Some generalizations of extension theorems for linear codes over finite fields

TATSUYA MARUTA* TAICHIRO TANAKA HITOSHI KANDA

> Department of Mathematics and Information Sciences Osaka Prefecture University Sakai, Osaka 599-8531 Japan

maruta@mi.s.osakafu-u.ac.jp jinza80kirisame@gmail.com ta330cha@gmail.com

Abstract

We give four new extension theorems for linear codes over \mathbb{F}_q : (a) For q = $2^h, h \geq 3$, every $[n, k, d]_q$ code with d odd whose weights are congruent to 0 or d (mod q/2) is extendable. (b) For $q = 2^h$, $h \ge 3$, every $[n, k, d]_q$ code with gcd(d, q) = 2 whose weights are congruent to 0 or $d \pmod{q}$ is doubly extendable. (c) For integers h, m, t with $0 \le m < t \le h$ and prime p, every $[n, k, d]_q$ code with $gcd(d, q) = p^m$ and $q = p^h$ is extendable if $\sum_{i \not\equiv d \pmod{p^t}} A_i < q^{k-1} + r(q)q^{k-3}(q-1)$, where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2, q). (d) Every $[n, k, d]_q$ code with gcd(d,q) = 1 whose diversity is $(\theta_{k-1} - 2q^{k-2}, q^{k-2})$ is extendable. These are generalizations of some known extension theorems by Hill and Lizak (1995), Simonis (2000) and Maruta (2005).

1 Introduction

Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. A *q*-ary linear code of length n and dimension k or an $[n, k]_q$ code is a k-dimensional subspace of \mathbb{F}_{q}^{n} . An $[n, k, d]_{q}$ code is an $[n, k]_{q}$ code with minimum (Hamming) distance d. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_q^n$, denoted by $wt(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x} . The weight distribution of \mathcal{C} is the list of numbers (A_0, A_1, \ldots, A_n) , where A_i denotes the number of codewords of \mathcal{C} with weight *i*. A_i is usually omitted from the list if $A_i = 0$. The weight distribution $(A_0, A_d, \dots) = (1, \alpha, \dots)$ is expressed

^{*} This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

as $0^1 d^{\alpha} \dots$ in this paper. A q-ary linear code C is called w-weight (mod q) if C has exactly w distinct weights of codewords under modulo q reduction. We only consider linear codes over finite fields having no coordinate which is identically zero. For an $[n, k, d]_q$ code C with a generator matrix G, C is called extendable (to C') if there exists a vector $h \in \mathbb{F}_q^k$ such that the extended matrix $[G, h^T]$ generates an $[n + 1, k, d + 1]_q$ code C'. Then C' is called an extension of C. C is doubly extendable if one of its extensions C' is also extendable. The most well-known extension theorem is the following by Hill and Lizak [6]; see also [5] and [10].

Theorem 1.1 ([6]). Every $[n, k, d]_q$ code with gcd(d, q) = 1, whose weights (of codewords) are congruent to 0 or d (mod q), is extendable.

For even $q \geq 8$, we give a stronger result:

Theorem 1.2. For $q = 2^h$, $h \ge 3$, every $[n, k, d]_q$ code with d odd whose weights are congruent to 0 or d (mod q/2) is extendable.

Theorem 1.1 is an extension theorem for 2-weight (mod q) linear codes. As for the extension theorems for 3-weight (mod q) linear codes, see [14]. Theorem 1.2 is applicable to 4-weight (mod q) linear codes whose weights are 0, q/2, d, d+q/2 (mod q), and is the first extension theorem for 4-weight (mod q) linear codes.

The extendability of $[n, k, d]_q$ codes with gcd(d, q) = 2 was first investigated in [17]. The condition "gcd(d, q) = 1" in Theorem 1.1 cannot be replaced by "gcd(d, q) = 2" for q = 4 since there is a counterexample; see [17]. But for $q \ge 8$, we prove the following.

Theorem 1.3. For $q = 2^h$, $h \ge 3$, every $[n, k, d]_q$ code with gcd(d, q) = 2 whose weights are congruent to 0 or $d \pmod{q}$ is doubly extendable.

Simonis [16] gave the following generalization of Theorem 1.1.

Theorem 1.4 ([16]). Every $[n, k, d]_q$ code with gcd(d, q) = 1, $q = p^h$, p prime, is extendable if $\sum_{i \neq d \pmod{p}} A_i = q^{k-1}$.

We give a generalization of Theorem 1.4:

 $i \not\equiv$

Theorem 1.5. Let h, m, t be integers with $0 \le m < t \le h$. For $q = p^h$ with prime p, every $[n, k, d]_q$ code with $gcd(d, q) = p^m$ is extendable if

$$\sum_{i \not\equiv d \pmod{p^t}} A_i = q^{k-1}.$$
(1.1)

Note that Theorem 1.4 is the case m = 0, t = 1 in Theorem 1.5. The condition (1.1) can be weakened to the following.

Theorem 1.6. Let h, m, t be integers with $0 \le m < t \le h$. For $q = p^h$ with prime p, every $[n, k, d]_q$ code with $gcd(d, q) = p^m$ is extendable if

$$\sum_{\substack{\text{for } d \pmod{p^t}}} A_i < q^{k-1} + r(q)q^{k-3}(q-1), \tag{1.2}$$

where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2,q).

A non-trivial blocking set in PG(2,q) is a set of points in the projective plane over \mathbb{F}_q meeting every line in at least one point but containing no line; see Chapter 13 of [7]. As for r(q), it is known that r(3) = r(4) = 2, r(5) = 3, r(7) = 4. It can be shown that the inequality (1.2) implies the equality (1.1). The following result is known as another extension theorem making use of r(q).

Theorem 1.7 ([9]). Every $[n, k, d]_q$ code with gcd(d, q) = 1 is extendable if

$$\sum_{i \not\equiv 0, d \pmod{q}} A_i \le q^{k-3} r(q). \tag{1.3}$$

Since the condition on weights of codewords in Theorem 1.1 can be written as $\sum_{i \neq 0, d \pmod{q}} A_i = 0$, Theorem 1.7 is also a generalization of Theorem 1.1, and the inequality (1.3) was recently improved as follows.

Theorem 1.8 ([15]). Every $[n, k, d]_q$ code with gcd(d, q) = 1 is extendable if

$$\sum_{i \not\equiv 0, d \pmod{q}} A_i < q^{k-2}(q-1).$$

To give one more extension theorem, we introduce the diversity of a linear code. For an $[n, k, d]_q$ code C with gcd(d, q) < q, let

$$\Phi_0 = \frac{1}{q-1} \sum_{q|i,i>0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \not\equiv 0,d \pmod{q}} A_i,$$

where the notation q|i means that q is a divisor of i. The pair of integers (Φ_0, Φ_1) is called the *diversity* of C ([11], [12]). Theorem 1.8 shows that C is extendable if $\Phi_1 < q^{k-2}$ and $\gcd(d, q) = 1$. Next, we consider the case when $\Phi_1 = q^{k-2}$. We denote $\theta_j = (q^{j+1}-1)/(q-1)$ for \mathbb{F}_q . As for ternary linear codes (q=3), it is known that an $[n, k, d]_3$ code with $\gcd(3, d) = 1, k \geq 3$, is extendable if

$$(\Phi_0, \Phi_1) \in \{(\theta_{k-2}, 0), (\theta_{k-3}, 2 \cdot 3^{k-2}), (\theta_{k-2}, 2 \cdot 3^{k-2}), (\theta_{k-2} + 3^{k-2}, 3^{k-2})\},\$$

see [12]. For an $[n, k, d]_q$ code C with $gcd(d, q) = 1, k \ge 3$, it follows from Theorem 1.1 that C is extendable if $(\Phi_0, \Phi_1) = (\theta_{k-2}, 0)$. We generalize the case $(\Phi_0, \Phi_1) = (\theta_{k-2} + 3^{k-2}, 3^{k-2})$ for ternary linear codes to q-ary linear codes.

Theorem 1.9. Let C be an $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , gcd(d, q) = 1. Then C is extendable if $(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$.

Example 1.1.

(a) Let C_1 be a $[100, 3, 87]_8$ code. Considering the possible residual codes, it can be proved that all possible weights of C_1 are 87, 88, 91, 92, 95, 96. So, $A_i = 0$ for all $i \neq 0, 3 \pmod{4}$. Hence C_1 is extendable by Theorem 1.2. Actually, the possible weight distributions for C_1 are $0^{1}87^{413}88^{63}95^{35}$, $0^{1}87^{420}88^{56}95^{28}96^{7}$, $0^{1}87^{392}88^{49}91^{56}92^{14}$ and $0^{1}87^{378}88^{63}91^{70}$. (b) There exists a $[73, 4, 62]_8$ code C_2 with weight distribution $0^1 62^{1764} 64^{1883} 70^{252} 72^{196}$, see [8]. Since the weights of C_2 are congruent to 0 or 6 (mod 8), C_2 is doubly extendable to a $[75, 4, 64]_8$ code by Theorem 1.3.

(c) There exists a $[30, 3, 22]_4$ code C_3 with weight distribution $0^1 22^{45} 24^{15} 30^3$, see [3]. C_3 is extendable by Theorem 1.6 with m = 1, t = 2, p = 2.

(d) Let C_4 be a $[15, 3, 7]_4$ code with generator matrix

where $\mathbb{F}_4 = \{0, 1, \omega, \bar{\omega}\}$. The weight distribution of \mathcal{C}_4 is $0^1 7^3 8^3 9^3 11^9 12^{36} 13^9$ with diversity (13, 4). So, \mathcal{C}_4 is extendable by Theorem 1.9. Indeed, by adding the column $(1, 0, 1)^{\mathrm{T}}$ to G_4 , one gets a $[16, 3, 8]_4$ code \mathcal{C}'_4 with weight distribution $0^1 8^3 9^6 12^{12} 13^{42}$. See also Example 2.1 in Section 2.

Problem. (i) Can the conditions " $q = 2^h$ " and " $(\mod q/2)$ " in Theorem 1.2 be generalized to " $q = p^h$ " and " $(\mod q/p)$ " for an odd prime p? (ii) Is Theorem 1.9 valid for the case $gcd(d,q) \ge 2$?

(iii) Find more diversities such that every code over \mathbb{F}_q is extendable.

2 Proof of the main theorems

We first give the geometric method to investigate linear codes over \mathbb{F}_q through projective geometry. A *j*-flat of PG(r,q) is a projective subspace of dimension *j* in PG(r,q). The 0-flats, 1-flats, 2-flats and (r-1)-flats are called *points*, *lines*, *planes* and *hyperplanes*, respectively. The number of points in a *j*-flat is $|PG(j,q)| = \theta_j = (q^{j+1}-1)/(q-1)$, where |T| denotes the number of elements in the set *T*. We refer to [7] for geometric terminologies.

We assume $k \geq 3$. Let \mathcal{C} be an $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) and a generator matrix G with no all-zero column. Let g_i be the *i*-th row of G for $1 \leq i \leq k$. We consider the mapping w_G from $\Sigma := \operatorname{PG}(k-1,q)$ to $\{i \mid A_i > 0\}$, the set of nonzero weights of \mathcal{C} . For $P = \mathbf{P}(p_1, \ldots, p_k) \in \Sigma$, the weight of P with respect to G, denoted by $w_G(P)$, is defined as $w_G(P) = wt(\sum_{i=1}^k p_i g_i)$, see [14].

Lemma 2.1 ([13]). For a line $L = \{P_0, P_1, \ldots, P_q\}$ in Σ , the following holds:

$$w_G(L) := \sum_{i=0}^{q} w_G(P_i) \equiv 0 \pmod{q}.$$

Let $F_d = \{P \in \Sigma \mid w_G(P) = d\}$. Recall that a hyperplane H of Σ is defined by a non-zero vector $h = (h_1, \ldots, h_k) \in \mathbb{F}_q^k$ as $H = \{\mathbf{P}(p_1, \ldots, p_k) \in \Sigma \mid h_1p_1 + \cdots + h_kp_k = 0\}$. The vector h is called a *defining vector of* H.

Lemma 2.2 ([13]). C is extendable if and only if there exists a hyperplane H of Σ such that $F_d \cap H = \emptyset$. Moreover, the extended matrix of G by adding a defining vector of H as a column generates an extension of C.

Now, let

$$F_0 = \{P \in \Sigma \mid w_G(P) \equiv 0 \pmod{q}\},$$

$$F_1 = \{P \in \Sigma \mid w_G(P) \not\equiv 0, d \pmod{q}\},$$

$$F_2 = \{P \in \Sigma \mid w_G(P) \equiv d \pmod{q}\} \supset F_d.$$

Note that $(\Phi_0, \Phi_1) = (|F_0|, |F_1|)$. Since $(F_0 \cup F_1) \cap F_d = \emptyset$ if gcd(d, q) < q, we get the following.

Lemma 2.3. C is extendable if gcd(d,q) < q and if there exists a hyperplane H of Σ such that $H \subset F_0 \cup F_1$.

A set \mathcal{B} of points in PG(r, q) is called a *blocking set with respect to s-flats* if every *s*-flat in PG(r, q) meets \mathcal{B} in at least one point. A blocking set in PG(r, q) with respect to *s*-flats is called *non-trivial* if it contains no (r - s)-flat.

Lemma 2.4 ([1],[2],[4]). Let \mathcal{B} be a blocking set with respect to s-flats in PG(r,q).

- (a) $|\mathcal{B}| \ge \theta_{r-s}$, where the equality holds if and only if \mathcal{B} is an (r-s)-flat.
- (b) $|\mathcal{B}| \ge \theta_{r-s} + q^{r-s-1}r(q)$ if \mathcal{B} is non-trivial, where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2, q).

The following result is essential in the proofs of Theorems 1.2 and 1.3.

Lemma 2.5 ([17]). Let K be a set of points in $\Sigma = PG(k-1,q)$, $k \ge 3$, $q = 2^h$, $h \ge 3$, meeting every line in exactly 1, q/2 + 1, or q + 1 points. Then, K contains a hyperplane of Σ .

Now, we are ready to prove our results.

Proof of Theorem 1.2. For $q = 2^h$, $h \ge 3$, let \mathcal{C} be an $[n, k, d]_q$ code with d odd whose weights are congruent to 0 or $d \pmod{q/2}$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma = \operatorname{PG}(k - 1, q)$, we have $w_G(L) = \sum_{P \in L} w_G(P) \equiv 0 \pmod{q}$ by Lemma 2.1. Let $\tilde{F}_0 := \{Q \in \Sigma \mid w_G(Q) \text{ is even}\}$. Then, $\tilde{F}_0 \cap F_d = \emptyset$. Assume that the t points on L have odd weights and that the other have even weights. Then, from the condition, we have $td \equiv 0 \pmod{q/2}$, so, $t \equiv 0 \pmod{q/2}$, for d is odd. Hence t = 0, q/2 or q. Thus, $|\tilde{F}_0 \cap L| = 1, q/2 + 1$ or q + 1, and \tilde{F}_0 contains a hyperplane of Σ by Lemma 2.5. Hence our assertion follows from Lemma 2.2.

Proof of Theorem 1.3. For $q = 2^h$, $h \ge 3$, let \mathcal{C} be an $[n, k, d]_q$ code with gcd(d, q) = 2 whose weights are congruent to 0 or $d \pmod{q}$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma = PG(k-1, q)$, we have $w_G(L) = \sum_{P \in L} w_G(P) \equiv 0 \pmod{q}$

by Lemma 2.1. Note that $\Sigma = F_0 \cup F_2$, $F_0 \cap F_2 = \emptyset$. Assume $|L \cap F_2| = t$. Then, from the condition, we have $td \equiv 0 \pmod{q}$, so, $t \equiv 0 \pmod{q/2}$, for $\gcd(d, q) = 2$. Hence t = 0, q/2 or q. Thus, $|F_0 \cap L| = 1, q/2 + 1$ or q + 1, and F_0 contains a hyperplane of Σ , say H, by Lemma 2.5. Hence \mathcal{C} is extendable by Lemma 2.3. Let \mathcal{C}' be the extension with generator matrix $G' = [G, h^T]$, where h is a defining vector of H. Let $F_{d'} = \{P \in \Sigma \mid w_{G'}(P) = d + 1\}$. Note that $w_G(P) = w_{G'}(P) \equiv 0 \pmod{q}$ for any point P of H. Since d + 1 is odd, we have $H \cap F_{d'} = \emptyset$. Hence, \mathcal{C}' is also extendable by Lemma 2.2.

Proof of Theorem 1.6. For integers h, m, t with $0 \le m < t \le h$ and for $q = p^h$ with prime p, let \mathcal{C} be an $[n, k, d]_q$ code with $gcd(d, q) = p^m$ and assume $\sum_{i \ne d \pmod{p^t}} A_i < q^{k-1} + r(q)q^{k-3}(q-1)$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma = PG(k-1,q)$, we have $w_G(L) = \sum_{P \in L} w_G(P) \equiv 0 \pmod{q}$ by Lemma 2.1. Let $\overline{F}_0 = \{Q \in \Sigma \mid w_G(Q) \ne d \pmod{p^t}\}$ and $\overline{F}_2 = \{Q \in \Sigma \mid w_G(Q) \equiv d \pmod{p^t}\}$. Then, $\overline{F}_0 \cap F_d = \emptyset$ and $|\overline{F}_0| < \theta_{k-2} + r(q)q^{k-3}$. Suppose $L \subset \overline{F}_2$. Then, we have $d \equiv 0 \pmod{p^t}$, a contradiction. Thus \overline{F}_0 forms a blocking set with respect to lines in Σ . Hence \overline{F}_0 contains a hyperplane of Σ by Lemma 2.4, and \mathcal{C} is extendable by Lemma 2.2.

Lemma 2.6. Let K be a set of points in $\Sigma = PG(r, q)$ with $K \neq \Sigma$. Then K is a hyperplane of Σ if and only if every line meets K in either one or q + 1 points.

A line ℓ is called an (i, j)-line if $|\ell \cap F_0| = i$ and $|\ell \cap F_1| = j$. Note that a (1, 1)-line and a (0, 1)-line do not exist by Lemma 2.1.

Proof of Theorem 1.9. Let \mathcal{C} be an $[n, k, d]_q$ code with diversity $(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$, $\gcd(d, q) = 1$, $k \geq 3$. Then, we have $|F_1| = |F_2| = q^{k-2}$. For $R \in F_2$, there exist at least θ_{k-3} lines through R containing no point of F_1 , for $|F_1| = q^{k-2}$. Such lines are (1, 0)-lines, for $\gcd(d, q) = 1$. Let $l_1, \ldots, l_{\theta_{k-3}}$ be such lines and let $H = \bigcup_{i=1}^{\theta_{k-3}} l_i$. Since $|F_2 \cap H| = (q-1)\theta_{k-3} + 1 = |F_2|$, we have $F_2 \subset H$. Hence, every line through two points of F_2 is a (1, 0)-line. For $R_i \in l_i$ and $R_j \in l_j$ with $i \neq j$ and $R_i, R_j \neq R$, the line $l = \langle R_i, R_j \rangle$ is a (1, 0)-line. Let P be the point of F_0 on l. If there exists a point of F_1 on the line $l_P = \langle R, P \rangle$, then there exists a (1, 0)-line, and l is contained in H. It follows that H forms a hyperplane of $\Sigma = PG(k-1, q)$. Since H contains only (1, 0)-lines or (q+1, 0)-lines, $H_0 = F_0 \cap H$ is a hyperplane of H by Lemma 2.6. Now, take a hyperplane H_1 through H_0 with $H_1 \neq H$. Then, we have $H_1 \subset F_0 \cup F_1$ since $F_2 = H \setminus H_0$. Hence \mathcal{C} is extendable by Lemma 2.3.

Example 2.1. Let us investigate the $[15,3,7]_4$ code C_4 in Example 1.1 (d). We denote by [a, b, c] the line in PG(2, 4) with defining vector (a, b, c). From the generator matrix G_4 , we have $F_0 = \{(1,1,0), (1,\bar{\omega},0), (0,1,1), (1,\omega,1), (1,0,\omega), (0,1,\omega), (1,1,\omega), (1,\bar{\omega},\omega), (1,0,\bar{\omega}), (0,1,\bar{\omega}), (1,1,\bar{\omega}), (1,\bar{\omega},\bar{\omega}), (1,0,0)\}$ and $F_1 = \{(1,0,1), (0,1,0), (1,1,1), (1,\bar{\omega},1)\}$, where (x, y, z) stands for the point $\mathbf{P}(x, y, z)$ of PG(2,4).

Hence, $F_0 \cup F_1$ contains a (1,4)-line [1,0,1], which gives a [16,3,8]₄ code C'_4 in Example 1.1 (d). On the other hand, F_0 contains a (5,0)-line $[0,1,\omega]$, giving a [16,3,8]₄ code with weight distribution $0^{1}8^{3}9^{6}12^{12}13^{42}$.

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions.

References

- A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata 9 (1980), 425–449.
- [2] R.C. Bose and R.C. Burton, A characterization of flat spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966), 96–104.
- [3] I. Bouyukliev, M. Grassl and Z. Varbanov, New bounds for $n_4(k, d)$ and classification of some optimal codes over GF(4), *Discrete Math.* **281** (2004), 43–66.
- [4] U. Heim, Blockierende Mengen in endlichen projektiven Räumen, Mitt. Math. Sem. Giessen 226 (1996), 4–82.
- [5] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr. 17 (1999), 151–157.
- [6] R. Hill and P. Lizak, Extensions of linear codes, Proc. IEEE Int. Symposium on Inform. Theory, pp. 345. Whistler, Canada, 1995.
- [7] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
- [8] A. Kohnert, Best linear codes, http://www.algorithm.uni-bayreuth.de/en/ research/Coding_Theory/Linear_Codes_BKW/index.html.
- [9] I. Landjev and A. Rousseva, An extension theorem for arcs and linear codes, Probl. Inf. Transm. 42 (2006), 319–329.
- [10] T. Maruta, On the extendability of linear codes, *Finite Fields Appl.* 7 (2001), 350–354.
- [11] T. Maruta, A new extension theorem for linear codes, *Finite Fields Appl.* 10 (2004), 674–685.
- [12] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 35 (2005), 175–190.

- [13] T. Maruta, Extendability of linear codes over \mathbb{F}_q , Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria, 203–209, 2008.
- [14] T. Maruta, Extension theorems for linear codes over finite fields, J. Geom. 101 (2011), 173-183.
- [15] T. Maruta and Y. Yoshida, A generalized extension theorem for linear codes, Des. Codes Cryptogr. 62 (2012), 121–130.
- [16] J. Simonis, Adding a parity check bit, IEEE Trans. Inform. Theory 46 (2000), 1544–1545.
- [17] Y. Yoshida and T. Maruta, An extension theorem for $[n, k, d]_q$ codes with gcd(d, q) = 2, Australas. J. Combin. 48 (2010), 117–131.

(Received 6 Nov 2013)