Some generalizations of extension theorems for linear codes over finite fields

Tatsuya Maruta* Taichiro Tanaka Hitoshi Kanda
Department of Mathematics and Information Sciences Osaka Prefecture University
Sakai, Osaka 599-8531
Japan
maruta@mi.s.osakafu-u.ac.jp jinza80kirisame@gmail.com
ta330cha@gmail.com

Abstract

We give four new extension theorems for linear codes over \mathbb{F}_{q} : (a) For $q=$ $2^{h}, h \geq 3$, every $[n, k, d]_{q}$ code with d odd whose weights are congruent to 0 or $d(\bmod q / 2)$ is extendable. (b) For $q=2^{h}, h \geq 3$, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=2$ whose weights are congruent to 0 or $d(\bmod q)$ is doubly extendable. (c) For integers h, m, t with $0 \leq m<t \leq h$ and prime p, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ and $q=p^{h}$ is extendable if $\sum_{i \neq d\left(\bmod p^{t}\right)} A_{i}<q^{k-1}+r(q) q^{k-3}(q-1)$, where $q+r(q)+1$ is the smallest size of a non-trivial blocking set in $\operatorname{PG}(2, q)$. (d) Every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$ whose diversity is $\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right)$ is extendable. These are generalizations of some known extension theorems by Hill and Lizak (1995), Simonis (2000) and Maruta (2005).

1 Introduction

Let \mathbb{F}_{q}^{n} denote the vector space of n-tuples over \mathbb{F}_{q}, the field of q elements. A q-ary linear code of length n and dimension k or an $[n, k]_{q}$ code is a k-dimensional subspace of \mathbb{F}_{q}^{n}. An $[n, k, d]_{q}$ code is an $[n, k]_{q}$ code with minimum (Hamming) distance d. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $w t(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x}. The weight distribution of \mathcal{C} is the list of numbers $\left(A_{0}, A_{1}, \ldots, A_{n}\right)$, where A_{i} denotes the number of codewords of \mathcal{C} with weight i. A_{i} is usually omitted from the list if $A_{i}=0$. The weight distribution $\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)$ is expressed

[^0]as $0^{1} d^{\alpha} \ldots$ in this paper. A q-ary linear code \mathcal{C} is called w-weight $(\bmod q)$ if \mathcal{C} has exactly w distinct weights of codewords under modulo q reduction. We only consider linear codes over finite fields having no coordinate which is identically zero. For an $[n, k, d]_{q}$ code \mathcal{C} with a generator matrix G, \mathcal{C} is called extendable (to \mathcal{C}^{\prime}) if there exists a vector $h \in \mathbb{F}_{q}^{k}$ such that the extended matrix $\left[G, h^{\mathrm{T}}\right]$ generates an $[n+1, k, d+1]_{q}$ code \mathcal{C}^{\prime}. Then \mathcal{C}^{\prime} is called an extension of \mathcal{C}. \mathcal{C} is doubly extendable if one of its extensions \mathcal{C}^{\prime} is also extendable. The most well-known extension theorem is the following by Hill and Lizak [6]; see also [5] and [10].
Theorem $1.1([6])$. Every $[n, k, d]_{q}$ code with $g c d(d, q)=1$, whose weights (of codewords) are congruent to 0 or $d(\bmod q)$, is extendable.

For even $q \geq 8$, we give a stronger result:
Theorem 1.2. For $q=2^{h}, h \geq 3$, every $[n, k, d]_{q}$ code with d odd whose weights are congruent to 0 or $d(\bmod q / 2)$ is extendable.

Theorem 1.1 is an extension theorem for 2 -weight $(\bmod q)$ linear codes. As for the extension theorems for 3 -weight $(\bmod q)$ linear codes, see [14]. Theorem 1.2 is applicable to 4 -weight $(\bmod q)$ linear codes whose weights are $0, q / 2, d, d+q / 2(\bmod$ $q)$, and is the first extension theorem for 4 -weight $(\bmod q)$ linear codes.

The extendability of $[n, k, d]_{q}$ codes with $\operatorname{gcd}(d, q)=2$ was first investigated in [17]. The condition " $\operatorname{gcd}(d, q)=1$ " in Theorem 1.1 cannot be replaced by " $\operatorname{gcd}(d, q)=2$ " for $q=4$ since there is a counterexample; see [17]. But for $q \geq 8$, we prove the following.
Theorem 1.3. For $q=2^{h}, h \geq 3$, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=2$ whose weights are congruent to 0 or $d(\bmod q)$ is doubly extendable.

Simonis [16] gave the following generalization of Theorem 1.1.
Theorem 1.4 ([16]). Every $[n, k, d]_{q}$ code with $g c d(d, q)=1, q=p^{h}$, p prime, is extendable if $\sum_{i \neq d}(\bmod p), ~ A_{i}=q^{k-1}$.

We give a generalization of Theorem 1.4:
Theorem 1.5. Let h, m, t be integers with $0 \leq m<t \leq h$. For $q=p^{h}$ with prime p, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ is extendable if

$$
\begin{equation*}
\sum_{i \neq d} A_{\left(\bmod p^{t}\right)} A_{i}=q^{k-1} . \tag{1.1}
\end{equation*}
$$

Note that Theorem 1.4 is the case $m=0, t=1$ in Theorem 1.5. The condition (1.1) can be weakened to the following.
Theorem 1.6. Let h, m, t be integers with $0 \leq m<t \leq h$. For $q=p^{h}$ with prime p, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ is extendable if

$$
\begin{equation*}
\sum_{i \neq d} A_{\left(\bmod p^{t}\right)}<q^{k-1}+r(q) q^{k-3}(q-1) \tag{1.2}
\end{equation*}
$$

where $q+r(q)+1$ is the smallest size of a non-trivial blocking set in $P G(2, q)$.

A non-trivial blocking set in $P G(2, q)$ is a set of points in the projective plane over \mathbb{F}_{q} meeting every line in at least one point but containing no line; see Chapter 13 of [7]. As for $r(q)$, it is known that $r(3)=r(4)=2, r(5)=3, r(7)=4$. It can be shown that the inequality (1.2) implies the equality (1.1). The following result is known as another extension theorem making use of $r(q)$.

Theorem $1.7([9])$. Every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$ is extendable if

$$
\begin{equation*}
\sum_{i \neq 0, d(\bmod q)} A_{i} \leq q^{k-3} r(q) \tag{1.3}
\end{equation*}
$$

Since the condition on weights of codewords in Theorem 1.1 can be written as $\sum_{i \neq 0, d(\bmod q)} A_{i}=0$, Theorem 1.7 is also a generalization of Theorem 1.1, and the inequality (1.3) was recently improved as follows.

Theorem $1.8([15])$. Every $[n, k, d]_{q}$ code with $g c d(d, q)=1$ is extendable if

$$
\sum_{i \neq 0, d}(\bmod q)<A_{i}<q^{k-2}(q-1)
$$

To give one more extension theorem, we introduce the diversity of a linear code. For an $[n, k, d]_{q}$ code \mathcal{C} with $\operatorname{gcd}(d, q)<q$, let

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i>0} A_{i}, \quad \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d} A_{(\bmod q)},
$$

where the notation $q \mid i$ means that q is a divisor of i. The pair of integers $\left(\Phi_{0}, \Phi_{1}\right)$ is called the diversity of \mathcal{C} ([11], [12]). Theorem 1.8 shows that \mathcal{C} is extendable if $\Phi_{1}<q^{k-2}$ and $\operatorname{gcd}(d, q)=1$. Next, we consider the case when $\Phi_{1}=q^{k-2}$. We denote $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$ for \mathbb{F}_{q}. As for ternary linear codes $(q=3)$, it is known that an $[n, k, d]_{3}$ code with $\operatorname{gcd}(3, d)=1, k \geq 3$, is extendable if

$$
\left(\Phi_{0}, \Phi_{1}\right) \in\left\{\left(\theta_{k-2}, 0\right),\left(\theta_{k-3}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)\right\}
$$

see [12]. For an $[n, k, d]_{q}$ code \mathcal{C} with $\operatorname{gcd}(d, q)=1, k \geq 3$, it follows from Theorem 1.1 that \mathcal{C} is extendable if $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-2}, 0\right)$. We generalize the case $\left(\Phi_{0}, \Phi_{1}\right)=$ $\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)$ for ternary linear codes to q-ary linear codes.

Theorem 1.9. Let \mathcal{C} be an $[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right), \operatorname{gcd}(d, q)=1$. Then \mathcal{C} is extendable if $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right)$.

Example 1.1.

(a) Let \mathcal{C}_{1} be a $[100,3,87]_{8}$ code. Considering the possible residual codes, it can be proved that all possible weights of \mathcal{C}_{1} are $87,88,91,92,95,96$. So, $A_{i}=0$ for all $i \not \equiv$ $0,3(\bmod 4)$. Hence \mathcal{C}_{1} is extendable by Theorem 1.2. Actually, the possible weight distributions for \mathcal{C}_{1} are $0^{1} 87^{413} 88^{63} 95^{35}, 0^{1} 87^{420} 88^{56} 95^{28} 96^{7}, 0^{1} 87^{392} 88^{49} 91^{56} 92^{14}$ and $0^{1} 87^{378} 88^{63} 91^{70}$.
(b) There exists a $[73,4,62]_{8}$ code \mathcal{C}_{2} with weight distribution $0^{1} 62^{1764} 64^{1883} 70^{252} 72^{196}$, see [8]. Since the weights of \mathcal{C}_{2} are congruent to 0 or $6(\bmod 8), \mathcal{C}_{2}$ is doubly extendable to a $[75,4,64]_{8}$ code by Theorem 1.3.
(c) There exists a $[30,3,22]_{4}$ code \mathcal{C}_{3} with weight distribution $0^{1} 22^{45} 24^{15} 30^{3}$, see [3]. \mathcal{C}_{3} is extendable by Theorem 1.6 with $m=1, t=2, p=2$.
(d) Let \mathcal{C}_{4} be a $[15,3,7]_{4}$ code with generator matrix

$$
G_{4}=\left[\begin{array}{ccccccccccccccc}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & \bar{\omega} & \bar{\omega} & 1 & \omega & 1 & \bar{\omega} & \omega & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & \omega & 1 & 0 & 1 & 0 & 0 & \bar{\omega} & 1
\end{array}\right],
$$

where $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$. The weight distribution of \mathcal{C}_{4} is $0^{1} 7^{3} 8^{3} 9^{3} 11^{9} 12^{36} 13^{9}$ with diversity (13, 4). So, \mathcal{C}_{4} is extendable by Theorem 1.9. Indeed, by adding the column $(1,0,1)^{\mathrm{T}}$ to G_{4}, one gets a $[16,3,8]_{4}$ code \mathcal{C}_{4}^{\prime} with weight distribution $0^{1} 8^{3} 9^{6} 12^{12} 13^{42}$. See also Example 2.1 in Section 2.

Problem. (i) Can the conditions " $q=2^{h}$ " and " $(\bmod q / 2)$ " in Theorem 1.2 be generalized to " $q=p^{h}$ " and " $(\bmod q / p)$ " for an odd prime p ?
(ii) Is Theorem 1.9 valid for the case $\operatorname{gcd}(d, q) \geq 2$?
(iii) Find more diversities such that every code over \mathbb{F}_{q} is extendable.

2 Proof of the main theorems

We first give the geometric method to investigate linear codes over \mathbb{F}_{q} through projective geometry. A j-flat of $\mathrm{PG}(r, q)$ is a projective subspace of dimension j in $\mathrm{PG}(r, q)$. The 0-flats, 1-flats, 2-flats and ($r-1$)-flats are called points, lines, planes and hyperplanes, respectively. The number of points in a j-flat is $|\mathrm{PG}(j, q)|=\theta_{j}=$ $\left(q^{j+1}-1\right) /(q-1)$, where $|T|$ denotes the number of elements in the set T. We refer to $[7]$ for geometric terminologies.

We assume $k \geq 3$. Let \mathcal{C} be an $[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$ and a generator matrix G with no all-zero column. Let g_{i} be the i-th row of G for $1 \leq i \leq k$. We consider the mapping w_{G} from $\Sigma:=\mathrm{PG}(k-1, q)$ to $\left\{i \mid A_{i}>0\right\}$, the set of nonzero weights of \mathcal{C}. For $P=\mathbf{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma$, the weight of P with respect to G, denoted by $w_{G}(P)$, is defined as $w_{G}(P)=w t\left(\sum_{i=1}^{k} p_{i} g_{i}\right)$, see [14].

Lemma 2.1 ([13]). For a line $L=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ in Σ, the following holds:

$$
w_{G}(L):=\sum_{i=0}^{q} w_{G}\left(P_{i}\right) \equiv 0 \quad(\bmod q) .
$$

Let $F_{d}=\left\{P \in \Sigma \mid w_{G}(P)=d\right\}$. Recall that a hyperplane H of Σ is defined by a non-zero vector $h=\left(h_{1}, \ldots, h_{k}\right) \in \mathbb{F}_{q}^{k}$ as $H=\left\{\mathbf{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma \mid h_{1} p_{1}+\cdots+h_{k} p_{k}=\right.$ $0\}$. The vector h is called a defining vector of H.

Lemma 2.2 ([13]). \mathcal{C} is extendable if and only if there exists a hyperplane H of Σ such that $F_{d} \cap H=\emptyset$. Moreover, the extended matrix of G by adding a defining vector of H as a column generates an extension of \mathcal{C}.

Now, let

$$
\begin{aligned}
& F_{0}=\left\{P \in \Sigma \mid w_{G}(P) \equiv 0 \quad(\bmod q)\right\} \\
& F_{1}=\left\{P \in \Sigma \mid w_{G}(P) \not \equiv 0, d \quad(\bmod q)\right\} \\
& F_{2}=\left\{P \in \Sigma \mid w_{G}(P) \equiv d \quad(\bmod q)\right\} \supset F_{d} .
\end{aligned}
$$

Note that $\left(\Phi_{0}, \Phi_{1}\right)=\left(\left|F_{0}\right|,\left|F_{1}\right|\right)$. Since $\left(F_{0} \cup F_{1}\right) \cap F_{d}=\emptyset$ if $\operatorname{gcd}(d, q)<q$, we get the following.

Lemma 2.3. \mathcal{C} is extendable if $g c d(d, q)<q$ and if there exists a hyperplane H of Σ such that $H \subset F_{0} \cup F_{1}$.

A set \mathcal{B} of points in $\operatorname{PG}(r, q)$ is called a blocking set with respect to s-flats if every s-flat in $\operatorname{PG}(r, q)$ meets \mathcal{B} in at least one point. A blocking set in $\operatorname{PG}(r, q)$ with respect to s-flats is called non-trivial if it contains no $(r-s)$-flat.

Lemma 2.4 ([1],[2],[4]). Let \mathcal{B} be a blocking set with respect to s-flats in $\operatorname{PG}(r, q)$.
(a) $|\mathcal{B}| \geq \theta_{r-s}$, where the equality holds if and only if \mathcal{B} is an $(r-s)$-flat.
(b) $|\mathcal{B}| \geq \theta_{r-s}+q^{r-s-1} r(q)$ if \mathcal{B} is non-trivial, where $q+r(q)+1$ is the smallest size of a non-trivial blocking set in $P G(2, q)$.

The following result is essential in the proofs of Theorems 1.2 and 1.3.
Lemma 2.5 ([17]). Let K be a set of points in $\Sigma=\mathrm{PG}(k-1, q), k \geq 3, q=2^{h}$, $h \geq 3$, meeting every line in exactly $1, q / 2+1$, or $q+1$ points. Then, K contains a hyperplane of Σ.

Now, we are ready to prove our results.
Proof of Theorem 1.2. For $q=2^{h}, h \geq 3$, let \mathcal{C} be an $[n, k, d]_{q}$ code with d odd whose weights are congruent to 0 or $d(\bmod q / 2)$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma=\operatorname{PG}(k-1, q)$, we have $w_{G}(L)=\sum_{P \in L} w_{G}(P) \equiv 0(\bmod q)$ by Lemma 2.1. Let $\tilde{F}_{0}:=\left\{Q \in \Sigma \mid w_{G}(Q)\right.$ is even $\}$. Then, $\tilde{F}_{0} \cap F_{d}=\emptyset$. Assume that the t points on L have odd weights and that the other have even weights. Then, from the condition, we have $t d \equiv 0(\bmod q / 2)$, so, $t \equiv 0(\bmod q / 2)$, for d is odd. Hence $t=0, q / 2$ or q. Thus, $\left|\tilde{F}_{0} \cap L\right|=1, q / 2+1$ or $q+1$, and \tilde{F}_{0} contains a hyperplane of Σ by Lemma 2.5. Hence our assertion follows from Lemma 2.2.

Proof of Theorem 1.3. For $q=2^{h}, h \geq 3$, let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=2$ whose weights are congruent to 0 or $d(\bmod q)$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma=\operatorname{PG}(k-1, q)$, we have $w_{G}(L)=\sum_{P \in L} w_{G}(P) \equiv 0(\bmod q)$
by Lemma 2.1. Note that $\Sigma=F_{0} \cup F_{2}, F_{0} \cap F_{2}=\emptyset$. Assume $\left|L \cap F_{2}\right|=t$. Then, from the condition, we have $t d \equiv 0(\bmod q)$, so, $t \equiv 0(\bmod q / 2)$, for $\operatorname{gcd}(d, q)=2$. Hence $t=0, q / 2$ or q. Thus, $\left|F_{0} \cap L\right|=1, q / 2+1$ or $q+1$, and F_{0} contains a hyperplane of Σ, say H, by Lemma 2.5. Hence \mathcal{C} is extendable by Lemma 2.3. Let \mathcal{C}^{\prime} be the extension with generator matrix $G^{\prime}=\left[G, h^{\mathrm{T}}\right]$, where h is a defining vector of H. Let $F_{d^{\prime}}=\left\{P \in \Sigma \mid w_{G^{\prime}}(P)=d+1\right\}$. Note that $w_{G}(P)=w_{G^{\prime}}(P) \equiv 0(\bmod q)$ for any point P of H. Since $d+1$ is odd, we have $H \cap F_{d^{\prime}}=\emptyset$. Hence, \mathcal{C}^{\prime} is also extendable by Lemma 2.2 .

Proof of Theorem 1.6. For integers h, m, t with $0 \leq m<t \leq h$ and for $q=p^{h}$ with prime p, let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ and assume $\sum_{i \neq d\left(\bmod p^{t}\right)} A_{i}<$ $q^{k-1}+r(q) q^{k-3}(q-1)$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma=\operatorname{PG}(k-1, q)$, we have $w_{G}(L)=\sum_{P \in L} w_{G}(P) \equiv 0(\bmod q)$ by Lemma 2.1. Let $\bar{F}_{0}=\{Q \in$ $\left.\Sigma \mid w_{G}(Q) \not \equiv d\left(\bmod p^{t}\right)\right\}$ and $\bar{F}_{2}=\left\{Q \in \Sigma \mid w_{G}(Q) \equiv d\left(\bmod p^{t}\right)\right\}$. Then, $\bar{F}_{0} \cap F_{d}=\emptyset$ and $\left|\bar{F}_{0}\right|<\theta_{k-2}+r(q) q^{k-3}$. Suppose $L \subset \bar{F}_{2}$. Then, we have $d \equiv 0$ $\left(\bmod p^{t}\right)$, a contradiction. Thus \bar{F}_{0} forms a blocking set with respect to lines in Σ. Hence \bar{F}_{0} contains a hyperplane of Σ by Lemma 2.4 , and \mathcal{C} is extendable by Lemma 2.2.

Lemma 2.6. Let K be a set of points in $\Sigma=\operatorname{PG}(r, q)$ with $K \neq \Sigma$. Then K is a hyperplane of Σ if and only if every line meets K in either one or $q+1$ points.

A line ℓ is called an (i, j)-line if $\left|\ell \cap F_{0}\right|=i$ and $\left|\ell \cap F_{1}\right|=j$. Note that a (1,1)-line and a $(0,1)$-line do not exist by Lemma 2.1.

Proof of Theorem 1.9. Let \mathcal{C} be an $[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)=$ $\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right), \operatorname{gcd}(d, q)=1, k \geq 3$. Then, we have $\left|F_{1}\right|=\left|F_{2}\right|=q^{k-2}$. For $R \in F_{2}$, there exist at least θ_{k-3} lines through R containing no point of F_{1}, for $\left|F_{1}\right|=q^{k-2}$. Such lines are $(1,0)$-lines, for $\operatorname{gcd}(d, q)=1$. Let $l_{1}, \ldots, l_{\theta_{k-3}}$ be such lines and let $H=\bigcup_{i=1}^{\theta_{k-3}} l_{i}$. Since $\left|F_{2} \cap H\right|=(q-1) \theta_{k-3}+1=\left|F_{2}\right|$, we have $F_{2} \subset H$. Hence, every line through two points of F_{2} is a $(1,0)$-line. For $R_{i} \in l_{i}$ and $R_{j} \in l_{j}$ with $i \neq j$ and $R_{i}, R_{j} \neq R$, the line $l=\left\langle R_{i}, R_{j}\right\rangle$ is a $(1,0)$-line. Let P be the point of F_{0} on l. If there exists a point of F_{1} on the line $l_{P}=\langle R, P\rangle$, then there exists a $(1,1)$-line or a $(0,1)$-line on the plane $\left\langle l_{i}, l_{j}\right\rangle$, a contradiction. Hence l_{P} is also a $(1,0)$-line, and l is contained in H. It follows that H forms a hyperplane of $\Sigma=\operatorname{PG}(k-1, q)$. Since H contains only (1,0)-lines or $(q+1,0)$-lines, $H_{0}=F_{0} \cap H$ is a hyperplane of H by Lemma 2.6. Now, take a hyperplane H_{1} through H_{0} with $H_{1} \neq H$. Then, we have $H_{1} \subset F_{0} \cup F_{1}$ since $F_{2}=H \backslash H_{0}$. Hence \mathcal{C} is extendable by Lemma 2.3.

Example 2.1. Let us investigate the $[15,3,7]_{4}$ code \mathcal{C}_{4} in Example 1.1 (d). We denote by $[a, b, c]$ the line in $\operatorname{PG}(2,4)$ with defining vector (a, b, c). From the generator matrix G_{4}, we have $F_{0}=\{(1,1,0),(1, \bar{\omega}, 0),(0,1,1),(1, \omega, 1),(1,0, \omega),(0,1, \omega)$, $(1,1, \omega),(1, \bar{\omega}, \omega),(1,0, \bar{\omega}),(0,1, \bar{\omega}),(1,1, \bar{\omega}),(1, \bar{\omega}, \bar{\omega}),(1,0,0)\}$ and $F_{1}=\{(1,0,1)$, $(0,1,0),(1,1,1),(1, \bar{\omega}, 1)\}$, where (x, y, z) stands for the point $\mathbf{P}(x, y, z)$ of $\operatorname{PG}(2,4)$.

Hence, $F_{0} \cup F_{1}$ contains a $(1,4)$-line $[1,0,1]$, which gives a $[16,3,8]_{4}$ code \mathcal{C}_{4}^{\prime} in Example 1.1 (d). On the other hand, F_{0} contains a (5,0)-line $[0,1, \omega]$, giving a $[16,3,8]_{4}$ code with weight distribution $0^{1} 8^{3} 9^{6} 12^{12} 13^{42}$.

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions.

References

[1] A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata 9 (1980), 425-449.
[2] R.C. Bose and R.C. Burton, A characterization of flat spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966), 96-104.
[3] I. Bouyukliev, M. Grassl and Z. Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over GF(4), Discrete Math. 281 (2004), 43-66.
[4] U. Heim, Blockierende Mengen in endlichen projektiven Räumen, Mitt. Math. Sem. Giessen 226 (1996), 4-82.
[5] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr. 17 (1999), 151-157.
[6] R. Hill and P. Lizak, Extensions of linear codes, Proc. IEEE Int. Symposium on Inform. Theory, pp. 345. Whistler, Canada, 1995.
[7] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
[8] A. Kohnert, Best linear codes, http://www.algorithm.uni-bayreuth.de/en/ research/Coding_Theory/Linear_Codes_BKW/index.html.
[9] I. Landjev and A. Rousseva, An extension theorem for arcs and linear codes, Probl. Inf. Transm. 42 (2006), 319-329.
[10] T. Maruta, On the extendability of linear codes, Finite Fields Appl. 7 (2001), 350-354.
[11] T. Maruta, A new extension theorem for linear codes, Finite Fields Appl. 10 (2004), 674-685.
[12] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 35 (2005), 175-190.
[13] T. Maruta, Extendability of linear codes over \mathbb{F}_{q}, Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria, 203-209, 2008.
[14] T. Maruta, Extension theorems for linear codes over finite fields, J. Geom. 101 (2011), 173-183.
[15] T. Maruta and Y. Yoshida, A generalized extension theorem for linear codes, Des. Codes Cryptogr. 62 (2012), 121-130.
[16] J. Simonis, Adding a parity check bit, IEEE Trans. Inform. Theory 46 (2000), 1544-1545.
[17] Y. Yoshida and T. Maruta, An extension theorem for $[n, k, d]_{q}$ codes with $\operatorname{gcd}(d, q)=2$, Australas. J. Combin. 48 (2010), 117-131.

[^0]: * This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

