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Abstract

We give four new extension theorems for linear codes over Fq: (a) For q =
2h, h ≥ 3, every [n, k, d]q code with d odd whose weights are congruent
to 0 or d (mod q/2) is extendable. (b) For q = 2h, h ≥ 3, every [n, k, d]q
code with gcd(d, q) = 2 whose weights are congruent to 0 or d (mod q) is
doubly extendable. (c) For integers h, m, t with 0 ≤ m < t ≤ h and prime
p, every [n, k, d]q code with gcd(d, q) = pm and q = ph is extendable if∑

i�≡d (mod pt) Ai < qk−1+r(q)qk−3(q−1), where q+r(q)+1 is the smallest

size of a non-trivial blocking set in PG(2, q). (d) Every [n, k, d]q code with
gcd(d, q) = 1 whose diversity is (θk−1 − 2qk−2, qk−2) is extendable. These
are generalizations of some known extension theorems by Hill and Lizak
(1995), Simonis (2000) and Maruta (2005).

1 Introduction

Let F
n
q denote the vector space of n-tuples over Fq, the field of q elements. A q-ary

linear code of length n and dimension k or an [n, k]q code is a k-dimensional subspace
of F

n
q . An [n, k, d]q code is an [n, k]q code with minimum (Hamming) distance d. The

weight of a vector x ∈ F
n
q , denoted by wt(x), is the number of nonzero coordinate

positions in x. The weight distribution of C is the list of numbers (A0, A1, . . . , An),
where Ai denotes the number of codewords of C with weight i. Ai is usually omitted
from the list if Ai = 0. The weight distribution (A0, Ad, . . . ) = (1, α, . . . ) is expressed
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as 01dα . . . in this paper. A q-ary linear code C is called w-weight (mod q) if C has
exactly w distinct weights of codewords under modulo q reduction. We only consider
linear codes over finite fields having no coordinate which is identically zero. For an
[n, k, d]q code C with a generator matrix G, C is called extendable (to C′) if there exists
a vector h ∈ F

k
q such that the extended matrix [G, hT] generates an [n + 1, k, d + 1]q

code C′. Then C′ is called an extension of C. C is doubly extendable if one of its
extensions C′ is also extendable. The most well-known extension theorem is the
following by Hill and Lizak [6]; see also [5] and [10].

Theorem 1.1 ([6]). Every [n, k, d]q code with gcd(d, q) = 1, whose weights (of code-
words) are congruent to 0 or d (mod q), is extendable.

For even q ≥ 8, we give a stronger result:

Theorem 1.2. For q = 2h, h ≥ 3, every [n, k, d]q code with d odd whose weights are
congruent to 0 or d (mod q/2) is extendable.

Theorem 1.1 is an extension theorem for 2-weight (mod q) linear codes. As for
the extension theorems for 3-weight (mod q) linear codes, see [14]. Theorem 1.2 is
applicable to 4-weight (mod q) linear codes whose weights are 0, q/2, d, d+ q/2 (mod
q), and is the first extension theorem for 4-weight (mod q) linear codes.

The extendability of [n, k, d]q codes with gcd(d, q) = 2 was first investigated
in [17]. The condition “gcd(d, q) = 1” in Theorem 1.1 cannot be replaced by
“gcd(d, q) = 2” for q = 4 since there is a counterexample; see [17]. But for q ≥ 8, we
prove the following.

Theorem 1.3. For q = 2h, h ≥ 3, every [n, k, d]q code with gcd(d, q) = 2 whose
weights are congruent to 0 or d (mod q) is doubly extendable.

Simonis [16] gave the following generalization of Theorem 1.1.

Theorem 1.4 ([16]). Every [n, k, d]q code with gcd(d, q) = 1, q = ph, p prime, is
extendable if

∑
i�≡d (mod p) Ai = qk−1.

We give a generalization of Theorem 1.4:

Theorem 1.5. Let h, m, t be integers with 0 ≤ m < t ≤ h. For q = ph with prime
p, every [n, k, d]q code with gcd(d, q) = pm is extendable if

∑
i�≡d (mod pt)

Ai = qk−1. (1.1)

Note that Theorem 1.4 is the case m = 0, t = 1 in Theorem 1.5. The condition (1.1)
can be weakened to the following.

Theorem 1.6. Let h, m, t be integers with 0 ≤ m < t ≤ h. For q = ph with prime
p, every [n, k, d]q code with gcd(d, q) = pm is extendable if

∑
i�≡d (mod pt)

Ai < qk−1 + r(q)qk−3(q − 1), (1.2)

where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2, q).
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A non-trivial blocking set in PG(2, q) is a set of points in the projective plane over Fq

meeting every line in at least one point but containing no line; see Chapter 13 of [7].
As for r(q), it is known that r(3) = r(4) = 2, r(5) = 3, r(7) = 4. It can be shown
that the inequality (1.2) implies the equality (1.1). The following result is known as
another extension theorem making use of r(q).

Theorem 1.7 ([9]). Every [n, k, d]q code with gcd(d, q) = 1 is extendable if

∑
i�≡0, d (mod q)

Ai ≤ qk−3r(q). (1.3)

Since the condition on weights of codewords in Theorem 1.1 can be written as∑
i�≡0,d (mod q) Ai = 0, Theorem 1.7 is also a generalization of Theorem 1.1, and the

inequality (1.3) was recently improved as follows.

Theorem 1.8 ([15]). Every [n, k, d]q code with gcd(d, q) = 1 is extendable if

∑
i�≡0,d (mod q)

Ai < qk−2(q − 1).

To give one more extension theorem, we introduce the diversity of a linear code.
For an [n, k, d]q code C with gcd(d, q) < q, let

Φ0 =
1

q − 1

∑
q|i,i>0

Ai, Φ1 =
1

q − 1

∑
i�≡0,d (mod q)

Ai,

where the notation q|i means that q is a divisor of i. The pair of integers (Φ0, Φ1)
is called the diversity of C ([11], [12]). Theorem 1.8 shows that C is extendable if
Φ1 < qk−2 and gcd(d, q) = 1. Next, we consider the case when Φ1 = qk−2. We denote
θj = (qj+1 − 1)/(q − 1) for Fq. As for ternary linear codes (q = 3), it is known that
an [n, k, d]3 code with gcd(3, d) = 1, k ≥ 3, is extendable if

(Φ0, Φ1) ∈ {(θk−2, 0), (θk−3, 2 · 3k−2), (θk−2, 2 · 3k−2), (θk−2 + 3k−2, 3k−2)},
see [12]. For an [n, k, d]q code C with gcd(d, q) = 1, k ≥ 3, it follows from Theorem 1.1
that C is extendable if (Φ0, Φ1) = (θk−2, 0). We generalize the case (Φ0, Φ1) =
(θk−2 + 3k−2, 3k−2) for ternary linear codes to q-ary linear codes.

Theorem 1.9. Let C be an [n, k, d]q code with diversity (Φ0, Φ1), gcd(d, q) = 1. Then
C is extendable if (Φ0, Φ1) = (θk−1 − 2qk−2, qk−2).

Example 1.1.

(a) Let C1 be a [100, 3, 87]8 code. Considering the possible residual codes, it can be
proved that all possible weights of C1 are 87, 88, 91, 92, 95, 96. So, Ai = 0 for all i �≡
0, 3 (mod 4). Hence C1 is extendable by Theorem 1.2. Actually, the possible weight
distributions for C1 are 018741388639535, 018742088569528967, 0187392884991569214 and
018737888639170.
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(b) There exists a [73, 4,62]8 code C2 with weight distribution 016217646418837025272196,
see [8]. Since the weights of C2 are congruent to 0 or 6 (mod 8), C2 is doubly
extendable to a [75, 4, 64]8 code by Theorem 1.3.

(c) There exists a [30, 3, 22]4 code C3 with weight distribution 0122452415303, see [3].
C3 is extendable by Theorem 1.6 with m = 1, t = 2, p = 2.

(d) Let C4 be a [15, 3, 7]4 code with generator matrix

G4 =

⎡
⎣

1 0 0 1 0 1 1 0 1 0 1 1 1 0 0
0 1 0 1 1 ω̄ ω̄ 1 ω 1 ω̄ ω 1 1 1
0 0 1 1 0 0 0 ω 1 0 1 0 0 ω̄ 1

⎤
⎦ ,

where F4 = {0, 1, ω, ω̄}. The weight distribution of C4 is 017383931191236139 with
diversity (13, 4). So, C4 is extendable by Theorem 1.9. Indeed, by adding the column
(1, 0, 1)T to G4, one gets a [16, 3, 8]4 code C′

4 with weight distribution 01839612121342.
See also Example 2.1 in Section 2.

Problem. (i) Can the conditions “q = 2h ” and “ (mod q/2)” in Theorem 1.2 be
generalized to “q = ph ” and “ (mod q/p)” for an odd prime p?
(ii) Is Theorem 1.9 valid for the case gcd(d, q) ≥ 2?
(iii) Find more diversities such that every code over Fq is extendable.

2 Proof of the main theorems

We first give the geometric method to investigate linear codes over Fq through pro-
jective geometry. A j-flat of PG(r, q) is a projective subspace of dimension j in
PG(r, q). The 0-flats, 1-flats, 2-flats and (r − 1)-flats are called points, lines, planes
and hyperplanes, respectively. The number of points in a j-flat is |PG(j, q)| = θj =
(qj+1 − 1)/(q − 1), where |T | denotes the number of elements in the set T . We refer
to [7] for geometric terminologies.

We assume k ≥ 3. Let C be an [n, k, d]q code with diversity (Φ0, Φ1) and a
generator matrix G with no all-zero column. Let gi be the i-th row of G for 1 ≤ i ≤ k.
We consider the mapping wG from Σ :=PG(k − 1, q) to {i | Ai > 0}, the set of non-
zero weights of C. For P = P(p1, . . . , pk) ∈ Σ, the weight of P with respect to G,
denoted by wG(P ), is defined as wG(P ) = wt(

∑k
i=1 pigi), see [14].

Lemma 2.1 ([13]). For a line L = {P0, P1, . . . , Pq} in Σ, the following holds:

wG(L) :=

q∑
i=0

wG(Pi) ≡ 0 (mod q).

Let Fd = {P ∈ Σ | wG(P ) = d}. Recall that a hyperplane H of Σ is defined by a
non-zero vector h = (h1, . . . , hk) ∈ F

k
q as H = {P(p1, . . . , pk) ∈ Σ | h1p1+· · ·+hkpk =

0}. The vector h is called a defining vector of H .
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Lemma 2.2 ([13]). C is extendable if and only if there exists a hyperplane H of Σ
such that Fd ∩ H = ∅. Moreover, the extended matrix of G by adding a defining
vector of H as a column generates an extension of C.

Now, let

F0 = {P ∈ Σ | wG(P ) ≡ 0 (mod q)},
F1 = {P ∈ Σ | wG(P ) �≡ 0, d (mod q)},
F2 = {P ∈ Σ | wG(P ) ≡ d (mod q)} ⊃ Fd.

Note that (Φ0, Φ1) = (|F0|, |F1|). Since (F0 ∪ F1) ∩ Fd = ∅ if gcd(d, q) < q, we get
the following.

Lemma 2.3. C is extendable if gcd(d, q) < q and if there exists a hyperplane H of
Σ such that H ⊂ F0 ∪ F1.

A set B of points in PG(r, q) is called a blocking set with respect to s-flats if every
s-flat in PG(r, q) meets B in at least one point. A blocking set in PG(r, q) with
respect to s-flats is called non-trivial if it contains no (r − s)-flat.

Lemma 2.4 ([1],[2],[4]). Let B be a blocking set with respect to s-flats in PG(r, q).

(a) |B| ≥ θr−s, where the equality holds if and only if B is an (r − s)-flat.

(b) |B| ≥ θr−s + qr−s−1r(q) if B is non-trivial, where q + r(q)+ 1 is the smallest size
of a non-trivial blocking set in PG(2, q).

The following result is essential in the proofs of Theorems 1.2 and 1.3.

Lemma 2.5 ([17]). Let K be a set of points in Σ = PG(k − 1, q), k ≥ 3, q = 2h,
h ≥ 3, meeting every line in exactly 1, q/2 + 1, or q + 1 points. Then, K contains a
hyperplane of Σ.

Now, we are ready to prove our results.

Proof of Theorem 1.2. For q = 2h, h ≥ 3, let C be an [n, k, d]q code with d odd
whose weights are congruent to 0 or d (mod q/2). For a generator matrix G of C
and a line L in Σ = PG(k − 1, q), we have wG(L) =

∑
P∈L wG(P ) ≡ 0 (mod q) by

Lemma 2.1. Let F̃0 := {Q ∈ Σ | wG(Q) is even}. Then, F̃0 ∩ Fd = ∅. Assume that
the t points on L have odd weights and that the other have even weights. Then, from
the condition, we have td ≡ 0 (mod q/2), so, t ≡ 0 (mod q/2), for d is odd. Hence
t = 0, q/2 or q. Thus, |F̃0 ∩ L| = 1, q/2 + 1 or q + 1, and F̃0 contains a hyperplane
of Σ by Lemma 2.5. Hence our assertion follows from Lemma 2.2.

Proof of Theorem 1.3. For q = 2h, h ≥ 3, let C be an [n, k, d]q code with
gcd(d, q) = 2 whose weights are congruent to 0 or d (mod q). For a generator matrix
G of C and a line L in Σ = PG(k−1, q), we have wG(L) =

∑
P∈L wG(P ) ≡ 0 (mod q)
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by Lemma 2.1. Note that Σ = F0 ∪ F2, F0 ∩ F2 = ∅. Assume |L ∩ F2| = t. Then,
from the condition, we have td ≡ 0 (mod q), so, t ≡ 0 (mod q/2), for gcd(d, q) = 2.
Hence t = 0, q/2 or q. Thus, |F0 ∩ L| = 1, q/2 + 1 or q + 1, and F0 contains a
hyperplane of Σ, say H , by Lemma 2.5. Hence C is extendable by Lemma 2.3. Let
C′ be the extension with generator matrix G′ = [G, hT], where h is a defining vector
of H . Let Fd′ = {P ∈ Σ | wG′(P ) = d+1}. Note that wG(P ) = wG′(P ) ≡ 0 (mod q)
for any point P of H . Since d + 1 is odd, we have H ∩ Fd′ = ∅. Hence, C′ is also
extendable by Lemma 2.2.

Proof of Theorem 1.6. For integers h, m, t with 0 ≤ m < t ≤ h and for q = ph with
prime p, let C be an [n, k, d]q code with gcd(d, q) = pm and assume

∑
i�≡d (mod pt) Ai <

qk−1+r(q)qk−3(q−1). For a generator matrix G of C and a line L in Σ = PG(k−1, q),
we have wG(L) =

∑
P∈L wG(P ) ≡ 0 (mod q) by Lemma 2.1. Let F̄0 = {Q ∈

Σ | wG(Q) �≡ d (mod pt)} and F̄2 = {Q ∈ Σ | wG(Q) ≡ d (mod pt)}. Then,
F̄0 ∩ Fd = ∅ and |F̄0| < θk−2 + r(q)qk−3. Suppose L ⊂ F̄2. Then, we have d ≡ 0
(mod pt), a contradiction. Thus F̄0 forms a blocking set with respect to lines in
Σ. Hence F̄0 contains a hyperplane of Σ by Lemma 2.4, and C is extendable by
Lemma 2.2.

Lemma 2.6. Let K be a set of points in Σ = PG(r, q) with K �= Σ. Then K is a
hyperplane of Σ if and only if every line meets K in either one or q + 1 points.

A line � is called an (i, j)-line if |� ∩ F0| = i and |� ∩ F1| = j. Note that a (1, 1)-line
and a (0, 1)-line do not exist by Lemma 2.1.

Proof of Theorem 1.9. Let C be an [n, k, d]q code with diversity (Φ0, Φ1) =
(θk−1 − 2qk−2, qk−2), gcd(d, q) = 1, k ≥ 3. Then, we have |F1| = |F2| = qk−2. For
R ∈ F2, there exist at least θk−3 lines through R containing no point of F1, for
|F1| = qk−2. Such lines are (1, 0)-lines, for gcd(d, q) = 1. Let l1, . . . , lθk−3

be such

lines and let H =
⋃θk−3

i=1 li. Since |F2 ∩H| = (q − 1)θk−3 + 1 = |F2|, we have F2 ⊂ H .
Hence, every line through two points of F2 is a (1, 0)-line. For Ri ∈ li and Rj ∈ lj
with i �= j and Ri, Rj �= R, the line l = 〈Ri, Rj〉 is a (1, 0)-line. Let P be the
point of F0 on l. If there exists a point of F1 on the line lP = 〈R, P 〉, then there
exists a (1, 1)-line or a (0, 1)-line on the plane 〈li, lj〉, a contradiction. Hence lP is
also a (1, 0)-line, and l is contained in H . It follows that H forms a hyperplane of
Σ = PG(k − 1, q). Since H contains only (1, 0)-lines or (q + 1, 0)-lines, H0 = F0 ∩H
is a hyperplane of H by Lemma 2.6. Now, take a hyperplane H1 through H0 with
H1 �= H . Then, we have H1 ⊂ F0 ∪ F1 since F2 = H \ H0. Hence C is extendable by
Lemma 2.3.

Example 2.1. Let us investigate the [15, 3, 7]4 code C4 in Example 1.1 (d). We
denote by [a, b, c] the line in PG(2, 4) with defining vector (a, b, c). From the generator
matrix G4, we have F0 = {(1, 1, 0), (1, ω̄, 0), (0, 1, 1), (1, ω, 1), (1, 0, ω), (0, 1, ω),
(1, 1, ω), (1, ω̄, ω), (1, 0, ω̄), (0, 1, ω̄), (1, 1, ω̄), (1, ω̄, ω̄), (1, 0, 0)} and F1 = {(1, 0, 1),
(0, 1, 0), (1, 1, 1), (1, ω̄, 1)}, where (x, y, z) stands for the point P(x, y, z) of PG(2, 4).
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Hence, F0 ∪ F1 contains a (1, 4)-line [1, 0, 1], which gives a [16, 3, 8]4 code C′
4 in

Example 1.1 (d). On the other hand, F0 contains a (5, 0)-line [0, 1, ω], giving a
[16, 3, 8]4 code with weight distribution 01839612121342.
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