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Abstract

A path in an edge-colored graph, where adjacent edges may be colored
the same, is a rainbow path if no two edges of it are colored the same. A
nontrivial connected graph G is rainbow connected if there is a rainbow
path connecting any two vertices, and the rainbow connection number of
G, denoted by rc(G), is the minimum number of colors that are needed
in order to make G rainbow connected. Chartrand et al. showed that G
is a tree if and only if rc(G) = m, and it is easy to see that G is not
a tree if and only if rc(G) ≤ m − 2, where m is the number of edges
of G. So an interesting problem arises: Characterize the graphs G with
rc(G) = m − 2. In this paper, we resolve this problem. Furthermore, we
also characterize the graphs G with rc(G) = m − 3.

1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the terminology
and notation of Bondy and Murty [1]. Let G be a nontrivial connected graph on
which is defined a coloring c : E(G) → {1, 2, . . . , �}, � ∈ N, of the edges of G, where
adjacent edges may be colored the same. A path is a rainbow path if no two edges
of it are colored the same. An edge-colored graph G is rainbow connected if any two
vertices are connected by a rainbow path. Clearly, if a graph is rainbow connected,
it must be connected. Conversely, any connected graph has a trivial edge-coloring
that makes it rainbow connected; just color each edge with a distinct color. Thus, we
define the rainbow connection number of a connected graph G, denoted by rc(G), as
the smallest number of colors that are needed in order to make G rainbow connected.
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If G1 is a connected spanning subgraph of G, then rc(G) ≤ rc(G1). Chartrand et
al. [3] obtained that rc(G) = 1 if and only if G is complete, and that rc(G) = m
if and only if G is a tree, as well as that a cycle with k > 3 vertices has rainbow
connection number �k

2
�, and a triangle has rainbow connection number 1. Also notice

that, clearly, rc(G) ≥ diam(G), where diam(G) denotes the diameter of G. For more
information on rainbow connections, we refer to [4, 6]. In an edge-colored graph G,
we use c(e) to denote the color of edge e and for a subgraph G2 of G, c(G2) denotes
the set of colors of edges in G2.

Since rc(G) = m if and only if G is a tree, rc(G) 	= m−1 and G is not a tree if and
only if rc(G) ≤ m − 2 (Observation 3 below), then there is an interesting problem:
Characterize the graphs with rc(G) = m− 2. In this paper, we resolve this problem.
Furthermore, we also characterize the graphs G with rc(G) = m − 3.

We use V (G), E(G) for the set of vertices and edges of G, respectively. A pendant
edge of G is an edge incident to a vertex of degree 1. The girth of G, denoted by g(G),
is the length of a smallest cycle in G. A block of G is a maximal connected subgraph
of G that does not have any cut vertex. So every block of a nontrivial connected
graph is either a K2 or a 2-connected subgraph. All the blocks of a graph G form a
block decomposition of G. A rooted tree T (x) is a tree T with a specified vertex x,
called the root of T . Let L(x) denote the set of leaves of T (x) and |L(x)| = l(x). If
T (x) is a trivial tree, then l(x) = 0. We let Pn and Cn be the path and cycle with
n vertices, respectively. And xPy denotes a path from x to y. Let [t] = {1, . . . , t}
denote the set of the first t natural numbers. For a set S, |S| denotes the cardinality
of S.

2 Some basic results

We first give an observation which will be useful in the sequel.

Observation 1. [5] If G is a connected graph and {Ei}i∈[t] is a partition of the edge
set of G into connected subgraphs Gi = G[Ei], then

rc(G) ≤
t∑

i=1

rc(Gi).

We now give a necessary condition for an edge-colored graph to be rainbow con-
nected. If G is rainbow connected under some edge-coloring, then for any two cut
edges (if they exist) e1 = u1u2 and e2 = v1v2, there must exist some 1 ≤ i, j ≤ 2,
such that any ui − vj path must contain edge e1, e2. So we have:

Observation 2. If G is rainbow connected under some edge-coloring c where e1 and
e2 are any two cut edges, then c(e1) 	= c(e2).
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For a connected graph G, if it is a tree, then rc(G) = m; if it contains a unique
cycle of length k, then we give the cycle a rainbow coloring using �k

2
� colors (if the

cycle is a triangle, we just need one color) and color each other edge with a fresh
color. Then by Observation 1, we have rc(G) ≤ (m− k) + �k

2
� ≤ m− 2. So we have

the following observation.

Observation 3. Let G be a connected graph with m edges. Then rc(G) 	= m − 1
and G is not a tree if and only if rc(G) ≤ m − 2. Moreover, if G contains a cycle of
length k(k ≥ 4), then rc(G) ≤ m − 
k

2
�.

For a connected graph G, if it contains two edge-disjoint 2-connected subgraphs
B1 and B2, then by Observation 3, we give B1 and B2 a rainbow coloring using
|E(B1)| − 2 and |E(B2)| − 2 colors, respectively, and color each other edge with a
fresh color. Then by Observation 1, we have rc(G) ≤ m−4. So the following lemma
holds.

Lemma 1. Let G be a connected graph with m edges. If it contains two edge-disjoint
2-connected subgraphs, then rc(G) ≤ m − 4.

To subdivide an edge e is to delete e, add a new vertex x, and join x to the ends
of e. Any graph derived from a graph G by a sequence of edge subdivisions is called
a subdivision of G. Given a rainbow coloring of G, if we subdivide an edge e = uv
of G by xu and xv, then we assign xu the same color as e and assign xv a new
color, which also make the subdivision of G rainbow connected. Hence, the following
lemma holds.

Lemma 2. Let G be a connected graph, and H be a subdivision of G. Then rc(H) ≤
rc(G) + |E(H)| − |E(G)|.

The Θ-graph is a graph consisting of three internally disjoint paths with common
end vertices and of lengths a, b, and c, respectively, such that a ≤ b ≤ c. Then
a + b + c = m.

Lemma 3. Let G be a Θ-graph with m edges. If m = 5, then rc(G) = m − 3;
otherwise, rc(G) ≤ m − 4.

Proof. Let the three internally disjoint paths be P1, P2, P3 with the common end
vertices u and v, and the lengths of P1, P2, P3 be a, b, c, respectively, where a ≤ b ≤ c.
If m = 5, we color uP1v with color 1, uP2v with colors 1, 2, and uP3v with colors
2, 1. The resulting coloring makes G rainbow connected. Thus, rc(G) ≤ m − 3.
Since diam(G) = 2, it follows that rc(G) = m − 3. For m ≥ 6, we first consider
the graph Θ1 with a = 1, b = 2 and c = 3. We color uP1v with color 1, uP2v with
colors 1, 1, and uP3v with colors 2, 1, 2. Next we consider the graph Θ2 with a = 2,
b = 2 and c = 2. We color uP1v with colors 1,2, uP2v with colors 2, 1, and uP3v
with colors 2, 2. The resulting colorings make Θ1 and Θ2 rainbow connected. For a
general Θ-graph G with m ≥ 6, it is a subdivision of Θ1 or Θ2, hence by Lemma 2,
rc(G) ≤ m − 4.
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3 Characterizing unicyclic graphs with rc(G) = m − 2 and
m − 3

In this section we first give an observation about unicyclic graphs which will be
used frequently. Let G be a connected unicyclic graph with the unique cycle C =
v1v2 . . . vsv1. For brevity, orient C clockwise. Then G has the structure as follows: a
tree, denoted by T (vi), is attached at each vertex vi of C. Note that, T (vi) may be
trivial. Let i 	= j. If ei = xiyi(ej = xjyj) is a pendant edge which belongs to a tree
T (vi)(T (vj)). Then there is a unique path xiPivi(xjPjvj) from xi(xj) to vi(vj). Since
vi and vj divide C into two segments viCvj and vjCvi, there are exactly two paths
between xi and xj in G. Let c = {1, 2, . . . , �} be an edge coloring of G. Since each
edge in G \ E(C) is a cut edge, by Observation 2, they must obtain distinct colors.
It is easy to see that |c(xiPivi)∩c(C)| ≤ 1. In the process of coloring, we always first
color G \ E(C) with [t] colors, then color C, where t = |E(G) \ E(C)|. Thus, after
coloring E(G) \ E(C), the unique path xiPivi can be viewed as a pendant edge and
every T (vi) will be a star with the center vertex vi. Suppose |c(xiPivi) ∩ c(C)| = 1
and |c(xjPjvj) ∩ c(C)| = 1, then we can adjust the colors of cut edges such that
c(ei) = 1 and c(ej) = 2. Thus, 1, 2 ∈ viCvj or 1, 2 ∈ vjCvi, namely, 1,2 can only be
assigned in the same path from vi to vj . Moreover, another path from vi to vj should
be rainbow. We summarize the above argument into an observation.

Observation 4. Let G be a connected unicyclic graph with the unique cycle C =
v1v2 . . . vsv1, and let c = {1, 2, . . . , �} be an edge coloring of G. Let p ∈ T (vi) and
q, r ∈ T (vj).

(i) If p, q ∈ C, then they are in the same path from vi to vj and the other path
from vi to vj should be rainbow.

(ii) If q, r are in the unique path from a vertex x of V (G) \ V (C) to vj, then q and
r can not both belong to C.

In this section we only deal with unicyclic graphs. According to the girth of G,
we introduce some graph classes and discuss them by some lemmas. Note that, l(vi)
is the number of leaves of the tree attached at the vertex vi from the unique cycle
of G.

Let i be an integer with 1 ≤ i ≤ 3 and the addition is performed modulo 3. Let
G = {G : m = n, g(G) = 3}, G1 = {G : G ∈ G, l(vi) ≥ 1, l(vi+1) ≥ 1, l(vi+2) ≥
1, or l(vi) ≥ 3}, G2 = {G : G ∈ G, l(vi) = 0, l(vi+1) ≤ 2, l(vi+2) ≤ 2}. Obviously,
G = G1 ∪ G2.

Lemma 4. Let G be a graph belonging to G. If G ∈ G1, then rc(G) = m − 3;
otherwise rc(G) = m − 2.

Proof. Let the unique cycle of G be C = v1v2v3v1. Suppose G ∈ G1, by Observation
2, each edge of G\E(C) must obtain a distinct color, color them with a set [m−3] of
colors. We consider two cases. Without loss of generality, first suppose that ei = xiyi
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is a pendant edge in T (vi) that is assigned color i, where 1 ≤ i ≤ 3. Set c(v1v2) = 3,
c(v2v3) = 1, c(v3v1) = 2. Next suppose that ej = xjyj is a pendant edge of T (v1) that
is assigned color j, where 1 ≤ j ≤ 3. Color E(C) with 1,2,3, respectively. It is easy
to show that these two colorings are rainbow, and in these two cases, rc(G) = m−3.

If G ∈ G2, by Observation 3, rc(G) ≤ m − 2. By Observation 4, we know that at
most two colors for G \ E(C) can be assigned to C. Thus, we need a fresh color for
C, and it follows that rc(G) ≥ m − 2. Therefore, rc(G) = m − 2.

Let i be an integer with 1 ≤ i ≤ 4 and the addition is performed modulo 4.
Set H = {G : m = n, g(G) = 4}. Then H = H1 ∪ H2 ∪ H3, where H1 = {G :
G ∈ H, l(vi) = l(vi+2) = 0, l(vi+1) ≤ 1, l(vi+3) ≤ 1}, H2 = {G : G ∈ H, l(vi) ≥
4, or l(vi) ≥ 1, l(vi+1) ≥ 2, l(vi+2) ≥ 1}, and H3 is the set of the rest unicyclic graphs
with girth 4.

Lemma 5. Let G be a graph belonging to H. If G ∈ H1, then rc(G) = m − 2; if
G ∈ H2, then rc(G) = m − 4; if G ∈ H3, then rc(G) = m − 3.

Proof. Let the unique cycle of G be C = v1v2v3v4v1. By Observation 2, each edge of
G \ E(C) must obtain a distinct color, this costs m − 4 colors, thus rc(G) ≥ m − 4.
Color G \ E(C) with a set [m − 4] of colors. Suppose G ∈ H1. By Observation 3,
rc(G) ≤ m − 2. By Observation 4, we know that at least two colors different from
c(G \ E(C)) should be assigned to C, so it follows that rc(G) ≥ m − 2. Hence,
rc(G) = m − 2.

Suppose G ∈ H2. First let ei = xiyi be a pendant edge in T (v1) that is assigned
color i, where 1 ≤ i ≤ 4. Color E(C) with 1, 2, 3, 4, respectively. Next suppose that
ej = xjyj is a pendant edge that is assigned color j such that 1 ∈ T (v1), 2, 3 ∈ T (v2)
and 4 ∈ T (v3), where 1 ≤ j ≤ 4. Set c(v1v2) = 4, c(v2v3) = 1, c(v3v4) = 3,
c(v1v4) = 2. It is easy to show that these two colorings are rainbow, and in these
two cases, rc(G) = m − 4.

If G ∈ H3, by Observation 4, we check one by one that at least one color different
from c(G \E(C)) should be assigned to C, thus rc(G) ≥ m− 3. If e1 and e2 are two
pendant edges in a tree (say T (v1)) that are assigned colors 1 and 2, respectively,
then set c(v1v2) = m − 3, c(v2v3) = 1, c(v3v4) = 2, c(v1v4) = m − 3. By symmetry,
it remains to consider the case that l(v1) = l(v2) = l(v3) = 1. Suppose that ei = xiyi

is a pendant edge in T (vi) that is assigned color i, where 1 ≤ i ≤ 3. Set c(v1v2) = 3,
c(v2v3) = 1, c(v3v4) = m− 3, c(v1v4) = 2. It is easy to show that these two colorings
are rainbow, and in these two cases, rc(G) = m − 3.

Let i be an integer with 1 ≤ i ≤ 5 and the addition is performed modulo 5. Set
J = {G : m = n, g(G) = 5} and J = J1 ∪ {C5} ∪ J2, where J1 = {G : G ∈
J , l(vi) ≤ 2, l(vi+2) ≤ 1, l(vi+1) = l(vi+3) = l(vi+4) = 0 or l(vi) ≤ 1, l(vi+1) ≤
1, l(vi+2) ≤ 1, l(vi+3) = l(vi+4) = 0}, and J2 is the set of the rest unicyclic graphs
with girth 5.

Lemma 6. Let G be a graph belonging to J . If G is isomorphic to a cycle C5, then
rc(G) = m − 2. If G ∈ J1, then rc(G) = m − 3. If G ∈ J2, then rc(G) ≤ m − 4.
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Proof. Let the unique cycle of G be C = v1v2v3v4v5v1. If G is isomorphic to a
cycle C5, it is easy to see that rc(G) = m − 2. Suppose G ∈ J1. Suppose e1 is a
pendant edge of T (v1) that is assigned color 1. Set c(v1v2) = m−4, c(v2v3) = m−3,
c(v3v4) = 1, c(v4v5) = m − 4, c(v1v5) = m − 3. Thus rc(G) ≤ m − 3. On the other
hand, since it costs m − 5 colors for G \ E(C), and by Observation 4, we know that
at least two colors different from c(G\E(C)) should be assigned to C, it follows that
rc(G) ≥ m − 3. Therefore, rc(G) = m − 3.

Suppose G ∈ J2. Without loss of generality, we consider the following three cases.
If l(vi) ≥ 3 for some i with 1 ≤ i ≤ 5, then we may suppose that e1, e2 and e3

are the three pendant edges of T (v1) that are assigned colors 1,2,3, respectively. Set
c(v1v2) = m − 4, c(v2v3) = 3, c(v3v4) = 2, c(v4v5) = 1, c(v1v5) = m − 4. If l(vi) = 2,
then we may suppose that e1, e2 are the two pendant edges of T (v1) that are assigned
colors 1,2, respectively, and e3 is a pendant edge of T (v2) that is assigned color 3.
Set c(v1v2) = m − 4, c(v2v3) = 1, c(v3v4) = 2, c(v4v5) = m − 4, c(v1v5) = 3. It
remains to consider the case that l(vi) ≤ 1 for each i. Without loss of generality, let
l(v1) = l(v2) = l(v4) = 1. Suppose that ei is a pendant edge that is assigned color i
such that e1 ∈ T (v1), e2 ∈ T (v2) and e3 ∈ T (v4), where 1 ≤ i ≤ 3. Set c(v1v2) = 3,
c(v2v3) = m − 4, c(v3v4) = 1, c(v4v5) = 2, c(v1v5) = m − 4. It is easy to show that
these three colorings are rainbow, and in these three cases, rc(G) ≤ m − 4.

Let i be an integer with 1 ≤ i ≤ 6 and the addition is performed modulo 6. Set
L = {G : m = n, g(G) = 6} and L = L1 ∪ L2, where L1 = {G : G ∈ L, l(vi) ≤
1, l(vi+3) ≤ 1, l(vi+1) = l(vi+2) = l(vi+4) = l(vi+5) = 0}, L2 is the set of the rest
unicyclic graphs with girth 6.

Lemma 7. Let G be a graph belonging to L. If G ∈ L1, then rc(G) = m − 3;
otherwise rc(G) ≤ m − 4.

Proof. Let the unique cycle of G be C = v1v2v3v4v5v6v1. By Observation 2, each edge
of G\E(C) must obtain a distinct color, this costs m−6 colors, thus rc(G) ≥ m−6.
Color G \ E(C) with a set [m − 6] of colors. Suppose G ∈ L1. Set c(v1v2) = m − 5,
c(v2v3) = m−4, c(v3v4) = m−3, c(v4v5) = m−5, c(v5v6) = m−4, c(v1v6) = m−3.
By Observation 2, rc(G) ≤ m − 3. On the other hand, by Observation 4, we know
that at least three colors different from c(G \ E(C)) should be assigned to C, it
follows that rc(G) ≥ m − 3. Therefore, rc(G) = m − 3.

Suppose G ∈ L2. If l(vi) ≥ 2, then we may suppose that e1 and e2 are the two
pendant edges of T (v1) that are assigned colors 1,2, respectively. Set c(v1v2) = m−5,
c(v2v3) = m − 4, c(v3v4) = 1, c(v4v5) = 2, c(v5v6) = m − 5, c(v1v6) = m − 4. It
remains to consider the case that l(vi) ≤ 1 for each i. Suppose l(v1) = l(v2) = 1.
Let e1 and e2 be the two pendant edges that are assigned colors 1,2, respectively,
such that e1 ∈ T (v1) and e2 ∈ T (v2). Set c(v1v2) = m − 5, c(v2v3) = m − 4,
c(v3v4) = 1, c(v4v5) = 2, c(v5v6) = m − 5, c(v1v6) = m − 4. Without loss of
generality, let l(v1) = l(v3) = 1. Suppose that e1 and e2 are the two pendant edges
that are assigned colors 1,2, respectively, such that e1 ∈ T (v1) and e2 ∈ T (v3). Set
c(v1v2) = m − 5, c(v2v3) = m − 4, c(v3v4) = 1, c(v4v5) = m − 5, c(v5v6) = m − 4,
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c(v1v6) = 2. It is easy to show that these three colorings are rainbow, and in these
three cases, rc(G) ≤ m − 4.

4 Characterizing graphs with rc(G) = m − 2 and m − 3

Now we are ready to characterize the graphs with rc(G) = m−2 and rc(G) = m−3.

Theorem 1. rc(G) = m− 2 if and only if G is isomorphic to a cycle C5 or belongs
to G2 ∪H2.

Proof. Suppose that G is a graph with rc(G) = m − 2. By Lemma 1, G contains a
unique 2-connected subgraph. By Lemma 3, G contains no Θ-graph as a subgraph.
It follows that G is a unicyclic graph. By Observation 3, the girth of G is at most
5. The cases that the girth of G is 3,4 and 5 have been discussed in Lemmas 4, 5
and 6, respectively. We conclude that G must be isomorphic to a graph shown in
our theorem.

Conversely, By Lemmas 4, 5 and 6, the result holds.

Let M be a class of graphs where in each graph a path is attached at each vertex
of degree 2 of K4 − e, respectively. Note that, the path may be trivial.

Theorem 2. rc(G) = m− 3 if and only if G is isomorphic to a cycle C7 or belongs
to G1 ∪H3 ∪ J1 ∪ L1 ∪M.

Proof. Suppose that G is a graph with rc(G) = m − 3. By Lemma 1, G contains a
unique 2-connected subgraph B. Set V (B) = {v1, . . . , vs}, then G has the structure
as follows: a tree, denoted by T (vi), is attached at each vertex vi of B. If B is exactly
a cycle, then by Observation 3, the girth of G is at most 7. The cases that the girth
of G is 3,4,5 and 6 have been discussed in Lemmas 4, 5, 6 and 7, respectively. It
remains to deal with the case that the girth of G is 7. If G is not isomorphic to a
cycle C7, then suppose that e1 is a pendant edge of T (v1) that is assigned color 1.
Color G\E(B) with a set [m−7] of colors and set c(v1v2) = m−6, c(v2v3) = m−5,
c(v3v4) = m− 4, c(v4v5) = 1, c(v5v6) = m− 6, c(v6v7) = m− 5, c(v1v7) = m− 4. By
Observation 1, we have rc(G) ≤ m − 4.

So B is not a cycle. By Lemma 3, G contains no Θ-graph except a K4 − e as
a subgraph. We first claim that B is isomorphic to a K4 − e. If B is isomorphic
to a K4, we first color the edges of G \ E(B) with m − 6 colors, then give each
edge of B the same new color, this costs m − 5 colors totally, it is easy to check
that this coloring is rainbow, and in this case, rc(G) ≤ m − 5, a contradiction.
Set V (K4 − e) = {v1, v2, v3, v4}, and E(K4 − e) = {v1v2, v2v3, v3v4, v4v1, v1v3}. If
G /∈ M, then l(vi) ≥ 1 or l(vj) ≥ 2 where i = 1 or 3, j = 2 or 4. If l(v1) ≥ 1,
suppose that e1 is a pendant edge of T (v1) that is assigned color 1. Assign color
1 to v2v3 and m − 4 to each other edge of K4 − e. If l(v2) ≥ 2, suppose that e1

and e2 are two pendant edges of T (v2) that are assigned colors 1 and 2, respectively.
Set c(v1v2) = c(v2v3) = c(v1v3) = m − 4, c(v3v4) = 1, c(v1v4) = 2. In both cases,
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rc(G) ≤ m − 4. We conclude that G must be isomorphic to a graph shown in our
theorem.

Conversely, if G is isomorphic to a cycle C7, then rc(G) = m − 3. If G ∈ M,
it is easy to see that at least two new colors different from c(G \ E(B)) should be
assigned to B. Since each edge of G \ E(B) must obtain a distinct color, this costs
m−5 colors, it follows that rc(G) ≥ m−3. Set c(v1v2) = c(v3v4) = c(v1v3) = m−4,
c(v2v3) = c(v1v4) = m − 3, thus rc(G) ≤ m − 3. Therefore, rc(G) = m − 3. By
Lemmas 4, 5, 6 and 7, the result holds.

Remark: We have also characterized the graphs G with rc(G) = m − 4. But, the
proof is similar to the above ones, and very long and tedious, and therefore not
written down here.
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