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Abstract

We provide a new construction of the strongly regular graphs associated
with the two sporadic simple groups M22 and HS. Further, we give some
new constructions of other known strongly regular graphs by taking the
orbits of a certain subgroup of M22 on the planes of the Hermitian variety
H(5, 4). These geometric constructions can be used to produce cap codes
with large parameters and automorphism groups containing M22 as a
subgroup.

1 Introduction

The Higman-Sims group HS is a sporadic simple group of order 44,352,000 aris-
ing from the automorphism group of the so-called Higman-Sims graph, which is an
undirected triangle-free graph with 100 vertices and 1100 edges where each vertex
has valency 22, no neighbouring pair of vertices share a common neighbour and
each non-neighbouring pair of vertices share six common neighbours; see [12, 13].
In other words, the Higman-Sims graph is a triangle-free strongly regular graph
srg(100, 22, 0, 6). The uniqueness of a strongly regular graph with these parame-
ters was proved by Gewirtz; see [11]. It should be remarked, however, that such a
graph had been constructed earlier—and uniqueness was shown—by Mesner in his
unpublished 1956 doctoral thesis; see [17, 19, 21, 22]. Further, an alternative new
construction of the Highman-Sims graph can be found in [20].

The full automorphism group of the the Higman-Sims graph has order 88,704,000,
and it turns out that HS is isomorphic to a subgroup of this automorphism group
with index 2. Actually, the full automorphism group of the Higman-Sims graph is
HS : 2.

The Higman-Sims graph can be constructed starting off with a Steiner system
S(3, 6, 22). Since every triplet of distinct points of an S(3, 6, 22) determines exactly
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one block, a simple counting argument shows that there are exactly 77 blocks in an
S(3, 6, 22). Adjacent vertices are defined to be disjoint blocks. This graph is strongly
regular; any vertex has 16 neighbors, any two adjacent vertices have no common
neighbors, and any two non-adjacent vertices have four common neighbors. This
graph has M22 : 2 as its automorphism group. This graph is uniquely determined by
its parameters; see [6, 7]. The Higman-Sims graph is then formed by appending the
22 points of S(3, 6, 22) and a 100-th vertex ∞. The neighbors of ∞ are defined to
be those 22 points. A point adjacent to a block is defined to be one that is included.
Note that in the Higman-Sims graph the vertices at distance 2 from a vertex may be
identified with the srg(77, 16, 0, 4).

In this paper we provide a new description of both the Higman-Sims graph and
the graph associated to M22, exploring the geometry of the action of the absolutely
irreducible representations of the groups PSL2(11) and M22 as subgroups of PSL10(2);
see [1]. Our notation and terminology are standard; see for instance [23]. For a
general account on design theory, Steiner systems and related topics see also [2, 3, 15].

2 The action of the groups PSL2(11) and M22

The group PSL2(11) has an absolutely irreducible representation as a subgroup of
PSL10(2); see [1]. In this representation it fixes an elliptic quadric Q−(9, 2). We
assume that Q−(9, 2) has equation

X1X2 + X3X4 + X5X6 + X7X8 + X9X10 + X2
1 + X2

2 = 0,

therefore PSL2(11) lies inside the group PΩ−
10(2). With the aid of MAGMA [4] we

checked that the group PSL2(11) has 11 point orbits of sizes 11, 11, 55, 55, 55, 55,
66, 110, 110, 165, 330 in PG(9, 2). Two of the orbits of size 55, two of those of size
110 and the orbit of size 165 partition the point set of Q−(9, 2). The two orbits of
size 11 and one of the orbits of size 55 among those on Q−(9, 2) are caps and their
union gives rise to a 77–cap O which turns out to be complete in the projective
space PG(9, 2). Recall that a k-cap in a finite projective space is a set consisting of
k points no three of which are collinear, and that a k-cap is said to be complete if
it is not contained in a (k + 1)-cap. The stabilizer of O in PSL10(2) is isomorphic
to M22 : 2. From the ATLAS [1] we found out that the Mathieu group M22 can be
generated by the following matrices:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 0 1
1 0 0 1 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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This group turns out to have three orbits of sizes 77, 330 and 616 in its action
on the points of PG(9, 2).

3 Graphs associated to the group M22

Denote by O, O1 and O2 the three orbits of M22 of sizes 77, 330 and 616 on PG(9, 2),
respectively, as seen at the end of the previous section.

3.1 The unique srg(77, 16, 0, 4)

Define a graph G as follows. Vertices of the graph are the points of O, with two
vertices adjacent whenever the line joining them meets the longest orbit O2. With
the aid of MAGMA we found out that G has valence 16, it is triangle–free, and the
number of vertices adjacent to two adjacent vertices is 4. It turns out that G is the
unique srg(77, 16, 0, 4) admitting M22 : 2 as an automorphism group.

3.2 The Higman-Sims graph

The stabiliser of a point P of O in M22 has three orbits on O of sizes 1, 16 and 60.
Points in the 16–orbit are adjacent to P . Notice that the crucial fact here is that O
is a cap. As we already observed before, the group PSL2(11) has two orbits of points
of size 11 in PG(9, 2), say L1 and L2, consisting of non–singular points with respect
to the orthogonal polarity ⊥ induced by Q−(9, 2). It follows that for any point P
in Li, i = 1, 2, P⊥ is a hyperplane of PG(9, 2) intersecting Q−(9, 2) in a parabolic
quadric Q(8, 2). Hence a set W of 22 hyperplanes of PG(9, 2) arises as the union of
two orbits of the group PSL2(11) of size 11, say X1 and X2. The set W turns out to
be an orbit under the action of M22. With the aid of MAGMA we checked that for
any point P of O there are exactly 6 hyperplanes of W on P .

Define a graph H with three types of vertices as follows:

(i) a special vertex denoted by the symbol ∞;

(ii) the points of O;

(iii) the hyperplanes of W .

Adjacency is defined over H as follows:

• the vertex ∞ is adjacent to all vertices of type (iii) and none of type (ii);

• a vertex P of type (ii) is adjacent to a vertex H of type (iii) if and only if
P ∈ H ;

• adjacency of vertices of type (ii) is inherited from that of the graph associated
to the group M22 as seen in 3.1.

Theorem 1. The graph H is a strongly regular graph srg(100, 22, 0, 6) isomorphic
to the Higman-Sims graph.
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Proof. We remark that in the Higman-Sims graph the vertices at distance 2 from
a vertex may be identified with the srg(77, 16, 0, 4) associated to M22. All other
parameters have been verified with the aid of MAGMA.

3.3 The graph srg(77, 60, 47, 45)

Define a graph G1 as follows. Vertices of the graph are the points of O, where two
vertices are adjacent whenever the line joining them meets the orbit O1. The graph
G1 is again a strongly regular graph with valence 60 and the other parameters 47
and 45, that is, G1 is a srg(77, 60, 47, 45). In other words, G1 is the complement of
G. Looking at the table of strongly regular graphs by Brouwer [5], it turns out that
G1 is the strongly regular graph associated to the unique 3−(22, 6, 1) block design;
see for instance [2].

3.4 The Hadamard design H11

Consider again the two orbits of hyperplanes X1 and X2 defined above. Every hyper-
plane of X1 meets Q−(9, 2) in a parabolic quadric. It can be showed that a parabolic
quadric arising from a hyperplane of Xi meets the parabolic quadrics arising from
hyperplanes of Xj , with i �= j, in either a hyperbolic quadric Q+(7, 2) or in a cone
over a Q(6, 2). More precisely, a parabolic quadric of Xi meets exactly five parabolic
quadrics of X2 in a cone. Also each pair of parabolic quadrics of Xi meets exactly two
parabolic quadrics of Xj in a cone. In the end, we have constructed the 2−(11, 5, 2)
biplane. This is the famous Hadamard design H11. The complementary design is a
2−(11, 6, 3) balanced incomplete block design.

3.5 More about the graph srg(77, 16, 0, 4)

As was already observed by Brouwer [7], the graph srg(77, 16, 0, 4) associated to the
group M22 is an object with Buekenhout-Tits diagram as in Figure 1; see also [8].
The vertices of type 1 represent the 77 points of the cap O; those of type 2 represent
the 2310 chords of O meeting the orbit O1; those of type 3 represent the 2310 4–
sets { z | p ∼ z ∼ q }, where z represents a vertex of the graph srg(77, 16, 0, 4), for
nonadjacent pairs (p, q), where x ∼ y indicates the existence of an edge between the
vertices x and y; those of type 4 represent the 77 16–sets { z | p ∼ z }, where again
z represents a vertex on the graph srg(77, 16, 0, 4). Incidence is inclusion.

� � � �
⊂ ⊃

1 2 3 4

Figure 1.
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3.6 Extending scalars

Embed PG(9, 2) in PG(9, 4) as a Baer subgeometry, and consider the action of the
group M22 on points of PG(9, 4)\PG(9, 2). It turns out that M22 has an orbit of size
1,232 that forms a cap. Such a cap is covered by extended lines of PG(9, 2) forming
an orbit of size 616 that are secant to O and unisecant to O2. The 1,232-cap will be
used in Section 5 to construct a very large even code.

4 Other constructions

From the ATLAS one sees that M22 has a 6-dimensional projective representation
over K = GF(4) in which M22 fixes a non–degenerate Hermitian form on the under-
lying vector space V . Let H(5, 4) be the associated Hermitian variety of PG(5, 4)
fixed by M22 with equation

X0X
2
5 + X1X

2
4 + X2X

2
3 + X3X

2
2 + X4X

2
1 + X5X

2
0 = 0.

It turns out that M22 is a subgroup of PSU6(4). With the following construction we
intend to exploit this embedding.

Using MAGMA, we first construct the unique subgroup G of order 443,520 in
PSU6(4), where necessarily G ∼= M22 as above. Our computations show that G has 4
orbits on the generators (totally singular planes) of H(5, 4), of sizes 22, 77, 330 and
462. Planes in the orbit of size 77 are either disjoint or meet in a point. On the other
hand, any two planes from the orbit of 22 generators meet in exactly one point. It is
easy to check that the planes in this orbit form three 2-dimensional dual hyperovals
embedded in H(5, 4); see [16]. We recall that a family F of 2-dimensional subspaces
of the finite 5-dimensional projective space PG(5, 4) is called a dual hyperoval if:

• every point of PG(5, 4) belongs to either 0 or 2 members in F ;

• any two members of F have exactly one point in common;

• the set of points belonging to the members of F spans PG(5, 4).

In this setting we can define again both graphs associated to M22 and HS. Define
a graph G as follows. Vertices of the graph are the planes in the 77-orbit with two
vertices adjacent whenever two planes are disjoint. With the aid of MAGMA we
checked that G is the graph srg(77, 16, 0, 4) associated to M22. Joining the two orbits
of size 77 and 22, and adding a new symbol ∞, we can construct the Higman-Sims
graph H as follows. Define three types of vertices in H:

(i) one special vertex denoted by the symbol ∞;

(ii) the planes of the 77–orbit;

(iii) the planes of the 22–orbit.

Define adjacency in H as follows:
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• the vertex denoted by ∞ is adjacent to all vertices of type (iii);

• a vertex of type (ii) corresponding to a plane P is adjacent to a vertex of type
(iii) corresponding to a plane Q if and only if P and Q meet in a line;

• adjacency of vertices of type (ii) is inherited from that of the graph associated
to M22.

4.1 Strongly regular graphs related to H(5, 4)

Note that among the subgroups of the group M22 fixing the Hermitian variety H(5, 4)
there is a group G isomorphic to 2 : 2 : 3 : PSL3(4) which has an orbit P of length
105 and an orbit P ′ of length 120 in its action on the planes contained in H(5, 4).
Further, with the aid of MAGMA we checked that every two planes of P either meet
at one point or are disjoint, and the same holds for the planes of P ′. This enables
us to obtain an alternative simple geometric construction of four strongly regular
graphs with a fairly large automorphism group; see [5].

Define a graph G1 whose vertices are the planes of P and two vertices π, π′ ∈ P
are adjacent whenever |π∩π′| = 1. Then G1 turns out to be a strongly regular graph
srg(105, 32, 4, 12).

Define a graph G0 whose vertices are the planes of P and two vertices π, π′ ∈ P
are adjacent whenever π ∩ π′ = ∅. Then G0 turns out to be a strongly regular graph
srg(105, 72, 51, 45) which is the complement of G1.

Define a graph G′
1 whose vertices are the planes of P ′ and two vertices π, π′ ∈ P ′

are adjacent whenever |π∩π′| = 1. Then G1 turns out to be a strongly regular graph
srg(120, 77, 52, 44).

Define a graph G ′
0 whose vertices are the planes of P ′ and two vertices π, π′ ∈ P ′

are adjacent whenever π ∩ π′ = ∅. Then G′
0 turns out to be a strongly regular graph

srg(120, 42, 8, 18) which is the complement of G′
1.

Uniqueness of the graph G1 was proved in [9], while uniqueness of the graph G ′
0

was proved in [10].

5 Related error correcting codes

Caps in projective spaces are closely related to a broad class of linear codes. If K is
an n-cap in a projective space PG(r−1, q), then the coordinate vectors of the points
of K are the columns of the parity check matrix H of an [n, n − r, d]q linear code
C with minimum distance d > 3, that is, H is the generating matrix of an [n, r, d′]q
code C⊥ which is the dual code of C; see [14, Chapter 14] for instance.

The cap O ⊂ PG(9, 2) arising from the action of the group PSL2(11) on the
elliptic quadric Q−(9, 2), as described in Section 2, generates an even [77, 10, 32]2
linear code with weight distribution

(0; 1), (32; 231), (40; 770), (56; 22),

whose dual is a [77, 67, 4]2 linear code.
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As it was pointed out in Section 2, at least one of the orbits of length 55 under the
action of the group PSL2(11) on the elliptic quadric Q−(9, 2) is a 55-cap in PG(9, 2).
This generates a [55, 10, 20]2 linear code with weight distribution

(0; 1), (20; 66), (24; 220), (28; 550), (32; 165), (40; 22),

whose dual is a [55, 45, 4]2 linear code.
Taking one of the two 11-caps seen in Section 2 it is possible to generate an even

[11, 10, 2]2 linear code with weight distribution

(0; 1), (2; 55), (4; 330), (6; 462), (8; 165), (10; 11),

which is MDS, that is, with minimum distance d such that d = n− k + 1 (Singleton
bound).

Joining the two orbits of length 11 seen in Section 2 we obtain a 22-cap in PG(9, 2)
generating an even [22, 10, 8]2 linear code with weight distribution

(0; 1), (8; 330), (12; 616), (16; 77),

whose dual is a [22, 12, 6]2 linear code.
The 66-cap in PG(9, 2) obtained by joining the 55-cap seen in Section 2 with one

of the two 11-caps generates a [66, 10, 26]2 linear code whose weight distribution we
omit due to the great number of different weights it has. Its dual is a [66, 56, 4]2
linear code.

Finally, the 1,232-cap described in Setion 3.6 can be used to generate an even
[1,232, 10, 816]4 linear code with weight distribution

(0; 1), (816; 1,386), (832; 693), (864; 6,930), (904; 36,960), (912; 242,550),

(920; 443,520), (936; 110,880), (944; 168,630), (960; 36,960), (1,232; 66),

whose dual is a [1,232, 1,222, 4]4 linear code. It admits an automorphism group
isomorphic to the group 2 : M22 : 3.

The codes described in this section seem to be new, and admit an automoprhism
group containing M22 as a subgroup. We remark that linear codes with large auto-
morphism groups are considered interesting objects in their own right.
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