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Abstract

Bicubic maps are in bijection with β(0, 1)-trees. We introduce two new
ways of decomposing β(0, 1)-trees. Using this we define an endofunc-
tion on β(0, 1)-trees, and thus also on bicubic maps. We show that this
endofunction is in fact an involution. As a consequence we are able to
prove some surprising results regarding the joint equidistribution of cer-
tain pairs of statistics on trees and maps. Finally, we conjecture the
number of fixed points of the involution.

1 Introduction

A planar map is an embedding of a connected multigraph in the sphere with no edge-
crossings, considered up to continuous deformations. A map has vertices, edges, and
faces (disjoint simply connected domains). The maps we consider shall be rooted,
meaning that a directed edge has been distinguished as the root. The face that lies
to the right of the root edge while following its orientation is the root face, whereas
the vertex from which the root stems is the root vertex. When drawing a planar map
on the plane, we usually follow the convention to choose the outer (unbounded) face
as the root face. Tutte [10, Chapter 10] founded the enumerative theory of planar
maps in a series of papers in the 1960s (see [9] and the references in [3]).
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MTM2011–24097 and DGR2009–SGR1040.
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A planar map in which each vertex is of degree 3 is cubic; it is bicubic if, in
addition, it is bipartite, that is, if its vertices can be colored using two colors, say,
black and white, so that adjacent vertices are assigned different colors.

The smallest bicubic map has two vertices and three edges joining them. It is
well-known that the faces of a bicubic map can be colored using three colors so that
adjacent faces have distinct colors, say, colors 1, 2 and 3, in a counterclockwise order
around white vertices. We will assume that the root vertex is black and the root face
has color 3. There are exactly three different bicubic maps with 6 edges and they
are given in Figure 1. The number of bicubic maps with 2n vertices was given by
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Figure 1: All bicubic maps with 4 vertices.

Tutte [9]:
3 · 2n−1(2n)!

n!(n+ 2)!
.

Let M be a bicubic map. For i = 1, 2, 3, let Fi(M) be the set of i-colored faces
of M . Let R1 ∈ F1(M), R2 ∈ F2(M), and R3 ∈ F3(M) be the three faces around
the root vertex; in particular, R3 is the root face. We shall now define two statistics
on bicubic maps:

f1r3(M) is the number of faces in F1(M) that touch R3;

f3r2(M) is the number of faces in F3(M) that touch R2.

Consider the following transformation φ on bicubic maps. Recolor the faces by
the mapping {1 7→ 2, 2 7→ 3, 3 7→ 1}. Keep the colors of the vertices. Keep, also, the
root vertex, but let the new root edge be the first edge in counterclockwise direction
from the old root edge:

old root

ne
w
ro
ot

It is easy to see that φ is a bijection; indeed, φ3 is the identity transformation.
Moreover, φ establishes the following result.

Proposition 1. For any positive integer n, we have∑
M

xf1r3(M) =
∑
M

xf3r2(M),

where both sums are over all bicubic maps on n vertices. In other words, the statistics
f1r3 and f3r2 are equidistributed.
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In this paper we show the following stronger result.

Theorem 2. For any positive integer n, we have∑
M

xf1r3(M)yf3r2(M) =
∑
M

xf3r2(M)yf1r3(M),

where both sums are over all bicubic maps on n vertices. In other words, the two
pairs of statistics (f1r3, f3r2) and (f3r2, f1r3) are jointly equidistributed.

To prove Theorem 2 we first translate the statement to a corresponding statement
on so called β(0, 1)-trees; there is a one-to-one correspondence [4] between bicubic
maps and such trees. We then provide two proofs of the theorem. Our first proof
of Theorem 2 is based on generating functions (see the end of Section 4). Our
combinatorial proof of the theorem (see Corollary 12 and the text following it) is
based on defining an endofunction on the trees, and proving that it is an involution
that respects the statistics in question (see Theorem 10). We also conjecture the
number of fixed points of the involution.

The results in this paper can be seen as an extension to β(0, 1)-trees and bicubic
maps of studies conducted in [1, 2, 5, 6] on β(1, 0)-trees and rooted non-separable
planar maps.

2 β(0, 1)-trees

Cori et al. [4] introduced description trees to give a framework for recursively de-
composing several families of planar maps. A β(0, 1)-tree is a particular kind of
description tree; it is defined as a rooted plane tree whose nodes are labeled with
nonnegative integers such that

1. leaves have label 0;

2. the label of the root is one more than the sum of its children’s labels;

3. the label of any other node exceeds the sum of its children’s labels by at most
one.

The unique β(0, 1)-tree with exactly one node (and no edges) will be called trivial;
the root of the trivial tree has label 0. Any other β(0, 1)-tree will be called nontrivial.
In Figure 2 we have listed all β(0, 1)-trees on 4 nodes. Let root(T ) denote the root
label of T , and let sub(T ) denote the number of children of the root. We say that
a β(0, 1)-tree T is reducible if sub(T ) > 1, and irreducible otherwise. Any reducible
tree can be written as a sum of irreducible ones, where the sum U ⊕ V of two trees
U and V is defined as the tree obtained by identifying the roots of U and V into a
new root with label root(U) + root(V )− 1. See Figure 3 for an example.

Note also that any irreducible tree with at least one edge is of the form λi(T ),
where 0 ≤ i ≤ root(T ) and λi(T ) is obtained from T by joining a new root via an
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Figure 2: All β(0, 1)-trees on 4 nodes.
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Figure 3: Decomposing a reducible β(0, 1)-tree.

edge to the old root; the old root is given the label i, and the new root is given the
label i+ 1. For instance,

if T =
2

0
1

0

then λ0(T ) =
1

0

0
1

0

, λ1(T ) =
2

1

0
1

0

, and λ2(T ) =
3

2

0
1

0

.

Let us now introduce a few more statistics on β(0, 1)-trees. By the rightmost path
we shall mean the path from the root to the rightmost leaf. We define rzero(T ) as
the number of zeros on the rightmost path. By definition, rzero( ) = 0.

A node is called excessive if its label exceeds the sum of its children’s labels; it
is called moderate otherwise. In particular, a leaf is a moderate node and the root
is an excessive node. Assuming that T is nontrivial, we let rmod(T ) be the number
of moderate nodes on the rightmost path of T . For the case of the trivial tree we
define rmod( ) = 0.

A node on the rightmost path, possibly the root, will be called open if its rightmost
child (the child on the rightmost path), if any, is a non-leaf moderate node. In
particular, the rightmost leaf is always an open node. Let open(T ) denote the number
of open nodes in T ; we define open( ) = 0.

For the tree T in Figure 3 we see that root(T ) = 4, sub(T ) = 4, rzero(T ) = 1 and
rmod(T ) = open(T ) = 2. That rmod(T ) and open(T ) agree is not a coincidence as
demonstrated in the proof of the following lemma.
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Lemma 3. For any β(0, 1)-tree T we have rmod(T ) = open(T ).

Proof. Since the right child of a non-leaf open node is non-leaf and moderate, and
the root is not a moderate node, it follows that among non-leaves the numbers of
open and moderate nodes agree. As the rightmost leaf is both open and moderate,
the equality of both statistics follows.

3 Bicubic maps as β(0, 1)-trees

Following [3] we will now describe a bijection between bicubic maps and β(0, 1)-trees.
Let us first recall some definitions from the introduction. For any bicubic map M
and i = 1, 2, 3, let Fi(M) be the set of i-colored faces of M . Let R1 ∈ F1(M), R2 ∈
F2(M), and R3 ∈ F3(M) be the three faces around the root vertex; in particular,
R3 is the root face. In addition, let S1 ∈ F1(M) be the 1-colored face that meets the
vertex that the root edge points at:

R1 R2 S1

R3

Let us say that a face touches another face k times if there are k different edges each
belonging to the boundaries of both faces. Define the following two statistics:

b(M) is the number of black vertices incident to both R1 and R2;

s1r3(M) is the number of times S1 touches R3.

For example, let M1, M2 and M3 be the three maps in Figure 1 (in that order). Then
rzero(M1) = 2 and rzero(M2) = rzero(M3) = 1. Also, s1r3(M1) = 1, s1r3(M2) = 2
and s1r3(M3) = 1.

We say that M is irreducible if s1r3(M) = 1, or, in other words, if S1 touches R3

exactly once; we say that M is reducible otherwise. We shall introduce operations
on bicubic maps that correspond to λi and ⊕ of β(0, 1)-trees. This will induce the
desired bijection ψ between bicubic maps and β(0, 1)-trees.

To construct an irreducible bicubic map based on M , and having two more ver-
tices than M , we proceed in one of two ways. The first way (1) corresponds to λi(T )
when i = root(T ); the second way (2) corresponds to λi(T ) when 0 ≤ i < root(T ).

(1) We create a new 1-colored face touching the root face exactly once, so f1r3(M ′)
= f1r3(M)+1, by removing the root edge from M and adding two new vertices
and four new edges that we connect to the map as in Figure 4.

(2) Assuming that f1r3(M) = k, that is, M has k 1-colored faces touching the
root face, we can create an irreducible map M ′ such that f1r3(M ′) = i, where
1 ≤ i ≤ k. To this end, we remove the root edge from M . Starting at the
root node and counting in clockwise direction, we also remove the first edge of
the i-th 1-colored face that touches the root face. In Figure 5 we schematically
illustrate the case i = 3. Next we add two more vertices and respective edges,
and assign a new root as shown in the figure.
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Figure 4: Constructing an irreducible map (Case 1).
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Figure 5: Constructing an irreducible map (Case 2).

Any irreducible bicubic map on n+ 2 vertices can be constructed from some bicubic
map on n vertices by applying operation (1) or (2) above.

We shall now describe how to create a reducible map based on irreducible maps
M1, M2, . . . , Mk. An illustration for k = 3 can be found in Figure 6. This corresponds
to the ⊕-operation on β(0, 1)-trees.

(3) We begin by lining up the maps M1, M2, . . . , Mk. Next, in each map Mi, we
remove the first edge (in counter-clockwise direction) from the root edge on the
root face. Then we connect the maps as shown in the figure, and define the
root edge of the obtained map to be the root edge of Mk.

Any reducible bicubic map on n vertices can be constructed by applying the above
operation (3) to some ordered list of irreducible bicubic maps whose total number of
vertices is n.

By defining operations on bicubic maps corresponding to the operations λi and
⊕ we have now completed the definition of the bijection ψ between bicubic maps
and β(0, 1)-trees. Two examples of applying ψ can be found in the appendix.

Proposition 4. Let M be a bicubic map, and let one(M) = |F1(M)| be the number
of 1-colored faces in M . Let T be a β(0, 1)-tree, and let exc(T ) denote the number of
excessive nodes in T . Let ψ be the map from bicubic maps to β(0, 1)-trees described

1

M1

3

1

M2

3

1

M3

3

7−→ M ′ = M3 M2

1

M1

3

Figure 6: Constructing a reducible map.
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above. Finally, assume that T = ψ(M). Then

exc(T ) = one(M);

root(T ) = f1r3(M);

rmod(T ) = f3r2(M);

rzero(T ) = b(M);

sub(T ) = s1r3(M).

Proof. The proofs of these five equalities are similar, and we will only detail the proof
of rzero(T ) = b(M); the proofs of the other equalities are simpler. Clearly,

rzero
(

1

0

)
= b

(
3 1

2

)
= 1.

Let M ′ be a bicubic map with at least 4 vertices. Then M ′ can be constructed from
one (M) or more (M1, . . . ,Mk) smaller bicubic maps as per the three rules above.

(1) Assume that T and T ′ are the trees corresponding to M and M ′, respectively.
Then T ′ = λi(T ) with i = root(T ). The labels on the rightmost path of T are
preserved in T ′, and a new nonzero (root) node is added. Thus rzero(T ′) =
rzero(T ). We need to show that rzero(M ′) = rzero(M), but this easy to see
from the picture above: the only black vertex added is not incident to R1, and
the status (incident or not incident to R1 and R2) of each of the other black
vertices incident to both R1 and R2 is preserved.

(2) Here T ′ = λi(T ) with 0 ≤ i < root(T ), and we distinguish two sub-cases.

(a) Assume that i = 0. Comparing T to T ′ we see that one more zero appears
on the rightmost path of T ′, namely the new root. Thus rzero(T ′) =
rzero(T ) + 1. On the map M ′ we have just one 1-colored face touching R3

and this face must be R1. ComparingM toM ′ we see that the black vertex
added to M in order to form M ′ is incident to both R1 and R2. The status
of each of the other black vertices is preserved. Thus b(M ′) = b(M) + 1.

(b) Assume that i > 0. Clearly, rzero(T ′) = rzero(T ). The black vertex added
to M in order to form M ′ is not incident with R1, and the status of each
of the other black vertices is preserved. Thus b(M ′) = b(M).

(3) Assume that T1, . . . , Tk and T ′ are the trees corresponding to M1, . . . ,Mk and
M ′, respectively. Clearly, rzero(T ′) = rzero(Tk). Consider M ′: no black vertex
in M1, . . . ,Mk−1 can contribute to the b-statistic because such a vertex is nei-
ther incident to R1 nor incident to R2. Since the status of each of the black
vertices in Mk is preserved it follows that b(M ′) = b(Mk).

The result now follows by induction.
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Figure 8: An example using µi.

4 New ways to decompose β(0, 1)-trees

For any β(0, 1)-trees T1, T2, . . . , Tk define

ρ(T1, T2, . . . , Tk) = λ0(T1)⊕ λ0(T2)⊕ · · · ⊕ λ0(Tk).

Let S and T be β(0, 1)-trees. Assume that root(S) = 1 and that T is nontrivial. Let
i be an integer such that 1 ≤ i ≤ open(T ), and let x denote the ith open node on
the rightmost path of T . Also, let y be x if x is a leaf and let y be the rightmost
child of x otherwise. We define µi(S, T ) as the β(0, 1)-tree obtained by identifying x
with the root of S, keeping the label of x, and then adding one to each node on the
rightmost path of T between the root and y. A schematic illustration can be found
in Figure 7, and a specific example can be found in Figure 8. For convenience we
also define that µ1(S, ) = S.

Note that any β(0, 1)-tree U with root(U) = 1 is of the form ρ(T1, T2, . . . , Tk)
for some β(0, 1)-trees T1, T2, . . . , Tk. On the other hand, any β(0, 1)-tree U with
root(U) > 1 can be written U = µi(S, T ), where root(S) = 1 and T is nontrivial.
Indeed, the node we call x above is the parent node of the first node labelled 0 on
the rightmost path of U , and knowing x we trivially get S and T .

Thus we can completely decompose any β(0, 1)-tree in terms of ρ and µi. As an
example, the tree from Figure 3 can be written

µ2(ρ[ ], µ1(ρ[µ2(ρ[ ], µ1(ρ[ρ[ ]], ρ[ ]))], µ1(ρ[ ], ρ[ , , ρ[ ]]))).

We shall now define two additional operations σ and νi on β(0, 1)-trees that in a
sense are dual to ρ and µi. We start with σ (see Figure 9 for an example):
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Figure 9: An example using σ.
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Figure 10: An example using νi.

Definition 1. For β(0, 1)-trees T1, . . . , Tk define

σ(T1, . . . , Tk) = µ1(ρ(Tk−1, . . . , T1, ), Tk).

Let S and T be β(0, 1)-trees. Assume that open(S) = 1 and that T is nontrivial.
Let i be an integer such that 1 ≤ i ≤ root(T ) and let x denote the rightmost leaf of
S. Define νi(S, T ) as the β(0, 1)-tree obtained by identifying x with the root of T ,
keeping the (zero) label of x, and then adding i − 1 to each node on the rightmost
path of S between the root and x. See Figure 10 for an example. For convenience
we shall also define that ν1(S, ) = S.

Note that any β(0, 1)-tree U with open(U) = 1 is of the form σ(T1, T2, . . . , Tk)
for some β(0, 1)-trees T1, T2, . . . , Tk, and any β(0, 1)-tree U with open(U) > 1 can
be written U = νi(S, T ), where open(S) = 1 and T is nontrivial. Again, using the
tree from Figure 3 as an example we have

ν2(σ[σ[ν1(σ[ , , ], σ[ ])]], σ[ν2(σ[σ[ ]], σ[σ[ ]])]).

The behaviour of the statistics root and open under ρ, µi, σ and νi follows easily
from the definitions.

Lemma 5. If T1, . . . , Tk, S and T are β(0, 1)-trees, then

open(ρ(T1, . . . , Tk)) = 1 + open(Tk), (1)

root(µi(S, T )) = 1 + root(T ), (2)

open(µi(S, T )) = i− 1 + open(S), (3)

root(σ(T1, . . . , Tk)) = 1 + root(Tk), (4)

root(νi(S, T )) = i− 1 + root(S), (5)

open(νi(S, T )) = 1 + open(T ), (6)
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where in (2) and (3) we assume that root(S) = 1, and in (5) and (6) we assume
that open(S) = 1.

We can now give a generating function proof of Theorem 2.

Proof of Theorem 2. Let F (x, y) := F (t, x, y) be the generating function for β(0, 1)-
trees where t marks the number of edges, x marks the root statistic, and y marks
the rmod statistic. We claim that

F (x, y) = 1 + xS +
x

y − 1
S
(
F (x, y)− F (x, 1)

)
,

where S := tyF (1, y)/(1 − tF (1, 1)). Let us prove first that xS is the generating
function for β(0, 1)-trees with root label equal to 1. Indeed, such a tree is of the
form ρ(T1, . . . , Tk) for some k ≥ 1. By Lemma 5, the behaviour of the rmod statistic
under ρ is known (recall rmod agrees with open), and it follows that

[x]F (x, y) =
∑
k≥1

tyF (1, y) (tF (1, 1))k−1 = S,

as claimed. As for the last term, it corresponds to β(0, 1)-trees with root label greater
than 1. They are of the form µi(S0, T ), for some β(0, 1)-trees S0, T , and some integer
i with 1 ≤ i ≤ open(T ) and open(S0) = 1. The behaviour of the root and rmod
statistics gives

F (x, y)− (1 + [x]F (x, y)) =
∑
T

t#edges(T )

open(T )∑
i=1

xroot(T )+1yi−1S

=
∑
T

t#edges(T )xroot(T )+1S
yopen(T ) − 1

y − 1
,

which easily sums to the claimed expression.
Let now G(x, y) := G(t, x, y) be the generating function for β(0, 1)-trees where

t marks the number of edges, x marks the rmod statistic, and y marks the root
statistic. This time using the (σ, νi) decomposition we have

G(x, y) = 1 + xT +
x

y − 1
T
(
G(x, y)−G(x, 1)

)
,

where T := tyG(1, y)/(1 − tG(1, 1)). The proof is analogous to the one in the
paragraph above; in this case the second and third summands correspond to β(0, 1)-
trees with the rmod statistic equal to or greater than 1, respectively.

Since F (x, y) and G(x, y) satisfy the same equation with the same initial con-
ditions F (1, 1) = G(1, 1) being the generating function for β(0, 1)-trees, we must
have F (x, y) = G(x, y). On the other hand, by definition F (x, y) = G(y, x). Thus,
F (x, y) = F (y, x) which proves Theorem 2 via the respective statistics on bicubic
maps and β(0, 1)-trees.
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Figure 11: A bicolored tree.

5 Bicolored trees

If we look at the parse tree of an expression of a β(0, 1)-tree in terms of σ and νi
(or ρ and λi) we arrive at a new tree. For instance, writing the tree from Figure 3
in terms of σ and νi, as above, we arrive at the tree in Figure 11, where an internal
black node corresponds to σ and a white node labeled i corresponds to νi.

Let T denote the set of trees that can be obtained from β(0, 1)-trees in this
manner. Then it is not hard to see that T has the following recursive characterization.
A member of T is a rooted plane tree on white and black nodes such that either the
root is black and is connected to a possibly empty list of trees in T , or the root is
white, has a label i, is connected to exactly two trees T1, T2 ∈ T , and 1 ≤ i ≤ κ(T2),
where κ is defined by recursion: κ of a tree consisting of a single leaf is 0; κ of a
tree with black root connected to T1, . . . ,Tk is 1 + κ(Tk); and κ of a tree with white
root labeled i, connected to T1 and T2, is i− 1 + κ(T1). If, in addition, we define the
weight of a tree in T to be the number of black nodes minus the number of white
nodes, then we have established that there is a one-to-one correspondence between
β(0, 1)-trees on n nodes and trees in T of weight n.

In the next section we shall define an endofunction on β(0, 1)-trees. One way to
understand this endofunction is that we map a β(0, 1)-tree T to a β(0, 1)-tree T ′ if
the (σ, νi) parse tree of T is the same as the (ρ, µi) parse tree of T ′. We will prove
that this endofunction is an involution.

6 An involution on β(0, 1)-trees

The following three lemmas are immediate from the definitions of ρ, µi, σ and νi;
they will be used in the proof of Lemma 9.

Lemma 6. For all β(0, 1)-trees T1, . . . , Tk we have

ρ(T1, . . . , Tk) = ν1(σ(Tk−1, . . . , T1, ), Tk).

Note the similarity between Lemma 6 and Definition 1.

Lemma 7. Let R, S and T be β(0, 1)-trees. If open(R) = root(S) = 1, and T is
nontrivial, then, for integers i ≥ 1 and j ≥ 1, we have

νi+1(R, µj(S, T )) = µj+1(S, νi(R, T )).
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Figure 12: Applying the involution g.

Lemma 8. Let R, S and T be β(0, 1)-trees. If root(R) = open(R) = 1, then

µ1(ν1(R, S), T ) = ν1(µ1(R, T ), S).

Definition 2. Let T1, . . . , Tk, S and T be β(0, 1)-trees, and assume root(S) = 1.
Define the map g on β(0, 1)-trees of size n by

1. g( ) = ;

2. g(ρ(T1, . . . , Tk)) = σ(g(T1), . . . , g(Tk));

3. g(µi(S, T )) = νi(g(S), g(T )).

Note that there is a subtlety in this definition. In case (3), we apply νi to g(S), so
we need to make sure that open(g(S)) = 1. But we are fine because, as root(S) = 1
then S is ρ(T1, . . . , Tk), so to compute g(S) we would use case (2) and the image
under σ of any sequence of trees has just one open node. Figure 12 gives an example
of applying g. For a larger example see the appendix, where two β(0, 1)-trees (and
associated bicubic maps) corresponding to each other under g are given.

Lemma 9. If T1, . . . , Tk, S and T are β(0, 1)-trees, and open(S) = 1, then

1. g(σ(T1, . . . , Tk)) = ρ(g(T1), . . . , g(Tk));

2. g(νi(S, T )) = µi(g(S), g(T )).

Proof. We have

g(σ(T1, . . . , Tk)) = g(µ1(ρ(Tk−1, . . . , T1, ), Tk)) by Definition 1

= ν1(g(ρ(Tk−1, . . . , T1, )), g(Tk)) by Definition 2

= ν1(σ(g(Tk−1), . . . , g(T1), )), g(Tk)) by Definition 2

= ρ(g(T1), . . . , g(Tk)) by Lemma 6

which proves (1). To prove (2) we first note that root(νi(S, T )) = 1 if, and only if,
root(S) = 1 and i = 1. Accordingly, the proof of (2) will be split into three cases:

(a) i = 1 and root(S) = 1;
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(b) i = 1 and root(S) > 1;

(c) i > 1.

Case (a): By assumption, open(S) = 1; if also root(S) = 1, then S must be of
the form S = σ(S1, . . . , S`−1, ) for some β(0, 1)-trees S1, . . . , S`−1, and thus

ν1(S, T ) = ν1(σ(S1, . . . , S`−1, ), T )

= ρ(S`−1, . . . , S1, T ) by Lemma 6.

Therefore,

g(ν1(S, T )) = σ(g(S`−1), . . . , g(S1), g(T )) by Definition 2

= µ1(ρ(g(S1), . . . , g(S`−1), ), g(T )) by Definition 1

= µ1(g(σ(S1, . . . , S`−1, )), g(T )) by (1)

= µ1(g(S), g(T )).

Case (b): Since root(S) > 1 there are β(0, 1)-trees U and V , and an integer j, such
that root(U) = 1, V is nontrivial, and S = µj(U, V ). By assumption open(S) = 1.
Moreover, item (3) from Lemma 5 implies that open(U) = 1 and j = 1; thus we
can use Lemma 8. The proof now proceeds by structural induction (the base case is
trivial):

g(ν1(S, T )) = g(ν1(µ1(U, V ), T ))

= g(µ1(ν1(U, T ), V )) by Lemma 8

= ν1(g(ν1(U, T )), g(V )) by Definition 2

= ν1(µ1(g(U), g(T )), g(V )) by induction.

Observe now that root(U) = open(U) = 1 implies that U can be written as
ρ(T1, . . . , Tk−1, ), and hence g(U) = σ(g(T1), . . . , g(Tk−1), ). Then open(g(U)) =
root(g(U)) = 1 and we can apply Lemma 8 to the last expression.

g(ν1(S, T )) = µ1(ν1(g(U), g(V )), g(T )) by Lemma 8

= µ1(g(µ1(U, V )), g(T )) by Definition 2

= µ1(g(S), g(T )).

Case (c): If i > 1, then root(T ) > 1 and we can write T = µj(U, V ) for some
β(0, 1)-trees U and V with root(U) = 1 and V nontrivial. We can now proceed by
either using structural induction or induction on i, the base case i = 1 being provided
by cases (a) and (b) above:

g(νi(S, T )) = g(νi(S, µj(U, V )))

= g(µj+1(U, νi−1(S, V ))) by Lemma 7

= νj+1(g(U), g(νi−1(S, V ))) by Definition 2

= νj+1(g(U), µi−1(g(S), g(V ))) by induction

= µi(g(S), νj(g(U), g(V ))) by Lemma 7

= µi(g(S), g(µj(U, V ))) by Definition 2

= µi(g(S), g(T ))
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which concludes the proof. Notice that in the second application of Lemma 7 we
need again the fact that if root(U) = 1 then open(g(U)) = 1. Also, it is necessary
that root(g(S)) = 1; this follows from part (1) because open(S) = 1 allows us to
write S = σ(T1, . . . , Tk).

Theorem 10. The map g is an involution.

Proof. We use induction on size. The base case g2( ) = is trivial. For the induction
step we have

g2(ρ(T1, . . . , Tk)) = g(σ(g(T1), . . . , g(Tk))) by Definition 2

= ρ(g2(T1), . . . , g
2(Tk)) by Lemma 9

= ρ(T1, . . . , Tk) by induction

and

g2(µi(S, T )) = g(νi(g(S), g(T ))) by Definition 2

= µi(g
2(S), g2(T )) by Lemma 9

= µi(S, T ) by induction

which concludes the proof.

Theorem 11. On β(0, 1)-trees with n nodes, the pair of statistics (root, open) has
the same joint distribution as the pair (open, root). Equivalently,∑

T

xroot(T )yopen(T ) =
∑
T

xopen(T )yroot(T ),

where the sum is over all β(0, 1)-trees with n nodes.

Proof. Using induction we shall now prove that root(g(U)) = open(U) for each
β(0, 1)-tree U . The base case is plain. For the induction step, assume that T1, . . . ,
Tk, S and T are β(0, 1)-trees, root(S) = 1, and that T is nontrivial. We have

root(g(ρ(T1, . . . , Tk))) = root(σ(g(T1), . . . , g(Tk))) by Definition 2

= 1 + root(g(Tk)) by (4) from Lemma 5

= 1 + open(Tk) by induction

= open(ρ(T1, . . . , Tk)) by (1) from Lemma 5.

Also,

root(g(µi(S, T ))) = root(νi(g(S), g(T ))) by Definition 2

= i− 1 + root(g(S)) by (5) from Lemma 5

= i− 1 + open(S) by induction

= open(µi(S, T )) by (3) from Lemma 5.

Since g is an involution it follows that open(g(T )) = root(T ) as well, which concludes
the proof.
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Corollary 12. On β(0, 1)-trees with n nodes, the pair of statistics (root, rmod) has
the same joint distribution as the pair (rmod, root). Equivalently,∑

T

xroot(T )yrmod(T ) =
∑
T

xrmod(T )yroot(T ),

where both sums are over all β(0, 1)-trees with n nodes.

Proof. This is a direct consequence of Lemma 3 and Theorem 11.

Our second proof of Theorem 2 now follows from Corollary 12 through the cor-
respondence between bicubic maps and β(0, 1)-trees.

Definition 3. Let Cn =
(
2n
n

)
/(n+ 1) denote the nth Catalan number. Define

a(n) = 2n−1Cn.

This is sequence A003645 in OEIS [8].

By computing the number of trees fixed by g, for n ≤ 12, we arrive at the following
conjecture.

Conjecture 13. For n > 1, the number of β(0, 1)-trees on n nodes fixed under g is
a(bn/2c). This sequence starts 1, 1, 4, 4, 20, 20, 112, 112, 672, 672, 4224, 4224, . . .

The number of fixed points under the involution h on β(1, 0)-trees (introduced
in [1, 2]) was found in [5]. These numbers also count self-dual rooted non-separable
planar maps [6]. However, we were not able to exploit the ideas to count fixed points
under h in order to prove Conjecture 13, because the involution g is more complex,
and in general, β(0, 1)-trees are more complex than β(1, 0)-trees.

Proposition 14 (Tutte, Koganov, Liskovets and Walsh). The number of bicubic
maps on 2n vertices with one distinguished 1-colored face is a(n).

Proof. Koganov, Liskovets and Walsh [7, Proposition 3.1] showed that the number
of rooted eulerian planar maps with n edges and a distinguished vertex is given by
the formula a(n). Tutte’s well-known “trinity mapping” sends eulerian planar maps
with n edges to bicubic maps with 2n vertices. It is easy to see that under the same
mapping vertices are sent to 1-colored faces.

Proposition 15. The number of β(0, 1)-trees on n+ 1 nodes with one distinguished
excessive node is a(n).

Proof. This is a direct consequence of Propositions 4 and 14.

In light of this last proposition we can reformulate Conjecture 13 as follows.

Conjecture 16. There is a bijection between β(0, 1)-trees on n nodes fixed under g
and β(0, 1)-trees on bn/2c+ 1 nodes with one distinguished excessive node.

We close this paper by making an additional conjecture.

Conjecture 17. The two pairs of statistics (root, rzero) and (rmod, sub) are jointly
equidistributed on β(0, 1)-trees.

We have verified Conjecture 17 for β(0, 1)-trees on at most 11 nodes. This con-
jecture will imply, via the bijection described in Section 3, that the two pairs of
statistics (f1r3, b) and (f3r2, s1r3) are jointly equidistributed on bicubic maps.
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Appendix

In Figures 13 and 14 we give examples of the mapping ψ from bicubic maps to
β(0, 1)-trees. The image of each large map at the top is the tree below it, and for
each smaller map, its image is the subtree consisting of the edge next to it and all
the edges below, with the root label adjusted if necessary.

Also, the two trees are the image of each other under the involution g. For the tree
(T ) and map (M) in Figure 13 we have exc(T ) = one(M) = 6, root(T ) = f1r3(M) =
4, rmod(T ) = f3r2(M) = 2, rzero(T ) = b(M) = 1, and sub(T ) = s1r3(M) =
4. For the tree (T ) and map (M) in Figure 14 we have exc(T ) = one(M) = 6,
root(T ) = f1r3(M) = 4, rmod(T ) = f3r2(M) = 2, rzero(T ) = b(M) = 3, and
sub(T ) = s1r3(M) = 1.

Figure 13: An example of applying ψ.
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Figure 14: An example of applying ψ.
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