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Abstract

We describe a new Prüfer code based on star-reductions which works for
infinite acyclic hypertrees.

1 Main results

A famous theorem attributed to Cayley states that there are nn−2 finite trees with
vertices {1, . . . , n}. Prüfer gave in [3] a beautiful proof by constructing a one-to-one
correspondence between such trees and elements in the set {1, . . . , n}n−2 of all nn−2

words of length n−2 in the alphabet {1, . . . , n}. More precisely, we obtain the Prüfer
code of a tree with n ≥ 2 vertices {1, . . . , n} by successively pruning smallest leaves
and writing down their neighbours until reaching a tree reduced to a unique edge.
Selivanov in [5] generalized Prüfer’s construction to acyclic hypertrees. A different
Prüfer code for arbitrary (not necessarily acyclic) finite hypertrees was described by
C. Rényi and A. Rényi in [4].

Prüfer’s construction and its subsequent generalizations can be succinctly de-
scribed as “pruning trees”. The aim of this paper is to describe a Prüfer code based
on a different kind of simplification, star-reduction, which merges hyperedges until
reaching the trivial hypertree consisting of a unique hyperedge containing all ver-
tices. The resulting Prüfer code respects degrees (a vertex of degree a occurs with
multiplicity a− 1 in the corresponding Prüfer word) a property shared with Prüfer’s
original construction. Its definition is perhaps slightly less straightforward but it has
the additional feature that it works for trees and acyclic hypertrees which are infi-
nite, a property which fails to hold in the general case for the classical construction
of Prüfer.

The rest of this paper is organized as follows: Section 2 recalls briefly the def-
inition of acyclic hypertrees. Section 3 describes the Prüfer partition. The Prüfer
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partition of an ordinary rooted tree is trivial and carries no information. It is however
a necessary ingredient for the Prüfer code of an acyclic hypertree with hyperedges
of size larger than 2. Section 4 contains an intuitive definition of Prüfer codes and
reviews a few enumerative results. Sections 5 and 6 recall the definition of the clas-
sical Prüfer code and its generalization to finite rooted acyclic hypertrees. Sections
2-6 are expository and contain nothing new.

Sections 7-8 describe the Prüfer code T �−→ (P,W ∗) based on star-reductions
(mergings of hyperedges). As far as I am aware, this construction has not appeared
elsewhere in the litterature.

Section 9 generalizes the construction of the Prüfer code based on star-reductions
to infinite acyclic hypertrees.

The final Section 10 illustrates the extension to infinite trees by an example
which gives rise to bijections in the set Sn of all elements in the symmetric group of
{1, . . . , n}.

2 Hypergraphs and hypertrees

A hypergraph is a pair (V, E) consisting of a set V of vertices and of a set E of
hyperedges given by subsets of V containing at least two elements. In order to avoid
complications we require moreover that no hyperedge is a subset of another hyperedge
in a hypergraph. A hypergraph is finite if it contains only finitely many vertices and
finitely many hyperedges.

Except in Sections 9 and 10 we consider henceforth mainly only finite hypergraphs
(and hypertrees) consisting of a finite number of vertices and hyperedges. We denote
by size(e) the cardinality of a hyperedge e, defined as the number of vertices contained
in e, and by deg(v) the degree of a vertex v given by the number of hyperedges
containing v. A vertex of degree 1 is a leaf. Both numbers size(e) and deg(v) can be
arbitrary (perhaps infinite) cardinal numbers. A hypergraph is locally finite if it has
only edges of finite size and vertices of finite degree.

Two distinct vertices v, w ∈ V of a common hyperedge are adjacent or neighbours.
A path of length l joining two vertices v, w ∈ V is a sequence v = v0, v1, . . . , vl = w
involving only consecutively adjacent (and distinct) vertices. A cycle is a closed
path involving only distinct vertices. A hypergraph is connected if two vertices can
always be joined by a path. The distance between two vertices v, w of a connected
hypergraph is the length of a shortest path joining v and w. Geodesics (or shortest
paths) are paths . . . , vi, . . . , vj, . . . with vi, vj at distance |i − j| for all indices i, j.
We set d(v, w) = ∞ if v and w belong to different connected components.

A connected hypergraph is an acyclic hypertree if every cycle with more than one
vertex is contained in a unique hyperedge. In particular, two distinct hyperedges
of an acyclic hypertree have at most one vertex in common (otherwise we get a
cycle consisting of two common vertices contained in the intersection of two different
hyperedges which is contained in two different hyperedges) and geodesics between
two given vertices are unique, a property which we will use in a crucial way in the
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sequel. The definition of a general hypertree (a connected hypergraph admitting a
tree as a host graph where a host graph is a graph with the same vertex-set inducing
connected subgraphs in every hyperedge) will not be needed in the sequel. Observe
that two hyperedges of a general hypertree can intersect in more than one vertex.
This destroys in general uniqueness of geodesics.

Remark 2.1. The terminology “acyclic hypertree” can be motivated as follows:
Associate to a hypergraph the cell-complex with simplices defined by hyperedges, a
hyperedge of size s corresponding to an (s− 1)−dimensional simplex, with simplices
glued together along common vertices. Two simplices intersect thus in general in a
finite set of vertices and not in common simplex as usual in simplicial complexes.
The cell-complex associated in this way to a hypergraph (V, E) is connected and
acyclic (and contractible) if and only if (V, E) is an acyclic hypertree.

Proposition 2.2. (i) We have∑
e∈E

size(e) =
∑
v∈V

deg(v) ≥ n + k − 1 (1)

for a connected finite hypergraph with n vertices and k hyperedges.

(ii) A connected finite hypergraph is an acyclic hypertree if and only if equality
holds in (1).

Corollary 2.3. We have ∑
e∈E

(size(e) − 1)) = n− 1 (2)

and ∑
v∈V

(deg(v) − 1)) = k − 1 (3)

for a finite acyclic hypertree with n vertices and k hyperedges.

Proof of Proposition 2.2 Inequality (1) holds obviously for a finite (hyper)graph
consisting of n ≥ 1 isolated vertices with equality only in the case n = 1. Removing
a hyperedge of size a from a given hypergraph reduces

∑
e∈E size(e) and

∑
v∈V deg(v)

by a ≥ 2 and n+ k − 1 by 1. This implies inequality (1) by induction.

In order to prove (ii), we consider a leaf v in a finite acyclic hypertree. If v
belongs to a hyperedge e′ of size > 2, we remove v from e′. This reduces

∑
e∈E size(e),∑

v∈V deg(v) and n by 1 and does not change the number k of hyperedges. If v belongs
to an ordinary edge e′ (of size 2), we remove v and e′. This reduces

∑
e∈E size(e) and∑

v∈V deg(v) by 2 and both numbers n, k by 1. Equality in (1) holds thus for acyclic
hypertrees by induction on the number of vertices.

A finite hypergraph which is not an acyclic hypertree contains either a non-leaf in
a hyperedge of size ≥ 3 or it contains a cycle consisting of at least 2 ordinary edges.
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Removing such a non-leaf in the first case reduces
∑

e∈E size(e) and
∑

v∈V deg(v) but
keeps n+ k − 1 unchanged. Removing an ordinary leaf in a nontrivial cycle reduces∑

e∈E size(e) and
∑

v∈V deg(v) by 2 and n + k − 1 by 1. Inequality (1) is thus strict
for such a hypergraph. �

A hypertree is trivial if it is reduced to a unique hyperedge. Equivalently, a
connected graph is a trivial hypertree if all its vertices are leaves.

Proposition 2.4. (i) We have k < n for a finite acyclic hypertree with n vertices
and k hyperedges.

(ii) Every finite acyclic hypertree with n ≥ 2 vertices contains at least two leaves.

Proof Since every hyperedge e contains at least size(e) ≥ 2 vertices we have n−1 =∑
e∈E (size(e) − 1) ≥ k. This shows (i). Since n − 1 > k − 1 =

∑
v∈V (deg(v) − 1)

there exists at least two vertices contributing nothing to the sum
∑

v∈V (deg(v) − 1).
�

A connected infinite hypergraph is an acyclic hypertree if every connected sub-
graph induced by a finite number of vertices (with hyperedges given by intersections
containing at least two vertices of original hyperedges with the finite subset of ver-
tices under consideration) is a finite acyclic hypertree. Equivalently, an infinite
hypergraph is an acyclic hypergraph if all its connected finite subhypergraphs are
acyclic hypertrees.

Proposition 2.5. Two vertices v, w at distance l in an acyclic hypertree T are joined
by a unique shortest path v = v0, v1, . . . , vl = w defining a unique sequence e1, . . . , el

of hyperedges such that {vi−1, vi} ⊂ ei.

We leave the proof to the reader. �

3 The Prüfer partition of a rooted acyclic hypertree

A rooted acyclic hypertree has a marked root vertex r among its vertices. The root
vertex r induces a marked vertex e∗ closest (at minimal distance) to the root in
every hyperedge e of a rooted acyclic hypertree. In particular, the root-vertex r is
the marked vertex of every hyperedge containing r. Removal of the marked vertex e∗
from e yields the reduced hyperedge e′ = e \ {e∗} consisting of all unmarked vertices
of e. No reduced hyperedge contains the root. We use the notation {v1, . . . , vk−1}w

for a hyperedge e = e′ ∪ {e∗} of size k with marked vertex e∗ = w and reduced
hyperedge e′ = {v1, . . . , vk−1}, see Section 3.2 for an example.

Proposition 3.1. A non-root vertex v of a rooted acyclic hypertree is the marked
vertex of deg(v)−1 hyperedges. The root r is the marked vertex of deg(r) hyperedges.

The proof is left to the reader. �
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Corollary 3.2. Reduced hyperedges of a rooted acyclic hypertree T with vertices V,
root r and k hyperedges partition the set V \ {r} into k non-empty subsets.

The Prüfer partition P(T ) of an r−rooted acyclic hypertree T with vertices V is
the partition of V ′ = V \ {r} into reduced hyperedges given by Corollary 3.2.

The definition of Prüfer partitions can easily be generalized to arbitrary (not
necessarily locally finite) infinite rooted acyclic hypertrees.

In the sequel, we will mainly consider acyclic hypertrees with non-root vertices
V ′ given by (perhaps infinite) subsets of {1, 2, . . .}. The Prüfer partition of such an
acyclic hypertree is thus given by a partition of V ′.

3.1 Partition maps

A map p : E −→ E of a set E is idempotent if p = p ◦ p. Equivalently, a map
p : E −→ E is idempotent if its image p(E) is its set of fixed points. Idempotent
maps of a set E are in one-to-one correspondence with partitions of E decorated
with a marked element in each part. Indeed, such a decorated partition gives rise to
an idempotent map by sending each element to the marked element of its part. In
the opposite direction, an idempotent map p gives rise to a partition with marked
elements given by fixed points and parts given by preimages of fixed points.

A set E is well-ordered if E is endowed with an order relation which yields a least
element in every non-empty subset of E. A map p : E −→ E of a well-ordered set is
lowering if p(x) ≤ x for all x.

Well-ordering a set E selects least elements as the canonical marked elements
in parts of a partition. Partitions of a well-ordered set E are thus in one-to-one
correspondence with maps p : E −→ E which are idempotent and lowering. We call
such a map a partition map.

3.2 An example of a Prüfer partition

We consider the finite rooted acyclic hypertree T with vertices 1, . . . , 14, root-vertex
14 and 8 hyperedges given by

{1, 10, 12}8, {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}14, {11}7

where {3, 9}4 for example represents a hyperedge of size 3 with marked vertex 4 and
reduced hyperedge {3, 9}.

Figure 1 shows T with hyperedges represented by shaded polygons or ordinary
edges.

The Prüfer partition P(T ) of the acyclic hypertree T with root vertex 14 is thus
the partition

{1, 10, 12} ∪ {2} ∪ {3, 9} ∪ {4, 7} ∪ {5} ∪ {6} ∪ {8, 13} ∪ {11}
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Figure 1: An acyclic hypertree

defined by the union of all reduced hyperedges of T . The corresponding partition
map is given by

p(1, 10, 12) = 1, p(2) = 2, p(3, 9) = 3, p(4, 7) = 4,

p(5) = 5, p(6) = 6, p(8, 13) = 8, p(11) = 11 .

3.3 The spine of a rooted acyclic hypertree

We associate in this short digressional section an ordinary rooted tree (the spine) to
every rooted acyclic hypertree.

The spine of a rooted acyclic hypertree T with root r and vertices V is the
ordinary tree Sp(T ) with root r, vertices V = P ∪{r} where elements of P are parts
involved in the Prüfer partition P of T and with edges {A,B} if an element of A is
adjacent to an element of B. There is an obvious projection π : V −→ V defined by
π(r) = r and π(v) = e′ if v ∈ V \{r} is contained in the reduced hyperedge e′. Edges
of Sp(T ) are in one-to-one correspondence with hyperedges of T and are given by
{e′, π(e∗)} for a hyperedge e of T . An ordinary rooted tree is its proper spine (up to
isomorphism).

We state the following result without proof:

Proposition 3.3. (i) Sp(T ) = T if and only if T is an ordinary rooted tree.

(ii) d(π(v), π(w)) ≤ d(v, w) for v, w ∈ V and d(π(v), π(r)) = d(v, r) for every
vertex v in V.

Remark 3.4. There exists a second natural map which associates a rooted tree to
every rooted acyclic hypertree and which does not modify the set of vertices: replace
every hyperedge e of T with (size(e) − 1) ordinary edges given by {v, e∗} for v in e′.
Proposition 3.3 holds also for this construction except for the inequality of assertion
(ii) which has to be replaced by the opposite inequality.
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4 Glue maps, Prüfer words and enumeration of labelled
trees

We consider a fixed rooted acyclic hypertree T with root r and non-root vertices V ′.
We denote by g : V ′ −→ V the map defined by g(v) = w where w is parent of v,
ie. w is the unique neighbour of v closer to the root-vertex r than v. The map g
sends thus every vertex v of a reduced hyperedge e′ to the marked vertex e∗ of the
associated hyperedge e = e′ ∪ {e∗}. We extend g to all vertices V = V ′ ∪ {r} of T
by setting g(r) = r. We say that the map g defines the marked vertices of T and we
call g the glue-map of the r−rooted tree T .

The sequence v, g(v), g2(v) = g(g(v)), . . . of iterates of g is eventually constant
and defines (up to repetitions of the root vertex) the unique geodesic joining a vertex
v of T to the root vertex r.

Given a partition P of a set V ′ = V \ {r}, a map g : V −→ V is P−admissible if
there exists an r−rooted acyclic hypertree with vertices V, Prüfer partition P and
glue-map g.

Proposition 4.1. (i) Given a partition P of V ′ = V \ {r}, a map g : V −→ V is
P−admissible if and only if the restriction of g to a part of P is constant and for
every vertex v there exists an integer k = k(v) such that gk(v) = gk+1(v) = r where
gk denotes the k−fold iterate g ◦ g ◦ · · · ◦ g of g.

(ii) P−admissible partitions are in one-to-one correspondance with r−rooted
acyclic hypertrees having vertices V and Prüfer partition P.

Proof Associate to a part e′ of P the hyperedge with vertices e′ ∪ {g(e′)}. The
condition gk(v) = r shows that these hyperedges define a connected hypergraph.
Since we have equality in inequality (2) for every finite connected subhypergraph
containing r, the resulting connected hypergraph is an acyclic hypertree. This shows
(i). Assertion (ii) is obvious. �

Remark 4.2. A glue map g of an acyclic hypertree T with partition map p is
completely determined by g(r) = r and by its restriction g|p(V ′) : p(V ′) −→ V to the
set of fixed points (smallest elements in reduced hyperedges) of p.

A Prüfer word is a one-to-one correspondence between the set of P−admissible
maps V ′ −→ V and the set Vk−1 of all words of length k − 1 (with k denoting the
number of non-empty parts in the partition P of V ′) in the alphabet V satisfying the
following two conditions:

1. The degree of a non-root vertex v in the acyclic hypertree associated to a
P−admissible map g is one more than the number of occurences of the vertex
v in the word W ∈ Vk−1 corresponding to g.

2. The Prüfer word is given by a simple algorithm which is fast (polynomial in
any reasonable sense) for finite acyclic hypertrees.
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A Prüfer word is thus an elegant way to recover the loss of information of the
map T �−→ P(T ) induced by the Prüfer partition.

Formula (3) implies that Condition (1) in a Prüfer word is also fulfilled by the
root-vertex. Exempting the root from Condition (1) is motivated by Section 9 dealing
with infinite hypergraphs.

A Prüfer code is a map T �−→ (P,W ) where P is the Prüfer partition of the
non-root vertices V ′ of an acyclic hypertree T and where W is a Prüfer word.

Sections 5 and 6 contain a description of a Prüfer code due to Selivanov, see [5].
It uses removal of hyperedges of a certain type and decreases the number of vertices.

The main result of this paper is a construction of a new Prüfer code. It is based
on merging hyperedges with a common intersection into one larger hyperedge and
does not change the set of vertices. It has moreover the interesting feature that it
works for suitably defined infinite acyclic hypertrees, as outlined in Section 9 and
illustrated in Section 10.

We denote by T (V,P) the set of all finite rooted acyclic hypertrees with vertices
V = V ′∪{r} and with a given fixed Prüfer partition P of V ′. The existence of Prüfer
codes implies easily the following standard result in enumerative combinatorics:

Corollary 4.3. Associating to an acyclic hypertree T ∈ T (V,P) the monomial

w(T ) =
∏
v∈V

xdeg(v)−1
v

we have ∑
T∈T (V ,P)

w(T ) =

(∑
v∈V

xv

)k−1

where k denotes the number of (non-empty) parts in P.

In particular, there are
S2(k, n− 1)nk−1

acyclic hypertrees with k hyperedges and vertices {1, . . . , n} where S2(k, n) denotes the
Stirling number of the second kind enumerating the number of partitions of {1, . . . , n}
into k non-empty subsets.

5 Hyperedges of leaf-type and the map T �−→ W (T )

The next two sections describe Selivanov’s generalization of Prüfer codes to acyclic
finite hypertrees, see [5].

A hyperedge e of a rooted acyclic hypertree T is of leaf-type if all vertices of the
associated reduced hyperedge e′ are leaves.

Proposition 5.1. Every finite rooted acyclic hypertree not reduced to its root has a
hyperedge of leaf-type.
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Proof A hyperedge containing a vertex at maximal distance from the root-vertex is
of leaf-type. �

Proposition 5.2. Given a hyperedge e of a non-trivial acyclic hypertree T with
vertices V, root r and hyperedges E , the set E \ {e} is the set of hyperedges of an
r-rooted acyclic hypertree with vertices V \ e′ if and only if e is of leaf-type.

We leave the proof to the reader. �

We consider henceforth acyclic hypertrees with vertices given by a finite subset
of N, rooted at the largest vertex and with hyperedges totally ordered according
to their smallest unmarked vertex. We construct the Prüfer word W (T ) of such an
acyclic hypertree T by successively removing the smallest hyperedge of leaf-type until
reaching a trivial acyclic hypertree reduced to a unique hyperedge and by writing
down the sequence of marked vertices of the removed hyperedges.

The following result is useful for the computation of the Prüfer word of a tree
given as a list of hyperedges:

Proposition 5.3. A hyperedge e of a rooted acyclic hypertree T is of leaf-type if
and only if no element of the associated reduced hyperedge e′ = e \ {e∗} occurs as a
marked vertex among the other hyperedges of T .

We leave the easy proof to the reader. �

5.1 An example of a Prüfer word

The Prüfer word w1 . . . w7 of the acyclic hypertree T represented by Figure 1 of
Section 3.2 can be computed as follows: We start with the increasing sequence of all
hyperedges, ordered according to their smallest non-marked vertex. We iterate then
the following loop: We search the first hyperedge e of leaf-type using for example
Proposition 5.3. We remove e and we write down the marked vertex e∗ of the removed
hyperedge e. We stop if only a unique hyperedge remains.

For our example represented in Figure 1, we get the increasing sequences of
hyperedges

{1, 10, 12}8, {2}1 , {3 , 9}4 , {4, 7}8, {5}14 , {6}4 , {8, 13}14, {11}7

{1 , 10 , 12}8 , {3 , 9}4 , {4, 7}8, {5}14 , {6}4 , {8, 13}14, {11}7

{3 , 9}4 , {4, 7}8, {5}14 , {6}4 , {8, 13}14, {11}7

{4, 7}8, {5}14 , {6}4 , {8, 13}14, {11}7

{4, 7}8, {6}4 , {8, 13}14, {11}7

{4, 7}8, {8, 13}14, {11}7

{4 , 7}8 , {8, 13}14

{8 , 13}14

with hyperedges of leaf-type in italics. The acyclic hypertree T corresponds thus to
the Prüfer word 1 8 4 14 4 7 8.
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6 The inverse map (P ,W ) �−→ T

A part e′ in a partition P with k non-empty parts of a subset S of {1, . . . , n − 1}
is of leaf-type with respect to a word W ∈ N

∗ over the alphabet N if W involves no
elements of e′.

Lemma 6.1. A partition P into k non-empty parts of a subset of {1, . . . , n−1} con-
tains at least one part of leaf-type with respect to a word W in the set {1, . . . , n}k−1n.

Proof The last letter n of W does not occur in any part of P and the number of
remaining letters in W is one less than the number of parts in P. �

We consider a pair (P,W ) consisting of a Prüfer partition P of S ⊂ {1, . . . , n−1}
into k non-empty parts and of a Prüfer word W ∈ (S∪{n})k−1. In order to construct
the associated acyclic hypertree T rooted at n, it is enough to determine the glue
map g defining the marked vertex e∗ = g(e′) of every reduced hyperedge e′ appearing
in P. This can be achieved as follows: We order the elements of P totally according
to their smallest element and we augment W = w1 . . . wk−1 by adding a last letter
wk = n. We have thus W = w1 . . . wk−1n. We iterate now the following loop: By
Lemma 6.1 there exists a smallest part e′ of P which is of leaf-type with respect to
W = w1 . . . wk−1. We get in this way the hyperedge e′w1

(given by all elements in e′

and by the marked vertex w1) of T . We remove now e′ from P, we erase w1 in W
and we iterate until P is empty.

6.1 An example for the inverse map (P,W ) �−→ T

We reconstruct the acyclic hypertree T of Figure 1 from its Prüfer code consisting
of the Prüfer partition

{1, 10, 12} ∪ {2} ∪ {3, 9} ∪ {4, 7} ∪ {5} ∪ {6} ∪ {8, 13} ∪ {11}

and of the Prüfer word W = 1 8 4 14 4 7 8. The computation for T is as follows

{1, 10, 12}, {2}, {3 , 9}, {4, 7}, {5}, {6}, {8, 13}, {11} 1
{1 , 10 , 12}, {3 , 9}, {4, 7}, {5}, {6}, {8, 13}, {11} 8
{3 , 9}, {4, 7}, {5}, {6}, {8, 13}, {11} 4
{4, 7}, {5}, {6}, {8, 13}, {11} 14
{4, 7}, {6}, {8, 13}, {11} 4
{4, 7}, {8, 13}, {11} 7
{4 , 7}, {8, 13} 8
{8 , 13} 14

where the first columns displays relevant sets of reduced hyperedges with hyperedges
of leaf-type in italics and where the last column contains the letters of the Prüfer
word augmented with an additional letter w8 = 14 representing the root-vertex. We
get the hyperedges

{1, 10, 12}8, {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}14, {11}7
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defining the acyclic hypertree T of Figure 1 by marking (indexing) the first reduced
hyperedge of leaf type (written in italics) of every row with the corresponding letter
of W .

7 Star-reduction and the map T �−→ W ∗(T )

A hyperstar is an acyclic hypertree of diameter at most 2. The center of a hyperstar
of diameter 2 is the unique vertex adjacent to all other vertices. It is given by
the intersection of at least two hyperedges. Every vertex is a center of the trivial
hyperstar reduced to a unique hyperedge.

The hyperstar St(v) of an acyclic hypertree T at a vertex v of T is the subtree
of T formed by v and by all its neighbours. Its hyperedges are all hyperedges of T
which contain v.

The star-reduction of T at a vertex v is the acyclic hypertree ∗v(T ) obtained by
replacing all hyperedges of T involved in the hyperstar St(v) by a unique hyperedge
consisting of all vertices in St(v).

Proposition 7.1. (i) We have ∗v(T ) = T if and only if v is leaf of T .

(ii) v is a leaf of ∗v(T ).

(iii) We have ∗v(∗w(T )) = ∗w(∗v(T )) for any pair of vertices v, w in T .

Proofs are easy and left to the reader.

Assertion (iii) of Proposition 7.1 allows to define ∗S(T ) for a subset S of vertices.
Given an acyclic hypertree T with vertices {1, . . . , n}, we use the shorthand ∗≤v(T )
for the star-reduction ∗{1,...,v}(T ) at the subset {1, . . . , v} of all vertices not exceeding
v. All vertices 1, . . . , v of ∗≤v(T ) are leaves. Similarly, we use ∗<v(T ) for ∗{1,...,v−1}(T )
using the convention ∗<1(T ) = T .

The Prüfer word W ∗(T ) of an acyclic hypertree T with vertices {1, . . . , n} and k
hyperedges is defined as follows:

We set W ∗(T ) = nk−1 if T is a hyperstar with k hyperedges centered at its
root-vertex n.

Otherwise, there exists a smallest non-leaf v < n in T and we can define the
increasing sequence (ordered by smallest unmarked elements) Ev = (e1, . . . , ek−1) of
all k − 1 hyperedges not containing the smallest non-leaf v as an unmarked vertex.
In other words, the sequence Ev is obtained by removing the unique hyperedge e
containing v in its reduced hyperedge e′ from the increasing sequence (ordered by
smallest unmarked elements) of all k hyperedges of T . Since v is a non-leaf there
exist an increasing sequence Sv = 1 ≤ i1 < · · · < ia ≤ k − 1 consisting of all
a = deg(v) − 1 > 0 indices i1, . . . , ia such that the hyperedges ei1 , . . . , eia of Ev have
marked vertex v. We set wi1 = · · · = wia = v for the a letters of W ∗(T ) = w1w2 . . .
with indices i1, . . . , ia in Sv. The subword formed by the k − 1− a remaining letters

w1 . . . wi1−1ŵi1wi1+1 . . . ŵi2 . . . wia−1ŵiawia+1 . . . wk−1
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of W ∗(T ) corresponds to the Prüfer word W ∗(∗v(T )) of the star reduction ∗v(T ) of
T at the vertex v.

Remark 7.2. The set T (n) of all acyclic hypertrees with vertices 1, . . . , n rooted at
n carries two interesting additional structures:

1. It is a ranked poset for the order-relation given by T ≥ ∗ST for any subset
S ⊂ {1, . . . , n} of vertices. This poset has a unique minimal element given by
the trivial acyclic hypertree consisting of a unique hyperedge. Its rank function
rk(T ) is given by the number nl(T ) of vertices which are non-leaves and its
Möbius function is (−1)nl(T ).

2. The elements of T (n) are the vertices of a rooted acyclic hypertree. The root
vertex is again the trivial acyclic hypertree reduced to a unique hyperedge with
vertices 1, . . . , n. The ancestor of a non-trivial tree T is the star-reduction sa(T )
with respect to the smallest vertex a which is not a leaf.

7.1 An example for the construction of the Prüfer word W ∗(T )

We illustrate the computation of the Prüfer word W ∗(T ) by using once more our
favourite tree with vertices 1, . . . , 14, root-vertex 14 and hyperedges

{1, 10, 12}8, {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}14, {11}7

depicted in Figure 1 of Section 3.2.

Non-leaves of T in increasing order are 1, 4, 7, 8, 14 and increasing sequences of
all hyperedges involved in non-trivial star-reductions ∗≤v(T ) of T are given by

v hyperedges of ∗<v (T )
1 {1 , 10 , 12}8 , {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}14, {11}7,
4 {1, 2, 10, 12}8, {3, 9}4, {4 , 7}8 , {5}14, {6}4, {8, 13}14, {11}7

7 {1, 2, 10, 12}8, {3 , 4 , 6 , 7 , 8 , 9}8, {5}14, {8, 13}14, {11}7

8 {1, 2, 10, 12}8, {3, 4, 6, 7, 9, 11}8, {5}14, {8 , 13}14

{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13}14, {5}14.

The first column indicates the smallest non-leaf of ∗<v(T ). The second column con-
sists of the increasing list of all hyperedges of ∗<v(T ) with the hyperedge containing
the smallest leaf as an unmarked vertex in italics.

Removing the italicized hyperedges from the sequences in the second column, we
get the sequence Ev and the sequence Sv which determines the positions of the letters
1, 4, 7, 8 and 14 in the Prüfer word W ∗(T ) = w1 . . . w7 of T :

v Ev Sv E \ Ev

1 {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}14, {11}7 1 {1, 10, 12}8

4 {1, 2, 10, 12}8, {3, 9}4, {5}14, {6}4, {8, 13}14, {11}7 2, 4 {4, 7}8

7 {1, 2, 10, 12}8, {5}14, {8, 13}14, {11}7 4 {3, . . .}8

8 {1, 2, 10, 12}8, {3, 4, 6, 7, 9, 11}8, {5}14 1, 2 {8, 13}14

15 {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13}14, {5}14.
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The necessary data for the final computation of W ∗(T ) are summarized by

v Sv ∗1 ∗2 ∗3 ∗4 ∗5 ∗6 ∗7

1 1 1 ∗1 ∗2 ∗3 ∗4 ∗5 ∗6

4 2, 4 1 ∗1 4 ∗2 4 ∗3 ∗4

7 4 1 ∗1 4 ∗2 4 ∗3 7
8 1, 2 1 8 4 8 4 ∗3 7
14 1 8 4 8 4 14 7

and give 1 8 4 8 4 14 7 for the Prüfer word W ∗(T ) of T .

From an algorithmic point of view it is perhaps more straightforward to work
with the partition map and with the glue map of T . Writing p(w)g(w) for the image
of the vertex w ∈ {1, . . . , 13}, the partition map and the glue map of ∗≤v(T ) (with
the convention ∗0(T ) = T ) are given by

v 1 2 3 4 5 6 7 8 9 10 11 12 13
0 18 21 34 48 514 64 48 814 34 18 117 18 814

1 18 18 18 18

4 38 38 38 38 38

7 38

8 114 114 114 114 114 114 114 114 114 114 114 114

(unchanged values are omitted).

Computing the partition map pi and the glue map gi of ∗≤i(T ) is straightforward
by induction on i: For v a non-root vertex define p0(v) as the minimal element
of the unique reduced hyperedge e′ containing v and define g0(v) as the marked
vertex e∗ = e \ e′ of the unique hyperedge e whose associated reduced hyperedge
e′ = E \ {e∗} ⊂ e contains v.

We suppose now pi−1 and gi−1 constructed. We consider

a = min

(
pi−1(i), min

v∈V ′,gi−1(v)=i
pi−1(v)

)
and we set pi(v) = a if either pi−1(v) = pi−1(i) or gi−1(v) = i. We leave pi(v) =
pi−1(v) unchanged otherwise, ie. if pi−1(v) �= pi−1(i) and gi−1(v) �= i. The integer a
is of course the minimal element in the unique reduced hyperedge of ∗≤i(T ) which
contains i.

We set gi(v) = gi−1(v) if gi−1(v) �= i and we set gi(v) = gi−1(i) if gi−1(v) = i.
Otherwise stated, the marked vertex gi−1(i) of the unique reduced hyperedge e′ in
∗<i(T ) which contains i is not affected by star-reduction at i except if it is equal
to i. In this case it is replaced by the marked vertex gi−1(i) of the unique reduced
hyperedge in ∗<i(T ) which contains i.
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Using Remark 4.2 we can condense the computations for Sv to

v Sv

1 21, 34, 48, 514, 64, 814, 117 1 18

4 18, 34, 514, 64, 814, 117 2, 4 48

7 18, 514, 117 3 38

8 18, 38, 514 1, 2 814

by choosing smallest unmarked representatives in hyperedges.

8 The inverse map (P ,W ∗) �−→ T

Given a Prüfer code (P,W ∗) where P is a partition of {1, . . . , n − 1} into k non-
empty parts and where W ∗ ∈ {1, . . . , n}k−1 is a word of length k − 1 with letters
in {1, . . . , n}, there exists a unique acyclic hypertree T such that P = P(T ) is the
Prüfer partition of T and W ∗ = W ∗(T ), defined by the construction of Section 7, is
the Prüfer word of T .

If W ∗ = nk−1, the pair (P,W ∗) is Prüfer code of the hyperstar centered at the
root-vertex n with reduced hyperedges given by the parts of P. Otherwise there
exists a smallest letter v < n occuring with strictly positive multiplicity a > 0 in
W ∗. We denote by Pv = (s1, . . . , sk−1) the increasing sequence (ordered with respect
to smallest elements) of all k− 1 parts not containing the vertex v of P. If i1, . . . , ia
are the a indices of all letters equal to v in the word W ∗ = w1 . . . wk−1 then the parts
si1 , . . . , sia correspond to all reduced hyperedges of a (not yet constructed) acyclic
hypertree T with marked vertex v. Denoting by e′v the unique part of P containing
v, we consider the partition P̃ obtained by merging the a + 1 parts si1, . . . , sia and

e′v into a larger part ẽ′. We denote by W̃ ∗ the word of length k − 1 − a obtained by

removing all a letters equal to v from W ∗. The Prüfer word W̃ ∗ of the pair (P̃ , W̃ ∗)
contains no letter ≤ a. It is thus by descending induction on a the Prüfer code of
a unique acyclic hypertree T̃ with {1, . . . , a} contained in the set of leaves. More

precisely, the recursively defined acyclic hypertree T̃ is the star-reduction ∗v(T ) at v
of the acyclic hypertree T corresponding to (P,W ∗). The hyperedge ẽ associated to

the part ẽ′ of T̃ splits into a + 1 hyperedges of T in the obvious way: a hyperedges
with marked vertex v have reduced hyperedges si1, . . . , sia . The marked vertex of
the hyperedge corresponding to the last part e′v involved in ẽ′ is given by the marked
vertex of the hyperedge associated to ẽ′ in T̃ = ∗v(T ). This defines the acyclic
hypertree T uniquely.

8.1 An example for the inverse map

We reconstruct the acyclic hypertree T of Figure 1 from its Prüfer code (P,W ∗)
consisting of the Prüfer partition

P = {1, 10, 12}8, {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}14, {11}7
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(with parts totally ordered by minimal elements) and of the Prüfer word W ∗ =
1 8 4 8 4 14 7.

We have

1 {1 , 10 , 12}, {2}1, {3, 9}, {4, 13}, {5}, {6}4, {8, 13}, {11}
4 {1, 2, 10, 12}, {3, 9}4, {4 , 7}, {5}, {6}4, {8, 13}, {11}
7 {1, 2, 10, 12}, {3 , 4 , 6 , 7 , 9}, {5}, {8, 13}, {11}7

8 {1, 2, 10, 12}8, {3, 4, 6, 7, 9, 11}8, {5}, {8 , 13}
15 {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13}14, {5}14

The indices 1, 4, 7, 8 are added according to the positions of the letters 1, 4, 7, 8 and
in the words

W ∗ = 1 8 4 8 4 14 7

W ∗ \ {1} = 8 4 8 4 14 7

W ∗ \ {1, 4} = 8 8 14 7

W ∗ \ {1, 4, 7} = 8 8 14

after removal of the italicized part containing the index under consideration. Reduced
hyperedges of the last row are all marked by the root 14.

Parts in every row are completely ordered according to smallest elements and are
obtained from the parts of the previous row by merging all parts involving the vertex
considered in the previous row (and by copying the remaining parts).

The marked vertex of a reduced hyperedge e′ is now given by the index of the
first indexed superset ẽ′ ⊃ e′ encountered when moving down the rows. We get thus
the hyperedges

{1, 10, 12}8, {2}1, {3, 9}4, {4, 7}8, {5}14, {6}4, {8, 13}13, {11}7

of our favourite acyclic hypertree T depicted in Figure 1.

The following table illustrates the algorithm by giving partition maps for ∗≤v(T )
and by giving partial glue-maps (denoted by p(v)g(v), see Remark 4.2)

v 1 2 3 4 5 6 7 8 9 10 11 12 13
p0 1 2 3 4 5 6 4 8 3 1 11 1 8
1 21, 3, 4, 5, 6, 8, 11 1
p1 1 1 3 4 5 6 4 8 3 1 11 1 8
4 1, 34, 5, 64, 8, 11 4
p4 1 1 3 3 5 3 3 8 3 1 11 1 8
7 1, 5, 8, 117 3
p7 1 1 3 3 5 3 3 8 3 1 3 1 8
8 18, 38, 5 8
p8 1 1 1 1 5 1 1 1 1 1 1 1 1

114, 514
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The table encodes the information for the glue map g as follows: Suppose we want
to determine the marked vertex g(7) of the reduced hyperedge containing vertex 7.
The second row (denoted by p0) contains the information for the partition map of
∗≤0(T ) = T . It shows that the smallest element in the reduced hyperedge (of T )
containing 7 is 3. This implies g(7) = g(4) and we are reduced to compute g(4).
Nothing interesting happens to vertex 4 during the star-reduction at vertex 1. After
that, vertex 4 is involved in the star-reduction at vertex 4 and becomes an element
of the reduced hyperedge of ∗≤4(T ) with smallest element p4(4) = 3. We switch thus
our attention to the vertex 3. The next row indicates that the hyperedge containing
3 of ∗≤4(T ) has marked vertex 8. We have thus g(7) = 8 for the value g(7) of the
glue map g at the vertex 8.

Proceeding similarly we get the complete information

v 1 2 3 4 5 6 7 8 9 10 11 12 13
g 8 1 4 8 14 4 4 14 4 8 7 8 14

for the glue map g of the tree T depicted in Figure 1.

9 Infinite acyclic hypertrees

The construction of the Prüfer code (P,W ∗) based on mergings of hyperedges works
perfectly well for infinite acyclic hypertrees with vertices {1, 2, 3, . . .} ∪ {∞} rooted
at ∞. It encodes such an acyclic hypertree T with infinitely many hyperedges by a
Prüfer partition of {1, 2, . . .} into infinitely many non-empty parts and an infinite
Prüfer word W ∗ = w1w2 · · · ∈ (N ∪ {∞})N with an arbitrary vertex v (which can be
the root vertex) of T occuring deg(v) − 1 times in W ∗ where deg(v) can be infinite.

The Prüfer map is however not onto: A pair (P,W ∗) consisting of a partition
of {1, 2, . . .} into infinitely many parts and an infinite word W ∗ ∈ (N ∪ {∞})N

corresponds in general to no infinite rooted acyclic hypertree. In order to have a one-
to-one correspondence, we introduce in this section ideally rooted acyclic hypertrees
with vertices {1, 2, . . .} ∪ {∞}. Such objects are hyperforests having at most one
component which is an ordinary (finite or infinite) rooted acyclic hypertree together
with an arbitrary large (and perhaps infinite) number of infinite trees with marked
ends playing the role of the root vertex ∞.

Observe that infinite acyclic hypertrees with vertices {1, 2, . . .} rooted at ∞ which
have only finitely many hyperedges are essentially the same as finite acyclic hyper-
trees from the point of view of the Prüfer word W ∗. We leave the easy discussion for
this class of rooted acyclic hypertrees to the reader.

9.1 Ends of acyclic hypertrees and ideally rooted acyclic hypertrees

Two infinite geodesics γ, γ′ : N −→ V of an infinite hypergraph G are equivalent if
d(γ(n), γ′(n)) is ultimately constant. Equivalence classes of such infinite geodesics
are called ends of G.
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An ideally rooted acyclic hypertree is a hyperforest with a choice of an end in
every connected component not containing the root vertex. We call the connected
component containing the root of an ideally rooted acyclic hypertree the root compo-
nent. The root component can be finite (and perhaps reduced to its root) or infinite.
All other components are ideal components. They contain always infinitely many
hyperedges.

An ideally rooted acyclic hypertree has a marked vertex e∗ in every hyperedge.
The marked vertex e∗ of a hyperedge e in the root component is defined in the usual
way as the unique vertex of e which is closest to the root. The marked vertex e∗ of a
hyperedge e in an ideal component C is defined as the unique vertex closest to γ(n)
for n huge enough where γ : N −→ V is a fixed geodesic defining the equivalence
class of the marked end of C. We leave it to the reader to show that e∗ is well defined
and depends only on the equivalence class of γ.

9.2 Partition maps and glue maps of ideally rooted acyclic hypertrees

Partition maps of ideally rooted acyclic hypertrees are idempotent lowering maps of
the set N∗ = N \ {0} into itself. Glue maps are maps of the set N ∗ ∪{∞} admitting
the fixpoint g(∞) = ∞ as their only recurrent element. Extending partition maps
by p(∞) = ∞, pairs of maps p, g : N

∗∪{∞} −→ N
∗∪{∞} fixing ∞ = p(∞) = g(∞)

formed by a lowering idempotent map p and a map g with ∞ = g(∞) as its unique
recurrent element correspond to partition maps and the glue maps of ideally rooted
trees if and only if g = g ◦ p.

9.3 The Prüfer code of an ideally rooted acyclic hypertree

Proofs are straightforward and omitted in this informal Section.

The Prüfer partition P = P(T ) of an ideally rooted acyclic hypertree T is defined
in the obvious way as the partition of the set V \ {r} of non-root vertices with parts
e \ {e∗} given by all reduced hyperedges.

The glue-map of an ideally rooted acyclic hypertree T is the map g : V −→ V
having the root r = g(r) as its unique fixpoint and given by g(v) = e∗ for a non-root
vertex v arising as an unmarked element of the hyperedge e.

The Prüfer word W ∗(T ) of an ideally rooted acyclic hypertree T with vertices
{1, 2, . . .} ∪ {∞} rooted at ∞ is well-defined and given by an infinite word w1w2 . . .
with a finite letter n ∈ N occuring exactly deg(n) − 1 times. The degree deg(n) of
a vertex n can be finite or infinite. The letter ∞ corresponding to the root vertex
occurs at most deg(∞) − 1 times in W ∗(T ) where deg(∞) ∈ {0, 1, 2, . . .} ∪ {∞} is
defined as the degree of the vertex ∞ in the root-component.

The exact number of occurences of ∞ in W ∗(T ) can be strictly smaller than
deg(∞)−1. More precisely, we order the connected components of T \{∞} according

to their smallest vertex. Denoting by C̃ the smallest ideal component, we erase all
connected components ≥ C̃ from T and we denote by d̃eg(∞) the degree of ∞ in the
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resulting ordinary rooted acyclic hypertree. The number of occurences of the letter
∞ in W ∗(T ) is then given by max(0, d̃eg(∞) − 1).

We have now a one-to-one correspondence between the set of ideally rooted acyclic
hypertrees having vertices {1, 2, . . .}∪ {∞} rooted at ∞ and having infinitely many
hyperedges and the set of Prüfer codes consisting of a Prüfer partition of N into in-
finitely many non-empty parts and an infinite Prüfer word which can be an arbitrary
element of {{1, 2, . . . , } ∪ {∞}}N.

Ideally rooted acyclic hypertrees (with infinitely many hyperedges) which are
locally finite correspond to Prüfer codes with Prüfer partitions involving only finite
parts and with Prüfer words involving all letters {{1, 2, . . . , } ∪ {∞}} with finite
multiplicity.

10 An example giving rise to bijections of Sn

The simplest infinite tree with vertices N ∪ {∞}, rooted at ∞, is given by a halfline
originating at the root ∞ with vertices v1, v2, · · · ∈ N at distance 1, 2, . . . of the root-
vertex ∞. Setting v0 = ∞, each vertex vi other than the root-vertex v0 has thus
exactly two neighbours vi−1 and vi+1. The root vertex ∞ has a unique neighbour
v1. Such a tree is completely described by the permutation i �−→ vi of the set
{1, 2, 3, . . .} and every permutation σ of {1, 2, . . .} describes a unique such tree. The
Prüfer word W ∗ of such a tree yields a permutation ψ of {1, 2, . . .}. (Caution: not
every permutation of {1, 2, . . .} corresponds to such a tree: most permutations give
rise to trees with ideal components.) The Prüfer partition of such a tree is of course
the trivial partition of {1, 2, . . .} into singletons and thus carries no information.

A particularly nice subset of permutations is given by so-called “finitely-suppor-
ted” permutations moving only finitely many elements of the infinite set {1, 2, . . .}.
Such a permutation σ satisfies σ(m) = m for every integer m larger than some
natural integer n and thus can be considered as an element of the finite permutation
group Sn acting in the usual way on {1, . . . , n}. It is easy to see that the Prüfer
word W ∗ of such a tree has this property again. Thus the Prüfer word defines a
bijection of Sn which respects the the obvious inclusion of Sn−1 in Sn as the subset
of all permutations fixing n.

We describe now this map for n ≤ 4. We write
(
σ(1) σ(2) . . . σ(n)

)
for a

permutation i �−→ σ(i) of {1, 2, . . . , n}.
In the case n = 1 there is a unique permutation. It fixes every element of

{1, 2, . . .} and the associated Prüfer word W ∗ is again the identity permutation.

The unique non-trivial permutation σ in S2 (extendend to a permutation of
{1, 2, 3, . . .} by setting σ(i) = i for all i > 2) gives again rise to W ∗(σ) = σ.

In the case n = 3, the imageW ∗(σ) of σ is already known for the two permutations
of S2 ⊂ S3. The remaining four permutations form two orbits defined by the image
σ(3) of the largest integer 3. Note that we have always ψ(i) = σ(i) = i for the
partition ψ encoded by the Prüfer word ψ = W ∗(σ) of a partition σ such that
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σ(i) = i for all i > n.

In the case n = 4, the map σ �−→ W ∗(σ) gives rise to two orbits(
2 3 4 1

)
,
(

4 2 3 1
)
,
(

3 2 4 1
)
,
(

4 3 2 1
)

and (
2 4 3 1

)
,
(

3 4 2 1
)

associated to permutations such that σ(4) = 1. We have finally one orbit(
1 3 4 2

)
,
(

4 1 3 2
) (

3 1 4 2
)
,(

3 4 1 2
)
,
(

1 4 3 2
)
,
(

4 3 1 2
)

associated to all permutations such that σ(4) = 2 and one orbit(
1 2 4 3

)
,
(

1 4 2 3
)
,
(

4 2 1 3
)
,(

2 1 4 3
)
,
(

2 4 1 3
)
,
(

4 1 2 3
)

consisting of all permutations with σ(4) = 3.
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