# New families of graphs whose independence polynomials have only real zeros

# PATRICK BAHLS

Department of Mathematics University of North Carolina Asheville, NC 28804 U.S.A. pbahls@unca.edu

## ELIZABETH BAILEY

Department of Mathematics and Statistics Auburn University Auburn, AL 36849 U.S.A. elizabeth.bailey13@houghton.edu

MCCABE OLSEN

Department of Mathematics University of Kentucky Lexington, KY 40506 U.S.A. mccabe.olsen@gmail.com

#### Abstract

We describe an inductive means of constructing infinite families of graphs, every one of whose members G has independence polynomial I(G; x) having only real zeros. Consequently, such independence polynomials are logarithmically concave and unimodal.

## 1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. Recall that an *independent set* S in G is a set of pairwise non-adjacent vertices. The *independence number* of G,  $\alpha(G)$ , is the cardinality of a largest independent set in G. The *independence* 

polynomial of G, denoted I(G; x), is defined by

$$I(G;x) = \sum_{k=0}^{\alpha(G)} s_k x^k = s_0 + s_1 x + s_2 x^2 + \dots + s_{\alpha(G)} x^{\alpha(G)},$$

where  $s_k$  is the number of independent sets with cardinality k. Independence polynomials were introduced in the 1970s and have been heavily studied since then. (See [7] for a recent comprehensive survey, and see [4], [5], [9], [10], [11], [13], and [14] for applications.)

A polynomial  $p(x) = \sum_{i=0}^{n} a_i x^i$  is called *logarithmically concave* (or *log-concave*) if for all  $i, 1 \leq i \leq n-1, a_i^2 \geq a_{i-1}a_{i+1}$ . A polynomial is called *unimodal* if the sequence of its coefficients satisfies  $a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$  for some  $j, 0 \leq j \leq n$ . It can be shown that if a polynomial is log-concave then it is unimodal. For a fixed natural number n the binomial coefficients  $\binom{n}{i}_{i=0}^n$  give what is probably the best-known example of a log-concave sequence.

A classical result due to Newton (see [6]) states that if a polynomial p(x) has nonnegative coefficients and only real zeros, then p(x) is log-concave. This fact, of which we make frequent use in this note, has been the basis for proving the log-concavity and unimodality of many independence polynomials.

Our construction follows that of Wang and Zhu, described in [12]. (See also [1], [2], and [15] for similar constructions.) There the *n*-concatenation of a graph G on the vertex  $v \in V(G)$ , denoted  $G_n^-(v)$ , is defined as follows: begin with the disjoint union of n copies of G, and identify each copy of v with one of the vertices of the path  $P_n$  on n vertices. For example, a "k-regular" caterpillar with k edges pendant from each vertex of its central path can be obtained by concatenating the star  $S_k$ with k leaves on its central vertex.

Our main result, proven in much the same manner as the main theorem from [1] (which in turn is based on the "zero-interlacing" technique described in [8]), is the following. Here N[v] denotes the closed neighborhood of v,  $N[v] = \{u \in V(G) \mid uv \in E(G)\} \cup \{v\}$ .

**Theorem 1.1** Let G be a graph and let  $v \in V(G)$  such that

- 1. I(G v; x) = f(x)b(x) and I(G N[v]; x) = f(x)c(x) for some polynomials  $b(x), c(x) \in \mathbb{Z}[x], f(x) = \gcd(I(G v; x), I(G N[v]; x)),$
- 2. the zeros of f(x) are all real, and
- 3.  $m = \deg(b) = \deg(c) + 1$  and the zeros  $\{\gamma_1, ..., \gamma_m\}$  of b(x) and the zeros  $\{\delta_1, ..., \delta_m\}$  of xc(x) are all real and satisfy

$$\gamma_1 < \delta_1 < \gamma_2 < \dots < \delta_{m-1} < \gamma_m < \delta_m = 0.$$

Then the graph  $I(G_n^-(v); x)$  has only real zeros and as a consequence is log concave and unimodal.

In fact, our proof of Theorem 1.1 will show more. If we let  $v_0$  be the copy of v corresponding to either terminal vertex of  $P_n$  in the concatenation construction,  $G_n^-(v)$  itself, relative to the vertex  $v_0$ , satisfies the hypothesis of Theorem 1.1. This fact enables us to use the graph resulting from an application of the theorem's construction as the *input* for another such application. We use this fact in Section 3 to generate some interesting specific examples, some of which are very far from being "path-like." The variety of these examples is quite great.

First, let us turn our attention to proving the main theorem.

## 2 Proof of the main theorem

We need a couple of simple technical lemmas to begin our proof. The following fact is well-known, and can be found, for example, in [7].

**Lemma 2.1** Let G be any graph, and let  $w \in V(G)$ . Then I(G; x) = I(G - w; x) + xI(G - N[w]; x).

We frequently use this lemma without explicit mention. We make similar use of the following fact, whose proof is trivial:

**Lemma 2.2** Let  $G \cup G'$  be the disjoint union of the graphs G and G'. Then  $I(G \cup G'; x) = I(G; x)I(G'; x)$ .

Until further notice let G and  $v \in V(G)$  satisfy the hypotheses of Theorem 1.1, and let us first assume that b(x) = I(G - v; x) and c(x) = I(G - N[v]; x) (that is, that f(x) = 1). Let  $m = \deg(b) = \deg(xc)$ . We may use Lemma 2.1 to compute  $I(G_n^-(v); x)$  for various values of n, always selecting w to be a terminal copy of v in  $G_n^-(v)$ . Let  $p_n(x) = I(G_n^-(v); x)$ . For n = 1 we easily obtain  $p_1(x) = b(x) + xc(x)$ . If we formally let  $p_0(x) = 1$ , we obtain an easy recurrence relation for  $p_n$ , valid for all  $n \ge 2$ :

$$p_n(x) = b(x)p_{n-1}(x) + xc(x)b(x)p_{n-2}(x) = b(x)\Big(p_{n-1}(x) + xc(x)p_{n-2}(x)\Big).$$

Using this fact, the following facts are easily proven inductively:

**Lemma 2.3** Let G and  $v \in V(G)$  be as above. Then

- 1.  $\deg(p_n) = mn$  and
- 2. b(x) evenly divides  $p_n(x)$  in  $\mathbb{Z}[x]$  exactly  $\lfloor \frac{n}{2} \rfloor$  times.

Define  $q_n(x) = \frac{p_n(x)}{(b(x))^{\lfloor n/2 \rfloor}}$ . Lemma 2.3 implies that  $\deg(q_n) = m \lceil \frac{n}{2} \rceil$ . Our recursive formula for  $p_n$  is then easily modified into a similar formula for  $q_n$ :

**Lemma 2.4** Let  $q_n(x)$  be defined as above. Then  $q_0 = 1$ ,  $q_1(x) = b(x) + xc(x)$ , and

$$q_n(x) = \begin{cases} q_{n-1} + xc(x)q_{n-2}(x) & \text{for } n \ge 2 \text{ even, and} \\ b(x)q_{n-1}(x) + xc(x)q_{n-2}(x) & \text{for } n \ge 3 \text{ odd.} \end{cases}$$

We note that  $\deg(q_{n-1}) = \deg(xcq_{n-2}) = \frac{mn}{2}$  when *n* is even and  $\deg(bq_{n-1}) = \deg(xcq_{n-2}) = \frac{m(n+1)}{2}$  when *n* is odd. We now prove inductively that the zeros of these respective pairs of polynomials are interwoven in the same way that those of *b* and *xc* are assumed to be. More specifically, we prove the following lemma:

**Lemma 2.5** Let  $n \ge 1$  be fixed.

1. If n is even, let  $t = \frac{m(n+2)}{2}$ . Then the zeros  $\{\alpha_1, ..., \alpha_t\}$  and  $\{\beta_1, ..., \beta_t\}$  of  $q_{n+1}$  and  $xcq_n$ , respectively, are all real and satisfy

$$\alpha_1 < \beta_1 < \alpha_2 < \dots < \beta_{t-1} < \alpha_t < \beta_t = 0.$$

2. If n is odd, let  $t = \frac{m(n+3)}{2}$ . Then the zeros  $\{\alpha_1, ..., \alpha_t\}$  and  $\{\beta_1, ..., \beta_t\}$  of  $bq_{n+1}$  and  $xcq_n$ , respectively, are all real and satisfy

$$\alpha_1 < \beta_1 < \alpha_2 < \dots < \beta_{t-1} < \alpha_t < \beta_t = 0.$$

**PROOF:** Consider first the base case n = 0. We must show that the zeros of  $q_1 = b + xc$  and the zeros of  $xcq_0 = xc$  are all real and are related as in (1). By the hypothesis of Theorem 1.1, the zeros  $\gamma_j$  and  $\delta_j$  of the i polynomials b and xc give rise to intervals

 $(-\infty, \gamma_1), (\gamma_1, \delta_1), ..., (\delta_{m-1}, \gamma_m), (\gamma_m, 0).$ 

The polynomials b and xc have the same sign on the interval  $(-\infty, \gamma_1)$  and on any interval of the form  $(\delta_j, \gamma_{j+1}), j \in \{1, ..., m-1\}$ . Therefore the sum  $q_1 = b + xc$  has no zero on any such interval. However, since b and xc have opposite signs on the mintervals of the form  $(\gamma_j, \delta_j), j \in \{1, ..., m\}, q_1$  does have a zero on each such interval. Since  $\deg(q_1) = m$ , these zeros account for all of  $q_1$ 's zeros, which are therefore all real. Moreover, these zeros are interspersed among those of  $xcq_0 = xc$  as needed.

The base case n = 1 is proven analogously.

Now suppose that  $n \ge 2$  is even and that we have proven the lemma for  $k \le n-2$ . Applying our inductive hypothesis in the case k = n-2, we see that the mn/2 zeros  $\{\alpha_1, ..., \alpha_{mn/2}\}$  of  $q_{n-1}$  and the mn/2 zeros  $\{\beta_1, ..., \beta_{mn/2}\}$  of  $xcq_{n-2}$  are all real and define the intervals

$$(\infty, \alpha_1), (\alpha_1, \beta_1), \dots, (\beta_{mn/2-1}, \alpha_{mn/2}), (\alpha_{mn/2}, 0).$$

The polynomials  $q_{n-1}$  and  $xcq_{n-2}$  have the same sign on the interval  $(-\infty, \alpha_1)$  and on any interval of the form  $(\beta_j, \alpha_{j+1}), j \in \{1, ..., \frac{mn}{2} - 1\}$ . Therefore  $q_n = q_{n-1} + xcq_{n-2}$ has no zero on any such interval. However, since  $q_{n-1}$  and  $xcq_{n-2}$  have opposite signs on the mn/2 intervals of the form  $(\alpha_j, \beta_j), 1 \leq j \leq mn/2, q_n$  does have a zero on each such interval. Since  $\deg(q_n) = mn/2$ , these zeros account for all of  $q_n$ 's zeros. Moreover, relative to the zeros of  $xcq_{n-1}$ , these zeros (along with those of b(x)) satisfy the condition in (2) above, proving this condition for n-1 odd.

In case  $n \ge 3$  is odd, an analogous proof establishes that  $q_n$  has all real zeros and that these zeros, relative to those of  $xcq_{n-1}$ , satisfy the condition in (1) above, proving the condition for n-1 even.

We are now able to complete our proof of Theorem 1.1 in case f(x) = 1. In fact, the zeros of  $p_n(x) = I(G_n^-(v); x)$  are those of b(x) and  $q_n(x)$ . The former zeros are assumed real in our hypotheses, and Lemma 2.5 shows that the latter are real as well. As a consequence,  $p_n(x)$  is log-concave, and therefore unimodal.

If  $f(x) \neq 1$ , we need only be a bit more careful in our induction. More generally, letting  $p_n(x) = I(G_n^-(v); x)$  once more, we have

$$p_1 = f(b + xc), p_2 = fb(p_1 + xfc), \text{ and } p_n = fb(p_{n-1} + xfcp_{n-2}) \text{ for } n \ge 3.$$

Arguing as above we can show that, after factoring out the appropriate power of f(x)b(x), the remaining zeros of  $p_{n-1}$  and  $xf(x)c(x)p_{n-2}$  alternate as do those of  $q_{n-1}$  and  $xcq_{n-2}$  in Lemma 2.5. Consequently, every  $p_n$  has only real zeros, and our theorem is again proven.

### 3 Specific examples

We now develop a number of specific families of graphs to which Theorem 1.1 applies. For our first construction, recall that a graph of order 2m is said to be *very well-covered* if  $\alpha(G) = m$  and any maximal independent set has this cardinality. It is easy to show that any connected subgraph of  $K_{m,m}$  of order 2m is very well-covered. It is also not hard to show that for any vertex v in such a graph,  $\alpha(G - v) = m$  and  $\alpha(G - N[v]) = m - 1$ . The following corollary is therefore plausible, and easily proven:

**Corollary 3.1** Let G be a connected subgraph graph of  $K_{m,m}$  of order 2m. Let  $v \in V(G)$  such that I(G - v; x) = f(x)b(x), and I(G - N[v]; x) = f(x)c(x) for some  $f(x) \in \mathbb{Z}[x]$ , and the zeros  $\{\gamma_1, ..., \gamma_r\}$  of b(x) and the zeros  $\{\delta_1, ..., \delta_r\}$  of xc(x) are all real and satisfy

$$\gamma_1 < \delta_1 < \gamma_2 < \dots < \delta_{r-1} < \gamma_r < \delta_r = 0.$$

Then the graph  $G_n^-(v)$  is a very well-covered bipartite graph (in fact, a subgraph of  $K_{mn,mn}$ ) whose independence polynomial has mn distinct real zeros. As a consequence,  $I(G_n^-(v); x)$  is log concave and unimodal.

This construction leads to a few easy examples:

**Corollary 3.2**  $I(G_n^-(v); x)$  has only real zeros (and is therefore log concave and unimodal) for each of the following choices of (G, v):

- 1.  $G = P_{2m}$ , the path on 2m vertices, and v either of the path's terminal vertices; and
- 2.  $G = C_{2m}$ , the cycle on 2m vertices, and v arbitrary.

**PROOF:** Note that both  $P_{2m}$  and  $C_{2m}$  are very well-covered subgraphs of  $K_{m,m}$ . Easy inductions establish the desired conditions on I(G-v;x) and I(G-N[v];x) in either case.

Now recall, as indicated in the introduction, that our proof of Theorem 1.1 gives the following meta-algorithm:

**Corollary 3.3** Let  $G_n^-(v)$  be any graph obtained through applying Theorem 1.1. Then choosing w to be the vertex v in either of the terminal copies of G in the path  $P_n$  from the concatenation construction, I(G - w; x) and xI(G - N[w]; x) satisfy the hypotheses of Theorem 1.1, with  $f(x) = (b(x))^{\lfloor n/2 \rfloor}$ . Thus we may apply the concatenation construction recursively.

An interesting family of graphs is obtained if we begin this recursive procedure with  $G = P_{2n}$ , a path on 2n vertices for some  $n \ge 1$ , with v one of G's terminal vertices. The "paths on paths" resulting from repeated applications of the theorem yield trees that are very far from being "path-like," distinguishing them strongly from the graphs considered in [1], [2], [12], and [15]. For instance, consider the tree shown in Figure 1, resulting from just two iterations of the construction.



Figure 1: A graph obtained through two iterations of the construction, beginning with  $P_4$ 

There are other standard families of graphs to which our procedure applies. For instance, for  $s \ge 2$ , consider the *cocktail party graph* (also known as the *hyperocta-hedral graph*) CP(s), the graph of order 2s obtained by removing s disjoint edges from  $K_{2s}$ . See [3] for more information on these graphs; the graph CP(4) is shown in Figure 2.

It is not hard to show that if v is any vertex in V, then  $b(x) = I(CP(s) - v; x) = (s-1)x^2 + (2s-1)x + 1$  and c(x) = I(CP(s) - N[v]; x) = x + 1. The polynomials b(x) and xc(x) have sets of zeros  $\{\frac{1-2s\pm\sqrt{4s^2-8s+5}}{2s-2}\}$  and  $\{-1,0\}$  respectively, so that Theorem 1.1 applies and gives us the following result:

**Corollary 3.4** Let  $s \ge 2$ . Then for any  $n \ge 1$  and for any  $v \in V(CP(s))$ ,  $I(CP(s)_n^-(v); x)$  has all real zeros and is therefore log-concave and unimodal.

Figure 3 shows the graph  $CP(4)_4^-(v)$ .



Figure 2: The cocktail party graph CP(4)



Figure 3: The graph  $CP(4)_4^-(v)$ 

#### References

- P. BAHLS, On the independence polynomials of path-like graphs, Australas. J. Combin. 53 (2012), 3–18.
- [2] P. BAHLS and N. SALAZAR, Symmetry and unimodality of independence polynomials of generalized paths, Australas. J. Combin. 47 (2010), 165–176.
- [3] N. BIGGS, *Algebraic Graph Theory*, 2nd Ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
- [4] I. GUTMAN, Some relations for the independence and matching polynomials and their chemical applications, *Bull. Acad. Serbe Sci. Arts* **105** (1992), 39–49.
- [5] R. HAGGKVIST, D. ANDREN, P.H. LUNDOW and K. MARKSTROM, Graph theory and statistical physics, case study: discrete mathematics, Department of Mathematics, UMEA University (1999-2004).
- [6] G.H. HARDY, J.E. LITTLEWOOD and G. PÓLYA, *Inequalities*, Cambridge University Press, Cambridge, 1952.
- [7] V.E. LEVIT and E. MANDRESCU, The independence polynomial of a graph—a survey, *Proc. 1st Int. Conf. Algebraic Informatics*, Thessaloniki, October 20-23, 2005 (ed. S. Bozapalidis, A. Kalampakas and G. Rahonis), Thessaloniki, Greece: Aristotle University (2005), 233–254.

- [8] L.L. LIU and Y. WANG, A unified approach to polynomial sequences with only real zeros, *Adv. Appl. Math.* **35** (2007), 542–560.
- [9] J.A. MAKOWSKY, Algorithmic uses of the Feferman-Vaught theorem, Ann. Pure Appl. Logic **126** no.,1-2 (2004), 159–213.
- [10] A.D. SCOTT and A.D. SOKAL, The repulsive lattice gas, the independent set polynomial, and the Lovasz local lemma, J. Stat. Phys. 118 no. 5-6 (2005), 1151–1261.
- [11] R.P STANLEY, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989), 500–534.
- [12] Y. WANG and B.-X. ZHU, On the unimodality of independence polynomials of some graphs, *European J. Combin.* **32** no. 1 (2011), 10–20.
- [13] Y. ZENG and F. ZHANG, Extremal polyomino chains on k-matchings and kindependent sets, J. Math. Chem. 42 no. 2 (2007), 125–140.
- [14] F. ZHANG and L. ZHANG, Extremal hexagonal chains concerning k-matchings and k-independent sets, J. Math. Chem. 27 no. 4 (2000), 319–329.
- [15] Z.-F. ZHU, The unimodality of independence polynomials of some graphs, Australas. J. Combin. 38 (2007) 27–33.

(Received 18 June 2013; revised 24 July 2014)