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Abstract

We describe an inductive means of constructing infinite families of graphs,
every one of whose members G has independence polynomial I(G; x)
having only real zeros. Consequently, such independence polynomials
are logarithmically concave and unimodal.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. Recall that an indepen-
dent set S in G is a set of pairwise non-adjacent vertices. The independence number
of G, α(G), is the cardinality of a largest independent set in G. The independence
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polynomial of G, denoted I(G; x), is defined by

I(G; x) =

α(G)∑
k=0

skx
k = s0 + s1x + s2x

2 + · · ·+ sα(G)x
α(G),

where sk is the number of independent sets with cardinality k. Independence poly-
nomials were introduced in the 1970s and have been heavily studied since then. (See
[7] for a recent comprehensive survey, and see [4], [5], [9], [10], [11], [13], and [14] for
applications.)

A polynomial p(x) =
∑n

i=0 aix
i is called logarithmically concave (or log-concave)

if for all i, 1 ≤ i ≤ n − 1, a2
i ≥ ai−1ai+1. A polynomial is called unimodal if the

sequence of its coefficients satisfies a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ an for some j,
0 ≤ j ≤ n. It can be shown that if a polynomial is log-concave then it is unimodal.
For a fixed natural number n the binomial coefficients (

(
n
i

)
)n
i=0 give what is probably

the best-known example of a log-concave sequence.
A classical result due to Newton (see [6]) states that if a polynomial p(x) has non-

negative coefficients and only real zeros, then p(x) is log-concave. This fact, of which
we make frequent use in this note, has been the basis for proving the log-concavity
and unimodality of many independence polynomials.

Our construction follows that of Wang and Zhu, described in [12]. (See also [1],
[2], and [15] for similar constructions.) There the n-concatenation of a graph G on
the vertex v ∈ V (G), denoted G−

n (v), is defined as follows: begin with the disjoint
union of n copies of G, and identify each copy of v with one of the vertices of the
path Pn on n vertices. For example, a “k-regular” caterpillar with k edges pendant
from each vertex of its central path can be obtained by concatenating the star Sk

with k leaves on its central vertex.
Our main result, proven in much the same manner as the main theorem from [1]

(which in turn is based on the “zero-interlacing” technique described in [8]), is the
following. Here N [v] denotes the closed neighborhood of v, N [v] = {u ∈ V (G) | uv ∈
E(G)} ∪ {v}.

Theorem 1.1 Let G be a graph and let v ∈ V (G) such that

1. I(G − v; x) = f(x)b(x) and I(G − N [v]; x) = f(x)c(x) for some polynomials
b(x), c(x) ∈ Z[x], f(x) = gcd(I(G − v; x), I(G − N [v]; x)),

2. the zeros of f(x) are all real, and

3. m = deg(b) = deg(c) + 1 and the zeros {γ1, ..., γm} of b(x) and the zeros
{δ1, ..., δm} of xc(x) are all real and satisfy

γ1 < δ1 < γ2 < · · · < δm−1 < γm < δm = 0.

Then the graph I(G−
n (v); x) has only real zeros and as a consequence is log concave

and unimodal.
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In fact, our proof of Theorem 1.1 will show more. If we let v0 be the copy of
v corresponding to either terminal vertex of Pn in the concatenation construction,
G−

n (v) itself, relative to the vertex v0, satisfies the hypothesis of Theorem 1.1. This
fact enables us to use the graph resulting from an application of the theorem’s con-
struction as the input for another such application. We use this fact in Section 3 to
generate some interesting specific examples, some of which are very far from being
“path-like.” The variety of these examples is quite great.

First, let us turn our attention to proving the main theorem.

2 Proof of the main theorem

We need a couple of simple technical lemmas to begin our proof. The following fact
is well-known, and can be found, for example, in [7].

Lemma 2.1 Let G be any graph, and let w ∈ V (G). Then I(G; x) = I(G−w; x) +
xI(G − N [w]; x).

We frequently use this lemma without explicit mention. We make similar use of
the following fact, whose proof is trivial:

Lemma 2.2 Let G ∪ G′ be the disjoint union of the graphs G and G′. Then I(G ∪
G′; x) = I(G; x)I(G′; x).

Until further notice let G and v ∈ V (G) satisfy the hypotheses of Theorem 1.1,
and let us first assume that b(x) = I(G − v; x) and c(x) = I(G − N [v]; x) (that is,
that f(x) = 1). Let m = deg(b) = deg(xc). We may use Lemma 2.1 to compute
I(G−

n (v); x) for various values of n, always selecting w to be a terminal copy of v in
G−

n (v). Let pn(x) = I(G−
n (v); x). For n = 1 we easily obtain p1(x) = b(x) + xc(x). If

we formally let p0(x) = 1, we obtain an easy recurrence relation for pn, valid for all
n ≥ 2:

pn(x) = b(x)pn−1(x) + xc(x)b(x)pn−2(x) = b(x)
(
pn−1(x) + xc(x)pn−2(x)

)
.

Using this fact, the following facts are easily proven inductively:

Lemma 2.3 Let G and v ∈ V (G) be as above. Then

1. deg(pn) = mn and

2. b(x) evenly divides pn(x) in Z[x] exactly �n
2
� times.

Define qn(x) = pn(x)

(b(x))�n/2� . Lemma 2.3 implies that deg(qn) = m�n
2
	. Our recursive

formula for pn is then easily modified into a similar formula for qn:

Lemma 2.4 Let qn(x) be defined as above. Then q0 = 1, q1(x) = b(x) + xc(x), and

qn(x) =

{
qn−1 + xc(x)qn−2(x) for n ≥ 2 even, and

b(x)qn−1(x) + xc(x)qn−2(x) for n ≥ 3 odd.
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We note that deg(qn−1) = deg(xcqn−2) = mn
2

when n is even and deg(bqn−1) =

deg(xcqn−2) = m(n+1)
2

when n is odd. We now prove inductively that the zeros of
these respective pairs of polynomials are interwoven in the same way that those of b
and xc are assumed to be. More specifically, we prove the following lemma:

Lemma 2.5 Let n ≥ 1 be fixed.

1. If n is even, let t = m(n+2)
2

. Then the zeros {α1, ..., αt} and {β1, ..., βt} of qn+1

and xcqn, respectively, are all real and satisfy

α1 < β1 < α2 < · · · < βt−1 < αt < βt = 0.

2. If n is odd, let t = m(n+3)
2

. Then the zeros {α1, ..., αt} and {β1, ..., βt} of bqn+1

and xcqn, respectively, are all real and satisfy

α1 < β1 < α2 < · · · < βt−1 < αt < βt = 0.

Proof: Consider first the base case n = 0. We must show that the zeros of q1 =
b + xc and the zeros of xcq0 = xc are all real and are related as in (1). By the
hypothesis of Theorem 1.1, the zeros γj and δj of the i polynomials b and xc give
rise to intervals

(−∞, γ1), (γ1, δ1), ..., (δm−1, γm), (γm, 0).

The polynomials b and xc have the same sign on the interval (−∞, γ1) and on any
interval of the form (δj, γj+1), j ∈ {1, ..., m − 1}. Therefore the sum q1 = b + xc has
no zero on any such interval. However, since b and xc have opposite signs on the m
intervals of the form (γj , δj), j ∈ {1, ..., m}, q1 does have a zero on each such interval.
Since deg(q1) = m, these zeros account for all of q1’s zeros, which are therefore all
real. Moreover, these zeros are interspersed among those of xcq0 = xc as needed.

The base case n = 1 is proven analogously.

Now suppose that n ≥ 2 is even and that we have proven the lemma for k ≤ n − 2.
Applying our inductive hypothesis in the case k = n−2, we see that the mn/2 zeros
{α1, ..., αmn/2} of qn−1 and the mn/2 zeros {β1, ..., βmn/2} of xcqn−2 are all real and
define the intervals

(∞, α1), (α1, β1), ..., (βmn/2−1, αmn/2), (αmn/2, 0).

The polynomials qn−1 and xcqn−2 have the same sign on the interval (−∞, α1) and on
any interval of the form (βj , αj+1), j ∈ {1, ..., mn

2
− 1}. Therefore qn = qn−1 + xcqn−2

has no zero on any such interval. However, since qn−1 and xcqn−2 have opposite signs
on the mn/2 intervals of the form (αj , βj), 1 ≤ j ≤ mn/2, qn does have a zero on
each such interval. Since deg(qn) = mn/2, these zeros account for all of qn’s zeros.
Moreover, relative to the zeros of xcqn−1, these zeros (along with those of b(x)) satisfy
the condition in (2) above, proving this condition for n − 1 odd.

In case n ≥ 3 is odd, an analogous proof establishes that qn has all real zeros and that
these zeros, relative to those of xcqn−1, satisfy the condition in (1) above, proving
the condition for n − 1 even. �
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We are now able to complete our proof of Theorem 1.1 in case f(x) = 1. In fact,
the zeros of pn(x) = I(G−

n (v); x) are those of b(x) and qn(x). The former zeros are
assumed real in our hypotheses, and Lemma 2.5 shows that the latter are real as
well. As a consequence, pn(x) is log-concave, and therefore unimodal.

If f(x) �= 1, we need only be a bit more careful in our induction. More generally,
letting pn(x) = I(G−

n (v); x) once more, we have

p1 = f(b + xc), p2 = fb(p1 + xfc), and pn = fb(pn−1 + xfcpn−2) for n ≥ 3.

Arguing as above we can show that, after factoring out the appropriate power of
f(x)b(x), the remaining zeros of pn−1 and xf(x)c(x)pn−2 alternate as do those of
qn−1 and xcqn−2 in Lemma 2.5. Consequently, every pn has only real zeros, and our
theorem is again proven.

3 Specific examples

We now develop a number of specific families of graphs to which Theorem 1.1 applies.
For our first construction, recall that a graph of order 2m is said to be very well-
covered if α(G) = m and any maximal independent set has this cardinality. It is
easy to show that any connected subgraph of Km,m of order 2m is very well-covered.
It is also not hard to show that for any vertex v in such a graph, α(G − v) = m
and α(G − N [v]) = m − 1. The following corollary is therefore plausible, and easily
proven:

Corollary 3.1 Let G be a connected subgraph graph of Km,m of order 2m. Let
v ∈ V (G) such that I(G− v; x) = f(x)b(x), and I(G−N [v]; x) = f(x)c(x) for some
f(x) ∈ Z[x], and the zeros {γ1, ..., γr} of b(x) and the zeros {δ1, ..., δr} of xc(x) are
all real and satisfy

γ1 < δ1 < γ2 < · · · < δr−1 < γr < δr = 0.

Then the graph G−
n (v) is a very well-covered bipartite graph (in fact, a subgraph of

Kmn,mn) whose independence polynomial has mn distinct real zeros. As a conse-
quence, I(G−

n (v); x) is log concave and unimodal.

This construction leads to a few easy examples:

Corollary 3.2 I(G−
n (v); x) has only real zeros (and is therefore log concave and

unimodal) for each of the following choices of (G, v):

1. G = P2m, the path on 2m vertices, and v either of the path’s terminal vertices;
and

2. G = C2m, the cycle on 2m vertices, and v arbitrary.

Proof: Note that both P2m and C2m are very well-covered subgraphs of Km,m. Easy
inductions establish the desired conditions on I(G−v; x) and I(G−N [v]; x) in either
case. �
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Now recall, as indicated in the introduction, that our proof of Theorem 1.1 gives
the following meta-algorithm:

Corollary 3.3 Let G−
n (v) be any graph obtained through applying Theorem 1.1.

Then choosing w to be the vertex v in either of the terminal copies of G in the
path Pn from the concatenation construction, I(G − w; x) and xI(G − N [w]; x) sat-
isfy the hypotheses of Theorem 1.1, with f(x) = (b(x))�n/2�. Thus we may apply the
concatenation construction recursively.

An interesting family of graphs is obtained if we begin this recursive procedure
with G = P2n, a path on 2n vertices for some n ≥ 1, with v one of G’s terminal
vertices. The “paths on paths” resulting from repeated applications of the theorem
yield trees that are very far from being “path-like,” distinguishing them strongly
from the graphs considered in [1], [2], [12], and [15]. For instance, consider the tree
shown in Figure 1, resulting from just two iterations of the construction.

Figure 1: A graph obtained through two iterations of the construction, beginning
with P4

There are other standard families of graphs to which our procedure applies. For
instance, for s ≥ 2, consider the cocktail party graph (also known as the hyperocta-
hedral graph) CP(s), the graph of order 2s obtained by removing s disjoint edges
from K2s. See [3] for more information on these graphs; the graph CP(4) is shown
in Figure 2.

It is not hard to show that if v is any vertex in V , then b(x) = I(CP(s)− v; x) =
(s − 1)x2 + (2s − 1)x + 1 and c(x) = I(CP(s) − N [v]; x) = x + 1. The polynomials

b(x) and xc(x) have sets of zeros {1−2s±√
4s2−8s+5

2s−2
} and {−1, 0} respectively, so that

Theorem 1.1 applies and gives us the following result:

Corollary 3.4 Let s ≥ 2. Then for any n ≥ 1 and for any v ∈ V (CP(s)),
I(CP(s)−n (v); x) has all real zeros and is therefore log-concave and unimodal.

Figure 3 shows the graph CP(4)−4 (v).
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Figure 2: The cocktail party graph CP(4)

Figure 3: The graph CP(4)−4 (v)
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