) + f(vi)

=
(
(i− 1)n+ j

)
+
(
(i− 1)n + j + np

)
+
(
g(vi) + 2pn

)
= 3pn− 2n+ i(2n + 1) + 2j.

This means that all the edges in E(G 	 nK1)\E(G) have different edge-weights.
Moreover,

wtf(ui,jvi) = 3pn− 2n + i(2n+ 1) + 2j

≤ 3pn− 2n+ p(2n+ 1) + 2n = p+ 5pn

≤ 6pn,
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for i = 1, 2, . . . , p, j = 1, 2, . . . , n. Thus, for all the edges e1 and e2, e1 ∈ E(G) and
e2 ∈ E(G	 nK1)\E(G),

wtf(e1) > wtf (e2).

Thus the edge-weights of all the edges in G	 nK1 are different.

We have to check that also the vertex-weights are different. For the vertex ui,j,
i = 1, 2, . . . , p, j = 1, 2, . . . , n, we get

wtf(ui,j) = f(ui,j) + f(ui,jvi) =
(
(i− 1)n + j

)
+
(
(i− 1)n+ j + np

)
= pn− 2n+ 2ni+ 2j.

Thus the vertex-weights are all different numbers from the set

{pn+ 2, pn+ 4, . . . , 3pn}.
For the vertex vi, i = 1, 2, . . . , p, we get

wtf(vi) =

n∑
j=1

f(ui,jvi) + f(vi) +
∑

vivk∈E(G)

f(vivk)

=

n∑
j=1

(
(i− 1)n+ j + np

)
+
(
g(vi) + 2pn

)
+

∑
vivk∈E(G)

(
g(vivk) + 2pn

)

= n2(i− 1) +
n∑

j=1

j + n2p+ 2pn

+

(
g(vi) +

∑
vivk∈E(G)

g(vivk)

)
+ 2pn · degg(vi)

=
n(n+ 1)

2
+ n2p+ 2pn

(
degg(vi) + 1

)
+wtg(vi) + n2(i− 1).

As G is a regular graph, we have

degg(vi) = r, for i = 1, 2, . . . , p.

Thus

wtf(vi) =
n(n+ 1)

2
+ n2p+ 2pn

(
r + 1

)
+ wtg(vi) + n2(i− 1)

> 3pn.

As wtg(vi) ≤ wtg(vi+1), for i = 1, 2, . . . , p−1, this means that also the vertex-weights
under the labeling f are all different.
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Immediately from Theorem 2 and Lemmas 1 and 3, we obtain the following
corollaries.

Corollary 5. The double-star Sn,n
∼= K2 	 nK1 is TAT for every n ≥ 1.

Corollary 6. The n-crown Cm 	 nK1 is TAT for every n ≥ 1, m ≥ 3.

Note that using Theorem 2 and Observation 1, we obtain that the star Sn, Sn
∼=

K1 	 nK1, is TAT for every n ≥ 1.

In a similar manner as in the proof of Theorem 2 and using Lemma 2, we can
also prove the following result.

Corollary 7. The graph Pm 	 nK1 is TAT for every n ≥ 1, m ≥ 2.

4 Union of graphs

In this section we will deal with disjoint union of regular TAT graphs.

Theorem 3. Disjoint union of regular TAT graphs is a TAT graph.

Proof. Let Gi be a ri-regular graph of order |V (Gi)| and size |E(Gi)| = ri|V (Gi)|
2

,
i = 1, 2, . . . , m. Let gi, i = 1, 2, . . . , m, be a TAT labeling of Gi. Thus,

gi : V (Gi) ∪ E(Gi) → {1, 2, . . . , |V (Gi)|+ |E(Gi)|}

such that
wtgi(v) 
= wtgi(u),

for all v, u ∈ V (Gi), u 
= v and

wtgi(e) 
= wtgi(h),

for all e, h ∈ E(Gi), e 
= h.

Without loss of generality we assume that ri+1 ≥ ri, i = 1, 2, . . . , m − 1. We
define a labeling f of

⋃m
i=1Gi such that

f(x) =

⎧⎪⎨
⎪⎩
g1(x) x ∈ V (G1) ∪ E(G1)

gi(x) +
i−1∑
j=1

|V (Gj)|+
i−1∑
j=1

|E(Gj)| x ∈ V (Gi) ∪ E(Gi), i = 2, 3, . . . , m.

It is easy to see that f is a total labeling of
⋃m

i=1Gi.

For the edge-weights under the labeling f we obtain

wtf(e) =

⎧⎪⎨
⎪⎩
wtg1(e) e ∈ E(G1)

wtgi(e) + 3

(
i−1∑
j=1

|V (Gj)|+
i−1∑
j=1

|E(Gj)|
)

e ∈ E(Gi), i = 2, 3, . . . , m.
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As gi, i = 1, 2, . . . , m is edge-antimagic labeling, the edge-weights of all edges in
E(Gi) under the labeling f are pairwise distinct. Moreover, the maximum edge-
weight of an edge e ∈ E(Gi), i = 1, 2, . . . , m, is

wtmax
f (e) ≤

3∑
k=1

( i∑
j=1

|V (Gj)|+
i∑

j=1

|E(Gj)|+ 1− k

)

= 3

( i∑
j=1

|V (Gj)|+
i∑

j=1

|E(Gj)|
)
− 3.

Thus f is an edge-antimagic labeling of
⋃m

i=1Gi.

For the vertex-weights under the labeling f , we get

wtf(v) =

⎧⎪⎨
⎪⎩
wtg1(v) v ∈ V (G1)

wtgi(v) +
(
ri + 1

)(i−1∑
j=1

|V (Gj)|+
i−1∑
j=1

|E(Gj)|
)

v ∈ V (Gi), i = 2, 3, . . . , m.

As gi, i = 1, 2, . . . , m is vertex-antimagic labeling, the vertex-weights of all vertices
in V (Gi) under the labeling f are pairwise distinct. The maximum vertex-weight of
a vertex vi ∈ V (Gi) is

wtmax
f (vi) ≤

ri+1∑
k=1

( i∑
j=1

|V (Gj)|+
i∑

j=1

|E(Gj)|+ 1− k

)

= (ri + 1)

( i∑
j=1

|V (Gj)|+
i∑

j=1

|E(Gj)|
)
− ri(ri + 1)

2
.

Moreover, the minimum vertex-weight of a vertex vi+1 ∈ V (Gi+1), i = 1, 2, . . . , m−1
is

wtmin
f (vi+1) ≥

ri+1+1∑
k=1

( i∑
j=1

|V (Gj)|+
i∑

j=1

|E(Gj)|+ k

)

= (ri+1 + 1)

( i∑
j=1

|V (Gj)|+
i∑

j=1

|E(Gj)|
)
+

(ri+1 + 1)(ri+1 + 2)

2
.

As ri+1 ≥ ri, i = 1, 2, . . . , m − 1, a labeling f is also a vertex-antimagic labeling of⋃m
i=1Gi.

Immediately, from the previous theorem, we obtain

Corollary 8. If G is a regular TAT graph then mG is TAT for every m ≥ 1.
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5 Conclusion

In this paper we have dealt with the problem of finding totally antimagic total label-
ings of graphs. Thus we were trying to find total labelings that are simultaneously
vertex-antimagic total and edge-antimagic total. We showed the existence of such
labelings for some classes of graphs, such as paths, cycles, stars, double-stars, wheels,
etc. We also proved that a union of regular totally antimagic total graphs is a totally
antimagic total graph.

For further investigation we state the following open problems.

Open problem 1. Find some necessary and some sufficient conditions for a graph
to be totally antimagic total.

Open problem 2. Characterize totally antimagic total graphs.

Another interesting problem related to totally antimagic total labelings is to find
total labeling that is simultaneously vertex-magic and edge-antimagic, or simultane-
ously vertex-antimagic and edge-magic total. Thus we conclude this paper with the
following open problems.

Open problem 3. Characterize the graphs that allow a total labeling that is simul-
taneously vertex-magic and edge-antimagic.

Open problem 4. Characterize the graphs that allow a total labeling that is simul-
taneously vertex-antimagic and edge-magic.

Open problem 5. Characterize the graphs that allow a total labeling in which the
vertex-weights and edge-weights are all distinct.

Note that some results related to Open problems 4 and 5 are presented in [7].
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