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Abstract

A connected pseudocomplete n-coloring of a graph G is a (non-proper)
n-coloring of the vertices of G such that each color class induces a con-
nected subgraph and for each pair of color classes there is an edge with
one end of each color; this can be viewed as a kind of “inverse image” of a
clique minor. The connected pseudoachromatic index of a graph G is the
largest n for which the line graph of G has a connected pseudocomplete n-
coloring. For all j, k we show that the connected pseudoachromatic index
of the complete graph on 5k+j+1 vertices is at least 9k+j. We also pro-
vide several results on connections between connected pseudoachromatic
index of complete graphs and the Erdős-Faber-Lovasz conjecture.

1 Introduction

Let G be a finite simple graph with vertex set V (G) and edge set E(G). A pseu-
docomplete k-coloring of G is an assignment α : V (G) → [k], where [k] denotes the
set {1, . . . , k}, such that for each i, j ∈ [k] there is an edge in E(G) having one
end in α−1(i) and the other in α−1(j). The pseudoachromatic number ψ(G) of G
is the maximum k for which there is a pseudocomplete k-coloring of G [9]. Basic
results on pseudoachromatic number and the related notion of achromatic number
(which presumes that no two adjacent vertices have the same color) were presented
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in [3, 5, 4, 11]. Along these lines also is [12], which discusses achromatic number
of the line graph of Kn. Of more recent note is the calculation of ψ for complete
multipartite graphs [14, 16] and for the line graph of Kn for special values of n [1, 2].

Suppose H is a minor of G obtained from a subgraph G′ of G by contracting
some edges, and that V (H) = [k]. Then there is a naturally corresponding pseudo-
complete k-coloring α : G′ → [k] for which α−1(i) is exactly the set of vertices of G′

which contract to vertex i in H. In this case, the classes α−1(i) have the additional
property that for each i the induced subgraph G[α−1(i)] is connected. Since this is
so, without loss of generality we may presume that G′ = G. Define the connected
pseudoachromatic number ψc(G) to be the maximum k for which there is a connected
pseudocomplete k-coloring of G, i.e. , a pseudocomplete coloring in which each color-
class induces a connected subgraph. With this definition, we see that ψc(G) is the
size of the largest complete-graph minor of G; this value is also called the Hadwiger
number of G. Since for any graph G we have ψ(G) ≥ ψc(G), study of the pseu-
doachromatic number has been useful for bounding the Hadwiger number, as in [13]
and, from a probabilistic perspective, [6].

The pseudoachromatic number of the line graph LG for any graph G is also
referred to as the pseudoachromatic index of G [4]. We focus in this work on the
line graph LKn of the complete graph Kn. Note that any connected pseudocomplete
k-coloring of LKn may be viewed as an edge coloring of Kn in which each edge color
class induces a connected subgraph, and each pair of edge color classes share at least
one vertex. We will make use of this point of view below when it is convenient.

There are a few existing results on ψ(LKn). Bosák and Nešetřil provide the
following values.

n 1 2 3 4 5 6 7
ψ(LKn) 0 1 3 4 7 8 11

Araujo-Pardo et al. prove that if n = 22β + 2β + 1 then ψ(LKn) ≥ 23β + 2β, and if
n = 22β + 2β+1 + 2 then ψ(LKn) = 23β + 22β + 3·2β.

In Section 2 we provide several results on lower bounds for ψc(LKn) for various
values of n. Together they imply Theorem 2.4: For j, k ≥ 1 we have ψc(LK5k+j+1) ≥
9k + j.

Our results on LKn have an interesting implication for the relationship between
two famous conjectures.

Conjecture 1.1 (Hadwiger [8, 10]). If graph G does not contain Kn+1 as a minor,
then G is n-colorable.

Of course, Hadwiger’s Conjecture is the reason for the term “Hadwiger number.”

Conjecture 1.2 (Erdős-Faber-Lovász [7]). If graph G can be constructed by joining
n copies of Kn so that no two copies of Kn share more than one vertex, then G is
n-colorable.

We refer to a graph which meets the hypothesis of the Erdős-Faber-Lovász Con-
jecture as an EFL graph. In Section 4 we exhibit an infinite family of EFL graphs
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which contain Kn+1 as a minor, demonstrating that Hadwiger’s Conjecture does not
imply the Erdős-Faber-Lovász Conjecture.

2 Connected Pseudoachromatic Number

Throughout this section we let V (Kn) = {v1, v2, . . . , vn} and write vi,j for the vertex
of LKn corresponding to the undirected edge vivj of Kn. We begin with two basic
cases.

Proposition 2.1. We have ψc(LK4) = 4 and ψc(LK5) = 6.

Proof. Note first that LK4, which is the 1-skeleton of the octahedron, is planar and
hence does not contain K5 as a minor. Given the connection between ψc and clique-
minors, we see that ψc(LK4) ≤ 4. On the other hand, it is not difficult to construct
a connected pseudocomplete 4-coloring α4 of LK4; here is one:

α−1
4 (1) = {v1,2} α−1

4 (3) = {v2,3}
α−1

4 (2) = {v1,3} α−1
4 (4) = {v1,4, v2,4, v3,4}

It is easy to check that each of these vertex classes is connected and between each
pair of vertex classes there is an edge connecting a vertex in one of the classes to
a vertex in the other class. This completes the proof of the first assertion in the
proposition.

For the second assertion, here is one way to construct a connected pseudocomplete
6-coloring α6 of LK5. Define α6 by

α−1
6 (1) = {v1,2, v2,3} α−1

6 (4) = {v1,5, v4,5}
α−1

6 (2) = {v1,3, v3,5} α−1
6 (5) = {v2,4, v2,5}

α−1
6 (3) = {v1,4} α−1

6 (6) = {v3,4}

Again, it is not difficult to verify the validity of this connected pseudocomplete 6-
coloring.

Now suppose for the sake of contradiction that α : V (LK5) → [7] is a connected
pseudocomplete 7-coloring. Since |V (LK5)| = 10, at least 4 classes α−1(i) contain a
single vertex. It is not difficult to see that the corresponding singleton edge classes
in K5 must share a single vertex x of K5 in order to satisfy the mutual adjacency
requirement. But now, since all edges incident to x in K5 have been used, each
additional edge class in K5 must have at least three edges in order to simultaneously
satisfy the connectedness and mutual adjacency requirements; see Figure 1. This
implies that there are at most two non-singleton classes, contradicting the assumption
that we have a 7-coloring.

The next result shows that any lower bound on ψc(LKn) for some n gives lower
bounds for all larger values of n as well.

Proposition 2.2. If for some n we have ψc(LKn) ≥ m for some m, then ψc(LKn+j)
≥ m+ j for all j ≥ 0.
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Figure 1: Edge classes in K5. Each of the four edges incident to x comprises its own
class, the bold edges comprise a single class, and the dashed edges comprise a single
class.

Proof. Proceeding by induction we assume the existence of a connected pseudocom-
plete m-coloring αm of LKn+j−1 for some j > 0 and extend it to construct a con-
nected pseudocomplete (m+1)-coloring αm+1 of LKn+j. Explicitly, for 1 ≤ i ≤ m let
α−1
m+1(i) = α−1

m (i) and let α−1
m+1(m+1) = {v1,n+j, . . . , vn+j,n+j}. Clearly, the subgraph

induced on α−1
m+1(m + 1) is connected. To see that αm+1 is pseudocomplete we can

interpret {v1,n+j, . . . , vn+j−1,n+j} as the edges v1vn+j, . . . , vn+j−1vn+j and note that
each vertex of Kn+j−1 is incident to one of these. It then follows that each vertex in
LKn+j is adjacent to some vertex in α−1

m+1(m+ 1), so we are done.

Propositions 2.1 and 2.2 combine to yield a proof by induction that ψc(LKn) ≥
n+1 for n ≥ 5. Nevertheless, Proposition 2.3 provides a far better result, formulated
below as Theorem 2.4.

Proposition 2.3. For k ≥ 1 we have ψc(LK5k+2) ≥ 9k + 1.

Proof. We first verify the result for k = 1. Construct a connected pseudocomplete
10-coloring α10 of LK7 as follows.

α−1
10 (1) = {v3,7} α−1

10 (6) = {v5,6, v6,7}
α−1

10 (2) = {v1,7, v1,3} α−1
10 (7) = {v3,5, v2,5}

α−1
10 (3) = {v2,6, v2,7} α−1

10 (8) = {v3,6, v4,6}
α−1

10 (4) = {v2,4, v4,7} α−1
10 (9) = {v2,3, v1,2, v1,5}

α−1
10 (5) = {v4,5, v5,7} α−1

10 (10) = {v1,6, v1,4, v3,4}

It is easy to check that each of these vertex classes is connected and between each
pair of vertex classes there is an edge connecting a vertex in one of the classes to a
vertex in the other class.

We now provide a construction, working in terms of edges colorings of complete
graphs, that verifies the result for general k. Take k disjoint copies P1, . . . , Pk of
the edge-colored K7 specified above, and identify all vertices v3 and all vertices v7,
respectively, as well as all edges v3v7 and their color classes. We maintain the distinct
identities of the colors, other than color 1, for each Pi. The resulting graph has 5k+2
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Figure 2: A schematic of the construction in the proof of Proposition 2.3. Each panel
represents a copy of K7.

vertices (a schematic is shown in Figure 3); add in edges to obtain the complete graph
K5k+2.

Now consider a pair Pr, Ps. Refer to the vertices in Pr as v1, v2, . . . , v7, to the
edge colors in Pr as 1, 2, . . . , 10, and to the corresponding vertices and colors in Ps as
v1′ , v2′ , v3, v4′ , v5′ , v6′ , v7, and 1, 2′, . . . , 10′, respectively. Let α9k+1 be partially defined
by

v1,2′ 7→ 9 v2,2′ 7→ 3 v4,4′ 7→ 4 v5,5′ 7→ 5
v1,4′ 7→ 10 v2,4′ 7→ 3 v4,5′ 7→ 8 v6,2′ 7→ 8
v1,5′ 7→ 9 v2,5′ 7→ 7 v5,2′ 7→ 7 v6,5′ 7→ 6
v1,6′ 7→ 10 v4,2′ 7→ 4 v5,4′ 7→ 5 v6,6′ 7→ 6

It is not difficult to check that each color class in Pr ∪ Ps is now incident to each
other color class. To assist in this check, here is a table showing the classes incident
to each vertex:

vertex : incident classes
v3 : 1, 2, 7, 8, 9, 10, 1′, 2′, 7′, 8′, 9′, 10′

v7 : 1, 2, 3, 4, 5, 6, 1′, 2′, 3′, 4′, 5′, 6′

v1 : 2, 9, 10 v′1 : 2′, 9′, 10′

v2 : 3, 4, 7, 9 v′2 : 3′, 4′, 7′, 9′, 3, 4, 7, 8, 9
v4 : 4, 5, 8, 10 v′4 : 4′, 5′, 8′, 10′, 3, 4, 5, 10
v5 : 5, 6, 7, 9 v′5 : 5′, 6′, 7′, 9′, 5, 6, 7, 8, 9
v6 : 3, 6, 8, 10 v′6 : 3′, 6′, 8′, 10′, 6, 10

Follow the analogous procedure for all other pairs Pr, Ps. Finally, define α9k+1 on
the remaining edges in any way that preserves the connectivity of the color classes.
Since each Pi contributes nine color classes in addition to the class 1, we indeed have
a connected pseudocomplete (9k + 1)-coloring of LK5k+2.

Combining Propositions 2.3 and 2.2 we obtain Theorem 2.4.

Theorem 2.4. For j, k ≥ 1 we have ψc(LK5k+j+1) ≥ 9k + j.



L. ABRAMS ET AL. /AUSTRALAS. J. COMBIN. 60 (3) (2014), 314–324 319

3 Computer calculation and what is known

Proposition 2.1 tells us that ψc(LK4) = 4 and ψc(LK5) = 6, and exhaustive computer
calculation confirms that ψc(LK6) = 7 and ψc(LK7) = 10 (the computer calculations
are described below). Beyond this, we know only the lower bounds derived from
Theorem 2.4. This information is depicted in Figure 3.

(6,5)

(7,6)

(4,4)

(10,7)

(19,12)

Figure 3: A schematic indicating what is known. A solid point at (x, y) indicates
that ψc(LKy) = x, whereas a hollow point indicates that ψc(LKy) ≥ x. The shading
emphasizes that the actual values of the various pseudoachromatic indices may lie
to the right.

We now describe how the computer calculations were done. Without loss of
generality we can assume that the vertex classes in LKn that constitute a connected
pseudcomplete coloring are trees in Kn, since all other edges may be colored in
any way that preserves the connectedness of the individual classes. Using Prüfer
sequences it is straightforward to iterate over all spanning trees in a clique, and
by considering all possible sizes of subsets of the vertices of Kn we can find all
subgraphs of Kn which are trees. Let Tn denote the set of all such trees and define
a graph structure on Tn by declaring two trees to be adjacent if they share at least
one vertex but share no edges. A clique in Tn represents a partial covering of the
edges of Kn with a family of edge-disjoint trees such that each pair of trees shares at
least one vertex. By extending the trees as described above, we obtain a connected
pseudocomplete coloring of LKn.

Thus we have reduced the problem of finding connected pseudocomplete colorings
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of LKn to the problem of finding cliques in Tn. Of course, Tn grows in n faster
than any exponential. Nevertheless, for sufficiently small n, this approach yielded
new results, specifically that ψc(LK6) = 7 and ψc(LK7) = 10. Note that finding
maximum cliques was done using the publicly available software package Cliquer [15].

4 Implications for EFL Graphs

An n-EFL graph is a connected graph G produced by joining n copies of Kn, which
we call panels, so that no two panels share more than one vertex. We refer to vertices
contained in more than one panel as vertices of attachment. For each n, define the
standard n-EFL graph En to be the graph obtained from LKn by adding new vertices
v̂1, v̂2, . . . , v̂n and an edge connecting v̂i and vi,j for each i, j ∈ [n]. Note that, for
each i, the subgraph of En induced on the vertices {v̂i}∪{vi,j | j 6= i} is an n-clique,
so En is indeed an n-EFL-graph. Figure 4 shows a drawing of E4.

Figure 4: A plane drawing of E4; the shading indicates copies of K4.

The following result indicates a sense in which the graphs En are universal.

Theorem 4.1. If G is an n-EFL graph and Km is a minor of G, then Km is a minor
of En as well.

Proof. Certainly, if m ≤ n then Km is a subgraph of any panel in En, so is a minor
of En.

Suppose, then, that m > n and that Km is a minor of G. We may realize this
minor with a pair (T, β) where T = {t1, . . . , tm} is a family of vertex-disjoint trees in
G and β : {{i, j}|i, j ∈ [m], i 6= j} → E(G) is such that for i 6= j the edge β(i, j) has
one vertex in ti and the other in tj. The trees can be viewed as sitting in distinct
color classes of a connected pseudocomplete m-coloring of G; contracting them yields
the vertices of Km and the edges in Imβ are the edges of Km.

Suppose t ∈ T contains no vertices of attachment. In that case, t must be
contained entirely in a single panel P . Moreover, all edges in Imβ which have one
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vertex in t must have their other vertex in P as well, and thus there can be at most
n−1 such edges. Since m > n, this contradicts the assumption that (T, β) represents
a Km minor. Thus every tree t in T contains vertices of attachment, and indeed must
have a vertex of attachment in each panel in which it has any vertex at all.

We now produce a new pair (T ′, β′) which realizes Km as a minor of G but which
has the additional property that for each t ∈ T ′ all vertices of t are vertices of
attachment. Suppose v is a vertex in panel P which is not a vertex of attachment
but is contained in tree ti ∈ T . As shown above, there is some vertex vi in P which
is contained in ti and is a vertex of attachment. Modify ti by deleting v and, for each
neighbor w of v which is contained in ti but is not connected to vi in ti−vi, adding in
the edge viw. Because v is not a vertex of attachment, w must be contained in panel
P , and therefore the edge viw exists. Because the only path in ti between neighbors
of v is a path of length two through v, the result of this deletion and addition is
itself a tree. Corresponding to this new tree, we also modify β. For every j ∈ [m]
such that β({i, j}) = vwj for some wj in tj, redefine β to map {i, j} 7→ viwj. As
before, because v is not a vertex of attachment, wj must be contained in panel P ,
and therefore the edge viwj exists. See Figure 5 for an illustration of this two step
process. Repeating the process for every such vertex v and panel P yields the desired
pair (T ′, β′).

P

P'

vi

v

wj

wj

P

P'

vi

wj

wj

ww w w

Figure 5: An illustration of the two step process to ensure that all vertices in ti are
vertices of attachment. Edges in the image of β are shown dashed, and solid edges
belong to ti. P

′ is some panel other than P .

We now modify G so as to convert it to En; adjusting the pair (T ′, β′) appropri-
ately through this process yields the desired Km minor of En. Define the attachment
weight of G to be the sum W (G) :=

∑
v(dv−2) where the summation is over vertices

of attachment v and dv is the number of panels containing v. If W (G) = 0, then we
already have G = En and we are done. Otherwise, suppose that W (G) > 0, that v is
a vertex of attachment with dv > 2, and that P1, P2 are two of the panels containing
v. Since there are a total of n panels, and P2 has n vertices, and dv > 2, there is
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some vertex w of P2 which is not a vertex of attachment and which therefore is not
contained in any tree of T ′. Modify G by detaching panel P1 at v from the other
panels at v, splitting off a new copy v1 of vertex v in panel P1 and renaming the
“original” copy of v to v2, then identify v1 and w. See Figure 6 for an illustration of
this.

P1v

w
P2

P3 P1

P2

P3

w=v1

v2

e

Figure 6: An illustration of the process of detaching panel P1, reattaching it, and
then relabeling vertices. The diagram on the left depicts a tree ti containing v, and
on the right is the tree t′ replacing it.

If v was contained in a tree ti of T ′ (as illustrated in Figure 6), now adjust ti
to include the edge e = v1v2; refer to this newly adjusted ti as t′. To see that t′ is
connected, consider any vertices x and y in t′. Suppose first that both x and y are
also vertices of ti, so that there is an x-y path Px,y in ti. If Px,y does not contain v,
then Px,y is also an x-y path in t′, so x and y are connected in t′. If Px,y does contain
v, express Px,y as the concatenation Px,vPv,y where Px,v is the x-v path in ti and Pv,y
is the v-y path. For some v′, v′′ ∈ {v1, v2}, Px,v and Pv,y correspond to an x-v′ path
P ′x,v′ in t′ and a v′′-y path P ′v′′,y in t′, respectively. If v′ = v′′, then the concatenation
P ′x,v′P ′v′′,y is an x-y path in t′, and otherwise P ′x,v′eP ′v′′,y, for some orientation on e, is
an x-y path in t′.

If {x, y} = {v1, v2}, then the edge v1v2 itself provides the desired x-y path.
Suppose therefore that exactly one of x and y is either v1 or v2. Without loss of
generality, suppose y = v1. There is an x-v path in ti, and when the panel P1 is
detached at v this path becomes either an x-v1 path or an x-v2 path in t′. In the
latter case, concatenating with the edge v2v1 yields an x-v1 path, so in either case
we see that x and v1 are connected in t′. We thus conclude that t′ is connected.

Finally, up to renaming of vertices, no changes are made to β′. This process
decreases the attachment weight by 1, and the adjusted (T ′, β′) still realizes a Km

minor. Since this process can be repeated until W (G) = 0, the proof is complete.

Since any minor of LKn is automatically a minor of En, the results of Section 2
readily imply that for n ≥ 5 the graph En contains a Kn+1 minor. This demonstrates
that Hadwiger’s Conjecture does not imply the EFL conjecture.

There is also an interesting relationship between En and LKn in the other direc-
tion.
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Theorem 4.2. For each m > 1 and n > 2, if Km is a minor of En then Km is a
minor of LKn.

Proof. The induced subgraph of LKn with vertex set {v1,j | j 6= 1} forms an (n− 1)-
clique, so certainly Km is a minor of LKn for m < n.

We can find Kn as a minor of LKn by defining a pseudocomplete n-coloring
αn : V (LKn)→ [n] as follows: Let

α−1
n (1) = {v2,3, v2,4, . . . , v2,n}

and for i = 2, 3, . . . , n let α−1
n (i) = v1,i. Note that ∪ni=2α

−1
n (i) induces an (n − 1)-

clique in LKn and that for each i there is an edge from α−1
n (i) to α−1

n (1). We see
that contracting α−1

n (1) to a single vertex yields the desired Kn minor.

Suppose now that m > n and that Km is a minor of En, but that Km is not a
minor of LKn. Then there is some vertex class W ⊆ V (En) for the Km minor which
contains a vertex w = v̂j for some j. Since the degree of v̂j is n− 1 but W contracts
to a vertex of degree m − 1 ≥ n, there must be an additional vertex v in W which
is adjacent to w. The vertex v is necessarily adjacent to all neighbors of w so any
path in En starting at w passes through a neighbor of v. It follows that removing w
from W leaves a suitable vertex class for the desired Km minor, and that no edges
incident to w are needed. Applying this reasoning to each v̂j in each vertex class in
En for Km shows that Km is indeed a minor of LKn.
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[7] P. Erdős, On the combinatorial problems which I would most like to see solved,
Combinatorica 1(1) (1981), 25–42, doi: 10.1007/BF02579174.

[8] R. L. Graham, M. Grötschel and L. Lovász, eds., Handbook of Combinatorics
Vol. 1, 2, Elsevier Science B.V., Amsterdam, 1995.

[9] R. P. Gupta, Bounds on the chromatic and achromatic numbers of complemen-
tary graphs, In Recent Progress in Combinatorics (Proc. Third Waterloo Conf.
Combinatorics, 1968), pp. 229–235, Academic Press, New York, 1969.
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