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Abstract

Let G be a simple planar graph and let α be a positive integer such that
1 ≤ α ≤ 3 and δ(G) ≥ α + 2. For every pair of edges e1, e2 of G, the
graph G− {e1, e2} contains an [α, α + 1]-factor.

1 Introduction and preliminaries

All graphs considered are simple and finite. We refer the reader to [1] for standard
graph theoretic terms not defined in this paper.

Let G be a graph. The degree dG(u) of a vertex u in G is the number of edges
of G incident with u. The minimum degree of G is denoted by δ(G). If X and Y
are subsets of V (G), the set and the number of the edges of G joining X to Y are
denoted by EG(X, Y ) and eG(X, Y ), respectively. For any set X of vertices in G,
the subgraph induced by X is denoted by G[X] and the neighbour set of X in G by
NG(X). The number of connected components of G is denoted by ω(G). A cut edge
of G is an edge such that ω(G− {e}) > ω(G).

A bipartite graph is one whose vertex set can be partitioned into two subsets
X and Y , so that each edge has one end in X and one end in Y ; such a partition
(X, Y ) is called a bipartition of the graph. The following result is a well-known
characterization of bipartite graphs.

Theorem 1 (Bondy [1]). A graph is bipartite if and only if it contains no odd cycle.

Let G be a graph and let g and f be two integer-valued functions defined on
V (G) such that g(x) ≤ f(x) for all x ∈ V (G). Then a [g, f ]-factor of G is a spanning
subgraph F satisfying g(x) ≤ dF (x) ≤ f(x) for all x ∈ V (G). If g(x) = α and
f(x) = b for all x ∈ V (G), then we will call such a [g, f ]-factor, an [α, b]-factor.
If f, g are both constant functions taking the same value k then we will call such
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an [α, b]-factor, a k-factor. Thus a k-factor of G is a k-regular spanning subgraph
of G. A k-factor is also called regular factor and a [k, k + 1]-factor is often called
semiregular factor.

The following theorem due to Lovász [4] is a necessary and sufficient condition
for a graph to have a [g, f ]-factor.

Lovász’s Theorem. Let G be a graph and g and f be integer-valued functions
defined on V (G) such that g(x) ≤ f(x) for all x ∈ V (G). Then G has a [g, f ]-factor
if and only if

qG(D,S) +
∑
x∈S

(g(x)− dG−D(x)) ≤
∑
x∈D

f(x)

for all disjoint sets D,S ⊆ V (G), where qG(D,S) denotes the number of components
H of (G−D)− S such that g(x) = f(x) for all x ∈ V (H) and

eG(S, V (H)) +
∑

x∈V (H)

f(x) ≡ 1 (mod 2).

A graph is said to be planar or embeddable in the plane, if it can be drawn in the
plane so that its edges intersect only at their ends. Such a drawing of a planar graph
G is called a planar embedding of G. It can be regarded as a graph isomorphic to G
and we sometimes refer to it as a plane graph. A planar embedding of a planar graph
divides the plane into a number of connected regions, called faces, each bounded by
edges of the graph. We shall denote by F (G) and Φ(G) the set and the number
respectively of faces of a plane graph G.

Each plane graph has exactly one unbounded face called the exterior face. For
every plane graph G, we denote the boundary of a face f of G by b(f). If G is
connected, b(f) can be regarded as a closed walk in which each cut edge of G in b(f)
is traversed twice. A face f is said to be incident with the vertices, and edges in its
boundary. If e is a cut edge in G, just one face is incident with e, otherwise there
are two faces incident with e. The degree dG(f), of a face f of G is the number of
edges with which it is incident (cut edges are counted twice).

The following proposition and theorems related to planar graphs are well-known
results.

Proposition 1. If G is planar, then every subgraph of G is also planar.

Theorem 2 (Euler’s formula). If G is a connected plane graph, then

|V (G)| − |E(G)|+ Φ(G) = 2.

Theorem 3. If G is a plane graph, then∑
f∈F (G)

dG(f) = 2|E(G)|.
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The following result can be derived from Theorems 2 and 3.

Corollary 1. If G is a connected plane triangle-free graph with at least three vertices,
then

|E(G)| ≤ 2|V (G)| − 4.

Proof. For every face f of a connected plane triangle-free graph G having at least
three vertices, we have dG(f) ≥ 4. So∑

f∈F (G)

dG(f) ≥ 4Φ(G).

Thus by using Theorem 3,
|E(G)| ≥ 2Φ(G). (1)

By Theorem 2 and (1), we obtain

|V (G)| − |E(G)|+ |E(G)|
2

≥ 2

or
|E(G)| ≤ 2 |V (G)| − 4.

�

Theorem 4. For every planar graph G, δ(G) ≤ 5.

The discussion concerning the existence of a k-factor or an [α, b]-factor in a planar
graph is meaningful only for the cases when k ≤ 5 and α ≤ 5 respectively, by using
Theorem 4.

The existence of such k-factors in planar graphs were studied recently by the
author [3] and related results for the existence of connected [α, b]-factors can also be
found in [2]. As was demonstrated in [3], high minimum degree of a planar graph
cannot guarantee the existence of a regular factor. It appears that this does not
apply for semiregular factors.

The main purpose of this paper is to present the following sufficient condition for
the existence of semiregular factors in a planar graph based on its minimum degree.

Theorem 5. Let G be a planar graph and let α be a positive integer such that
1 ≤ α ≤ 3 and δ(G) ≥ α + 2. For every pair of edges e1, e2 of G, the graph
G− {e1, e2} contains an [α, α + 1]-factor.
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2 Proof of main result

To obtain the proof of Theorem 5, we shall need an auxiliary lemma.

Lemma 1. Let G be a graph and α, b be two positive integers such that b > α.
Suppose that there exist D,S ⊆ V (G), such that D ∩ S = ∅ and∑

x∈S

(α− dG−D(x)) > b|D|. (2)

If S ∪D is minimal with respect to (2), then

(i) dG−D(x) ≤ α− 1 for every x ∈ S, and

(ii) |NG(x) ∩ S| ≥ 3 for every x ∈ D.

Proof. (i) Suppose that there exists u ∈ S such that dG−D(u) ≥ α.

Define S
′
= S − {u}. Then∑
x∈S′

(α− dG−D(x)) =
∑
x∈S

(α− dG−D(x))− (α− dG−D(u))

≥
∑
x∈S

(α− dG−D(x)).

Thus by using (2), ∑
x∈S′

(α− dG−D(x)) > b|D|,

contradicting the minimality of D ∪ S with respect to (2).

(ii) Suppose that there exists u ∈ D such that |NG(u) ∩ S| ≤ 2.

Define D
′
= D − {u}. Then∑

x∈S

dG−D′ (x) =
∑
x∈S

dG−D(x) + |NG(u) ∩ S|

≤
∑
x∈S

dG−D(x) + 2.

Thus

α|S| −
∑
x∈S

dG−D′ (x) ≥ α|S| − (
∑
x∈S

dG−D(x) + 2)

> b|D| − 2 by (2)

= b(|D| − 1) + b− 2

= b|D′|+ b− 2
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contradicting the minimality of D ∪ S with respect to (2), since b ≥ 2. �

Proof of Theorem 5 . Suppose that there exists a pair of edges e1, e2 of G such that
the graph G− {e1, e2} does not contain an [α, α + 1]-factor.

Let X = {e1, e2} and G∗ = G − X. Then by Lovász’s Theorem there exist
D,S ⊆ V (G∗), such that D ∩ S = ∅ and

α|S| −
∑
x∈S

dG∗−D(x) > (α + 1)|D|. (3)

If we assume that D ∪ S is minimal with respect to (3), then by Lemma 1

dG∗−D(x) ≤ α− 1 for every x ∈ S (4)

and

|NG∗(x) ∪ S| ≥ 3 for every x ∈ D. (5)

First we note that S 6= ∅, by using (3). Furthermore for every x ∈ S,

α + 2 ≤ δ(G) ≤ dG(x) ≤ dG−D(x) + |D|
≤ dG∗−D(x) + |X|+ |D|
≤ α + 1 + |D| by (4) and |X| = 2.

Thus D 6= ∅.
For every x ∈ S, we also have

dG∗−D(x) + |NG∗(x) ∩D| = dG∗(x) ≥ dG(x)− |X|. (6)

But dG(x) ≥ δ(G) ≥ α + 2 and |X| = 2. So by using (4), (6) yields

|NG∗(x) ∩D| ≥ 1. (7)

Define a new graph H such that V (H) = D ∪S and E(H) = EG∗(D,S). Clearly
H is a bipartite subgraph of G with bipartition (D,S) and so by Proposition 1,
H is also a planar graph. Moreover we can derive from (5) and (7) that for every
component C of H, |V (C)| ≥ 4. Hence Corollary 1 yields

|E(H)| ≤ 2(|D|+ |S|)− 4 (8)

since the bipartite graph H is triangle-free by Theorem 1. But

|E(H)| =
∑
x∈S

dG∗(x)−
∑
x∈S

dG∗−D(x)

≥
∑
x∈S

dG(x)− 2|X| −
∑
x∈S

dG∗−D(x)

≥ δ(G)|S| − 2|X| −
∑
x∈S

dG∗−D(x)

≥ (α + 2)|S| − 4−
∑
x∈S

dG∗−D(x)
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and thus by using (8),

2|D| ≥ α|S| −
∑
x∈S

dG∗−D(x). (9)

Now (3) can be written as

α|S| −
∑
x∈S

dG∗−D(x) > (α− 1)|D|+ 2|D|

and so by using (9), 0 > (α−1)|D| contradicting the fact that α is a positive integer.

This completes the proof of Theorem 5. �

3 Sharpness

We next show that the conditions of Theorem 5 are, in some sense, best possible.
We first notice that the number of deleted edges cannot be increased. Let G be
a planar graph such that δ(G) = α + 2 and let u ∈ V (G) be a vertex such that
dG(u) = α+ 2. If we delete from G more than two edges having u as an end vertex,
then the resulting graph G∗ will have minimum degree less than α and clearly G∗

cannot possess an [α, α + 1]-factor.

We next show that the minimum degree condition is also best possible by de-
scribing a family of planar graphs G having slightly lower minimum degree and not
having the properties implied by Theorem 5. In fact as we will see, the conclusions
of Theorem 5 will not hold even if we do not delete edges from G and even if we are
looking for any [α, n]-factor where n ≥ α, instead of an [α, α + 1]-factor.

We construct such graphs G as follows. We start from two vertices u, v which are
joined to (i) all vertices of 2n + 1 copies of Kα, when 1 ≤ α ≤ 2, (ii) all vertices of
a cycle of length 2n + 1 when α = 3; where in both the above cases n is a positive
integer such that n ≥ α. Clearly the resulting graph G is planar, δ(G) = α+ 1 and,
as we will show, G does not have an [α, n]-factor.

Let D = {u, v} and S = V (G)−D. Then∑
x∈S

(α− dG−D(x)) > n|D|

since dG−D(x) = α− 1 for every x ∈ S, |S| ≥ 2n+ 1 and |D| = 2.

Hence G does not have an [α, n]-factor by Lovász’s Theorem.

Theorem 5 is a sufficient condition for a planar graph to have [1, 2], [2, 3], [3,
4]-factors in terms of its minimum degree. A natural question that may arise is
whether high minimum degree of a planar graph can guarantee the existence of a
[4, n]-factor or of a [5, n]-factor for any n ≥ 4 or n ≥ 5, respectively. We will show
that this is not possible by describing again a family of planar graphs. We construct
such graphs G as follows. We start by taking 2n+ 1 copies H1, H2, . . . , H2n+1 of the
plane graph illustrated in Fig. 1.
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Figure 1:

In this plane graph, as we can see, the exterior face is incident with 5 vertices.
Let {ui,1, ui,2, ui,3, ui,4, ui,5} be the set of vertices of the exterior face of every such
copy Hi for i = 1, 2, . . . , 2n + 1. We place H1, H2, . . . , H2n+1 in a circular order and
between Hi and Hi+1 we add vertex vi for i = 1, 2, . . . , 2n + 1 (where addition is
taken modulo 2n + 1). We also add vertex w1 inside the circular ordering of Hi’s,
vi’s and vertex w2 outside. We join vi to ui,4, ui,5, ui+1,1, vertex w1 to ui,2, ui,3, vi and
vertex w2 to vi, for i = 1, 2, . . . , 2n + 1. The resulting graph G is clearly planar,
δ(G) = 5 and G does not have a [4, n]-factor or a [5, n]-factor for every n ≥ 4 or
n ≥ 5, respectively. For the proof of our last statement, we define D = {w1, w2} and
S = {v1, v2, . . . , v2n+1}. Then∑

x∈S

(4− dG−D(x)) > n|D|

since
∑
x∈S

(4− dG−D(x)) = 2n + 1 and |D| = 2. Thus by Lovász’s Theorem, G does

not have a [4, n]-factor and so does not also possess a [5, n]-factor.
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