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Abstract

A normalized Hadamard matrix is said to be completely noncyclic if no
two row vectors are shift equivalent in its punctured matrix (i.e., with
the first column removed). In this paper we present an infinite recursive
construction for completely noncyclic quaternary Hadamard matrices.
These Hadamard matrices are useful in constructing low correlation zone
sequences.

1 Introduction

If H is a Hadamard matrix of order N , then we have HH� = N · IN , where IN is
the identity matrix of order N and H� is complex conjugate of the transpose of H .
In this paper we deal with a quaternary Hadamard matrix, which is a square matrix
over {1,−1, i,−i}, i =

√−1, whose rows are mutually complex orthogonal. It is well
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known that any Hadamard matrix can be normalized such that its first row and first
column are all ones vectors. In this paper, all the Hadamard matrices involved are
normalized.

Definition 1 Let a = (a0 · · ·aN−1) and b = (b0 · · · bN−1) be two vectors, or two
sequences, of length N . Then a and b are said to be shift-equivalent if there exists an
integer 0 < τ < N such that b = Lτ (a), where L is the left cyclic shift operator, i.e.,
Lτ (a) = (aτ · · ·aN−1a0 · · ·aτ−1).

Definition 2 Given an N × N matrix M , let M̂ be defined as the N × (N − 1)
matrix obtained from M by removing its first column.

A normalized Hadamard matrix H is said to be completely noncyclic if all the
row vectors of Ĥ are shift distinct. In this paper we present an infinite recursive
construction for completely noncyclic quaternary Hadamard matrices.

Hadamard matrices have been studied extensively and a huge collection of results
on their properties exists [1, 3, 5, 8]. However, most of the studies concentrate on
solving real Hadamard conjecture which states that an N × N binary Hadamard
matrix exists for all positive integers N which are multiples of 4 [3]. The completely
noncyclic property we consider in this paper has only recently been investigated
and arises in connection with the generation of low correlation zone (LCZ) sequences
[2, 11, 12, 13]. A 4-tuple (N,M,Lcz, ε) is a family ofM low correlation zone sequences
of period N having low correlation value ε within the zone Lcz [13].

LCZ sequences are used as signature sequences in quasi-synchronous code-division
multiple access (QS-CDMA) communication systems [6, 13]. In a QS-CDMA system,
the relative time delay between the signature sequences of different users is random
but restricted to a certain time range {±1,±2, · · ·±T}, where T is much smaller than
the period of the sequences. The LCZ sequences have the property that they possess
very small correlation for time delays within T , for example in this paper it is fixed
to be −1. Due to this property, such sequences can be employed to decrease both
multiple access interference and multipath interference in a QS-CDMA system [6].
In the literature, numerous constructions of LCZ sequence sets have been reported
[2, 4, 6, 7, 10, 11] which can all be explained by the interleaved technique in [10, 11]
or the subfield construction in [2].

Recently, an interesting connection between Hadamard matrices and the LCZ
sequences was pointed out in [11, 12]. Using an interleaved method, a family of
binary LCZ sequences of length 2n − 1 and low correlation zone length Lcz = 2n−1

2m−1

where m|n and m ≥ 2 was constructed in [7, 11, 12]. The method used is quite
general and works over quaternary modulation. In order to construct the quaternary
LCZ sequences of length 2n − 1 and low correlation zone length Lcz = 2n−1

2m−1
where

m|n and m ≥ 2, the interleaved method requires a set U of sequences of length 2m−1
over {1,−1, i,−i} satisfying:

P1. Balance property, i.e., in any sequence three elements of {1,−1, i,−i} occur
with equal frequency 2m−2, with the remaining element occuring with frequency
2m−2 − 1;
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P2. Inner product property, i.e., the inner product between any two distinct se-
quences in U is −1, i.e.,

∑N−1
i=0 aib̄i = −1 for any two sequences a = (a0 · · ·aN−1)

and b = (b0 · · · bN−1) in U , where b̄i represents the complex conjugate of bi;

P3. Shift distinct property, i.e., no two sequences in U are equivalent with respect
to the cyclic shift operator.

It was pointed out in [7, 11, 12] that such a set can be obtained from the shift
distinct row vectors of a 2m × (2m − 1) punctured normalized Hadamard matrix,
leaving the first all ones row vector. A more general construction in [2] uses subfield
decomposition and a completely noncyclic binary Hadamard matrix to derive low
correlation zone sequences.

In this paper, we present a class of completely noncyclic quaternary Hadamard
matrices of size 2m, m ≥ 3. These matrices, when used in the LCZ constructions in
[2, 7, 11, 12] result in optimal LCZ sequence sets.

The paper is organized as follows. In Section 2, we give necessary conditions for
shift equivalence of the recursively defined rows. Section 3 discusses the noncyclic
property of a class of Hadamard matrices first introduced by Elliot and Rao [3].

2 Necessary conditions for shift equivalence

In this section we will consider a general recursive construction of 2m quaternary
vectors of period 2m. We will derive necessary conditions for cyclic shift equivalence
of quaternary vectors in the recursive construction. These conditions will be used to
prove completely non-cylic property of a family of quaternary Hadamard matrices.

Let −a be the negation of a, where a could be a quaternary symbol or a sequence
or a matrix. Denote by 12m−1 the all one vectors of length 2m − 1 and by �2m−1 =
(−1, 1, · · · ,−1, 1,−1) the vector of alternate 1’s and −1’s of length 2m − 1 with
starting entry −1.

Let ϕm and ψm be any quaternary matrices of size 2m by 2m − 1, m ≥ 1. Note
that the matrices have 2m row sequences of length N = 2m − 1. Now consider the
matrix ϕm+1 of length 2m+1 − 1 defined by

ϕm+1 =

(
ϕm 1T

2m ϕm

ψm −1T
2m −ψm

)
. (1)

In the following theorem, a set of necessary conditions on two shift equivalent row
sequences in ϕm+1 is given. Theorem 1 is an adaptation of [13, Theorem 1] to the
quaternary case, but with slightly different terminology. In particular the “codes”
are hidden, and the results are described in the terminology of matrices.

Theorem 1 Suppose that a quaternary matrix ϕm+1, m ≥ 1, is constructed by (1).
Further assume that ϕm and ψm contain no repeated rows. Then, any two row vectors
c, d ∈ ϕm+1 are shift equivalent only if they satisfy any of the following conditions:
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I. c = (a 1 a) and d = (b 1 b), where a, b ∈ ϕm, b = Lτ (a) for some τ such that
0 < τ < 2m − 1 and a0 = a1 = · · · = aτ−1 = 1,

II. c = (a 1 a) and d = (−a − 1 a), where a ∈ ϕm, −a ∈ ψm with a = �2m−1;

III. c = (a − 1 − a) and d = (a 1 a), where a ∈ ϕm and a ∈ ψm with a = �2m−1

and τ = 2m − 1;

IV. c = (a − 1 − a) and d = (b − 1 − b), where a, b ∈ ψm with the conditions,
bi = ai+τ , 0 ≤ i < 2m−1−τ , a0 = a1 = · · · = aτ−1 = 1, b2m−1−τ = b2m−1−τ+1 =
· · · = b2m−2 = −1; and 0 < τ < 2m − 1;

V. c = (a − 1 − a) and d = (b − 1 − b), where a, b ∈ ψm with a = 12m−1,
b = −12m−1 and τ = 2m − 1.

Proof: The proof goes along the same lines as in [13, Theorem 1].Suppose that
two row vectors c, d ∈ ϕm+1 are shift equivalent, say d = Lτ (c) for a shift τ > 0.
Since d = Lτ (c) is equivalent to c = L2m+1−1−τ (d), without loss of generality it is
sufficient that we consider only those shifts in the range 0 < τ < 2m.

From (1), any row vectors c and d of ϕm+1 have to satisfy one of the following
four conditions:

1. c = (a 1 a) and d = (b 1 b) where a �= b ∈ ϕm by our assumptions;

2. c = (a 1 a) and d = (b − 1 − b) where a ∈ ϕm and b ∈ ψm;

3. c = (a − 1 − a) and d = (b 1 b) where a ∈ ψm and b ∈ ϕm;

4. c = (a − 1 − a) and d = (b − 1 − b) where a �= b ∈ ψm by our assumptions.

We will systematically list the conditions obtained by the elementwise equivalence
of the equation d = Lτ (c) for each of the above cases. For example, consider the case
1 above. First, we consider what happens when τ = 2m − 1. Then, d and Lτ (c) are
illustrated below:

d = (b0 b1 · · · bN−1 1 b0 b1 · · · bN−1),
Lτ (c) = (1 a0 · · · aN−2 aN−1 a0 a1 · · · aN−1).

The relation d = L2m−1(c) implies that a = b which is impossible as a and b are
assumed to be different. Secondly, we consider the case 1 above with 0 < τ < 2m−1.
The row vectors d and Lτ (c) are represented in the two lines given below:

(b0 · · · bN−τ−1 bN−τ bN−τ+1 · · · bN−1 1 b0 · · · bN−τ−1 bN−τ · · · bN−1)
(aτ · · · aN−1 1 a0 · · · aτ−2 aτ−1 aτ · · · aN−1 a0 · · · aτ−1)

Equating d with Lτ (c) elementwise leads to the conditions I. of the theorem. We
repeat the above method to derive conditions II, III, IV V of the theorem by
considering elementwise equivalence of d = Lτ (c) for all other cases.
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3 Completely Noncyclic property of Elliot-Rao Hadamard
matrices

We first provide a definition of Sylvester Hadamard matrices.

Definition 3 Let m be a positive integer. A Sylvester matrix of order 2m, m ≥ 1 is

defined recursively as Sm = S1 ⊗Sm−1, where S1 =

[
1 1
1 −1

]
, and ⊗ represents the

Kronecker product of matrices.

From Definition 3, it is easy to see that the row vectors of the Sm are shift distinct.
However, when the first column is removed from the matrix, it is not clear how many
row vectors are still shift distinct. In [13], it is shown that Ŝm has exactly 2m −m
cyclically distinct vectors.

Below we introduce Elliot-Rao Hadamard matrices as given in the research mono-
graph [3, p 78.]. Let

C1 =

[
1 −i
1 i

]
, C2 =

[
S1 S1

C1 −C1

]
.

Then for m ≥ 3, an Elliot-Rao Hadamard matrix is represented by the recursion:

Cm =

[
Cm−1 Cm−1

C1 ⊗ Sm−2 −C1 ⊗ Sm−2

]
, m ≥ 3, (2)

where Sm is a Sylvester Hadamard matrix of order 2m.

The example of Elliot-Rao matrix for m = 2 is given as follows.

C2 =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 −i −1 i
1 i −1 −i

⎤
⎥⎥⎦ ,

We are interested in showing that all vectors of Ĉm are cyclically distinct.

It can be easily observed that the row vectors of Ĉ2 are shift distinct and hence
C2 is completely noncyclic. In the following theorem, we prove that Cm, m ≥ 2 is
completely noncyclic.

Theorem 2 The Elliot-Rao Hadamard matrix Cm, m ≥ 2 is completely noncyclic.

Proof: We will consider Ĉm. Then Ĉm+1 can be represented as:

Ĉm+1 = ϕm+1 =

(
ϕm 1T

2m ϕm

ψm −1T
2m −ψm

)
, (3)



U. PARAMPALLI ET AL. /AUSTRALAS. J. COMBIN. 60 (3) (2014), 255–262 260

with starting matrix ϕ2 = Ĉ2 and ψm is realized by another recursion given by
ψm = D̂m, where

Dm = C1 ⊗ Sm−1. (4)

So for m = 2, D2 is given as follows:

D2 =

⎡
⎢⎢⎣

1 1 −i −i
1 −1 −i i
1 1 i i
1 −1 i −i

⎤
⎥⎥⎦ .

From above it is clear that the recursion (3) is in the form required for Theorem
1. We prove that the row vectors are cyclically distinct by using mathematical
induction. Since the starting matrix ϕ2 has cyclically distinct row vectors, Case
I of Theorem 1 is not applicable. Also �2m−1 belongs to ϕm, but because of (4),
�2m−1 �∈ ψm. With the same logic as before, −12m−1 �∈ ψm. Hence the situations in
Case II, Case III and Case V of Theorem 1 can never happen. Similarly Case IV of
Theorem 1 can never happen as the second half of row sequences in ψm contain only
elements from {i,−i}. Hence no two rows in Ĉm+1 are cyclic shifts of each other. �

3.1 Low Correlation zone sequences

As explained in Section 1, the row vectors of Ĉm satisfies the requirements of the
set U with property P1 to P3. We have the following result.

Proposition 1 (Tang-Fan-Matsufuji bound [9]) Given a (N,M,Lcz, ε) LCZ se-
quence set S with parameters: sequence length N := 2n − 1, low correlation zone
length Lcz = 2n−1

2m−1
, and the low correlation value ε := −1, its size M satisfies

M ≤
⌊2n(2m − 1)

2n − 1

⌋
= 2m − 1.

We have the following result on number of balanced sequences obtained from
Elliot-Rao Hadamard matrices.

Lemma 1 There are exactly 2m − 2 balanced rows in Ĉm, for m ≥ 2.

Proof: The result follows from mathematical induction. From inspection it is clear
that the first two rows of Ĉ2 are not balanced. The first one is all 1 sequence and
the second one is a sequence of alternating 1s and −1s. These two sequences exist
in each Ĉm due to the recursion (2). All other row sequences are balanced with each
symbol from {1,−1, i,−i} occurring equally often. �

By omitting the first column of Cm, m ≥ 3, we can obtain a maximum number
of 2m − 2 sequences meeting the properties P1,P2 and P3 of Section 1.0.
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Thus, the nonzero row sequences of Ĉm, m ≥ 3, can be used to construct 2m − 2
LCZ sequences of length 2n − 1, m|n, which is almost optimal with respect to the
Tang-Fan-Matsufuji bound in Proposition 1.

An example of Elliot-Rao matrices for m = 3 is given below to illustrate that
it has 23 − 2 sequences (making up its 6 × 7 lower right submatrix) meeting the
properties P1,P2 and P3 of Section 1.

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 −i −1 i 1 −i −1 i
1 i −1 −i 1 i −1 −i
1 1 −i −i −1 −1 i i
1 −1 −i i −1 1 i −i
1 1 i i −1 −1 −i −i
1 −1 i −i −1 1 −i i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 1: In contrast to the quaternary Hadamard matrices considered in this
paper, it is not possible to obtain completely noncyclic Binary Hadamard matrices
in sizes 4 and 8 due to the existence of an upper bound on the number of cyclically
distinct sequences in small lengths [13].
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