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Two new classes of facet-defining inequalities for the three-index assignrnent 

polytope are identified in this paper. According to the shapes of their support index 

sets, we call these facets bull facets and comb facets respectively. The bull facet has 

Chvatal rank 1, while the comb facet has Chvatal rank 2. For a comb facet-defining 

inequality, the right-hand-side coefficient is a positive integer, and the left-ha,nd-side 

coefficients equal to 0 or 1. For a bull facet-defining inequality, the right-hand-side 

coefficient is a positive even integer, and the left-hand-side coefficients equal to 0, 

1 or 2. Furthermore, we give an O(n 3
) procedure for finding a bull facet with the 

right-hand-side coefficient 2, violated by a given noninteger solution to the linear 

programming relaxation of the three-index assignment problem, or showing that 

no such facet exists. Such an algorithm is called a separation algorithm. Since the 

number of variables is n 3 and one needs to check through all the variables in such a 

separation algorithm, this algorithm is linear-time and the order of its complexity 

is the best possible. 

Keywords: three-index assignment, facet, rank, separation algorithm. 

1. Introduction 

Several classes of facets of the three-index assignment polytope have been iden

tified by Balas and Saltzman in [3], and Balas and Qi in [2]. Among these facet 

classes, four subclasses of facets have been found to possess linear-time, i.e., O(n 3), 
separation algorithms [1] Recall that a separation algorithm for a facet class 

of a combinatorial optimization problem is a procedure for finding a facet-defining 

inequality in this facet class, violated by a given noninteger solution to the linear 

programm.ing relaxation of this combinatorial optimization problem, or showing 

that no such inequality exists. Such an algorithm is an important component of 
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the polyhedral method for solving NP-hard combinatorial optimization problems 

[8] [10]. 

In this paper, we identify two more facet classes of the three-index assignment 

polytope and one more facet subclass with linear-time separation algorithm. 

The three-index assignment problem of order n can be stated as a 0-1 pro

gramming problem as follows: 

min L {CijkXijk : i E I,j E J, k E K}, 

s.t. L{Xijk : j E J, k E K} 1, Vi E I, 

L{Xijk : i E I, k E K} = 1, Vj E J, 

L{Xijk : i E I,j E J} = 1, Vk E K, 

Xijk E {a, I}, Vi,j,k, 

(1.1 ) 

where I, J and K are disjoint sets with III = IJI IKI nand Cijk are cost 

coefficients. Let A be the coefficient matrix of the constraint set of (1.1). Then 

R = I U J U]( is the row index set of A. Let 5 be the column index set of A. Let 

P = {x E 3(n
3 

: Ax = e,x 2: a}, 

where e = (1, ... , I)T E 3(3n. Then 

PI = conv{x E {a, l}n3 : x E P} 

is the three-index assignment polytope of order n. 

We use the same symbols as [1] [2) [3]. In particular, as means a column of 

A associated with s E 5. We may specify s = {i,j, k} for i E I, j E J, k E K. 

For a set Q ~ R, we use Q I, Q J and Q J( to denote the parts of Q in I, J and K 
respectively. Furthermore, we also regard s E 5 as a three-element subset of R. So 

we may write s n Q for s E 5 and Q ~ R. For x E 3(n
3 

and 5' ~ 5, let 

x(5') = L {xs : s E 5'}. 

The new facets we shall identify in this paper are called bull facets and comb 

facets respectively. 
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Let D C R have the same cardinalities in I, J and ]{, i.e., IDII = IDJI = 
IDgl = r, where 1:::; r:::; n-4. Let H ~ R, HnD = 0, IHI = 2, IHLI:::; 1 for 

L = I, J, IC Let Q = D U H. If IHII = IH JI = 1, then D is just like the body of a 

fat bull and H is like the head of the bull. Let 

B(D) = {t E S : t ~ D}, 

F(Q,D)={tES: ItnQI2:2,22: ItnD!2: 1}. 

In Section 2, we show that 

2x(B(D)) + x(F(Q,D)):::; 2r (1.2) 

defines a facet of PI. We call such a facet a bull facet. We also show that all 

the bull facets have Chvatal rank 1 (see [10] or the appendix of this paper for the 

definition of Chvatal rank). Among bull facets, we pay special attention to the case 

with r = 1. In Section 3, we give an O(n3
) separation algorithm for this subclass of 

bull facets. Since the number of variables of the three-index assignment polytope 

is n 3
, this algorithm is linear-time and its complexity is the best possible. As we 

mentioned in the beginning, this will be the fifth subclass of facets with linear-time 

separation algorithms identified until now. 

In [2], Balas and Qi identified another class of facets. Suppose that D, Q ~ R, 

D n Q = 0, I (D n Q h! = p + 1 and 1 ~ I Q L I ~ r for L = I, J, I<, I Q I = 21' + 1, 
1 ~ r ~ p ~ n - 3. Let 

Then 

C1(D) = {t E S: t ~ D}, 

C2 (D, Q) = {t E S: It n DI = 1, It n QI = 2}, 

C(D, Q) = C1(D) U C2 (D, Q). 

x(C(D, Q)) ~ p (1.3) 

defines a facet of PI for n 2: 4 [2]. We may think that D is a "handle" of a "comb" 

and Q is the sole "tooth" of this comb. One may think to extend the above case to 

lllore general cases, i.e., with several "teeth". The name "comb facet" is borrowed 

from the traveling salesman polytope [8]. However, the formation rule of a general 

comb facet is somewhat complicated. Thus, we first discuss two-tooth facets in 

Section 4 and then extend the discussion to more general comb facets in Section 5. 

In any case, the cardinalities of the support index sets of a comb facet at I, J and 

I( are the same. A tooth may have a common index with the handle. We call such 

a tooth a linked tooth and call a tooth an unlinked tooth if it has no common indices 
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with the handle. The number of unlinked teeth is 31] + 1, where 1] is a nonnegative 

integer. Thus, at least one tooth is unlinked. Some other rules on the formation 

of comb facets will be specified in Section 5. We conclude this paper in Section 6 

with some final remarks and further questions. 

For applications and literature on the three-index assignment problem, also see 

[4J [5) [6] [7] [9] [11] [12]. 

2. Bull Facets 

\lVe now show that (1.2) defines a facet of PI. Recall that an inequality 7rX :::; 7ro 

is said to define a face of P if it is satisfied by every x E P; it is said to define a 

improper face (proper face) of P if the equality 7rX = 7ro is (not) satisfied by every 

x E P; it is said to define a facet of P if the polyhedron pTr := {x E PI7rx = 7ro} 

has dimension dim P - 1 [10J. 

\lVithout loss of generality, we may assume that DI = D J = DJ( = {I, 2, ... , r}, 

HI = H J = {r + I}, H J( = 0. Let 

S = S\ (B(D) U F(Q,D)) 

and 

pi = {x E PI: 2x(B(D)) + x(F(Q,D)) = 2r}. 

\lVe first show: 

Theorell1 2.1. The inequality (1.2) is valid and of Chvatal rank 1. 

Proof: The inequality (1.2) can be obtained by multiplying all the equations 

of Ax = e indexed i E D I, JED J, kED J( by ~, and multiplying all the equations 

of Ax = e indexed i E HI, j E H J by t, and adding them together, dividing the 

resulted inequality by 2 and rounding down all coefficients to their nearest integers. 

Thus, (1.2) is a valid inequality of Chvatal rank at most l. 

\Ve now prove that it is of Chvatal rank 1 and it induces a proper face of PI' 

Let Xiii 

and Xt 

1 for i = 1, ... 1'-1,1'+3, ... n and X r ,r+2,r+2 = Xr+l,r+l,r = X r+2,r,r+l = 1, 
a for all other t. Then x E P and 

2x(B(D)) + x(F(Q, D)) = 21' 1 < 21'. 

So, (1.2) defines a proper face and is of Chvatal rank 1. • 
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Lelnma 2.1. For any s = (i,j,k) E Sand (a,b,c) E S, i =I a;::: r + 1,j =I b;::: 

r + 1 and k =I c ;::: r + 1, there exists an x E pf such that Xijk = Xabc = 1. 

Proof: Without loss of generality, assume (a, b, c) en, n, n). There are four 

cases: 

(i) Is n QI 
Let Xiii 1, i 
requirements. 

O. Without loss of generality, assume s = (r + 2, r + 2, r + 2). 

1, ... , n, and Xt = 0 for all other t. Then x E pf and satisfies the 

(ii) Is n QI = 1, the common index is in D. Without loss of generality, assume 

s = (r,r + 2,r + 2). Let Xiii = 1,i = 1, ... ,r 1,r + 3, ... ,n and X r ,r+2,r+2 = 
X r +2,r+l,r = X r+l,r,r+l = 1, and Xt = 0 for all other t. Then X E pf and satisfies 

the requirements. 

(iii) Is n QI = 1, the common index is in H. Without loss of generality, 

assume s (r + 1, r + 2, r + 2). Let Xiii = 1, i = 1, ... , r 1, l' + 3, ... , nand 

X r ,r,r+l X r +2,r+l,r = X r+l,r+2,r+2 = 1, and Xt = 0 for all otllPr f Th(,l1 r E Pf 
and satisfies the requirements. 

(iv) i = j r + 1. Without loss of generality, assurne k = 7' + 1. Using the 

same X in (i), we also get the conclusion. II 

Theorell1 2.2. ASS1tme n ;::: r + 4. then (1.2) defines a facet of PI. 

Proof: According to Theorem 2.1, (1.2) is of Chvatal rank 1, and does not 

induce an improper face of PI. To show that (1.2) defines a facet of PI, i.e. dim 

(pf) = dim (PI) 1, it suffices to show that if ax = (Yo for all:1: E pf, then it is a 

linear combination of the 3n equality constraints in (1.1) and the equality indexed 

by (1.2), i.e. there exist scalars Ai,i E I,/Jj,j E J,vk,k E I( and 7r such that 

and 

Define 
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if( i, j, k) E S, 
if (i, j, k) E F( Q , D), 
if (i, j, k) E B ( D ) , 

i E I, 

j E J, 

k E 1(. 

(2.1 ) 



Then we have to show that for (i,j, k) E 5, 

(2.3) 

If at least two of the indices i,j, k are equal to n, (2.3) obviously holds. Consider 

x E PI such that Xijk = Xi'j'k' = 1. Define x' by X~jk = X~'lkl = 0, X~/jk = X~jlkl = 
1 and ;'C~ = Xt otherwise. Then x' E PI. As in [3], we call the construction of x' 

from x a first index interchange on the triplets (i, j, k) and (i', j', k') (second and 

third index interchanges are defined analogously). 

Now show (2.3) for i = n,j -1= n, l..~ -1= n. Let h = n - 1,1 -1= k, and r + 2 ~ 

I ::; n - 1. Then (h,j, 1) E 5. By Lemma 2.1, there is an x E Pr, such that 

Xnnn Xhjl 1. Performing a second index interchange on (n, n, n) and (h,j, 1), 
we get x' which is still in Pr. By ax = ax', we have 

(2.4) 

Similarly, there is an x E pr such that Xnjk = Xhnl = 1. Performing a second index 

interchange on (n,j, k) and (h, n, 1), we get x' which is still in Pr. By ax = ax', 

we have 

(2.5) 

Summing (2.4) and (2.5), we have 

(2.6) 

This proves (2.3) for i = n, j -1= nand k -1= n. By symmetry, (2.3) holds when one 

of i,j and k is n. 

Suppose now that i -1= n, j -1= nand k -1= n. By Lemma 2.1, We have an x E Pr 
such that Xnnn = Xijk = 1. Performing a first index interchange on (n, n, n) and 

(i,j, k), we get x' E Pr. Thus, ax = ax'. This yields 

a nnn + aijk = ainn + anjk, 

l.e., 

(2.7) 

Com.bining (2.7) and (2.6), we get (2.3). This exhausts the cases (i,j, k) E S. 

Next consider any (i,j,k) E F(Q,D). Define 

(2.8) 
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To prove the second equality of (2.1), we have to show that all 7rijk are equal for 

(i,j,k) E F(Q,D). 

Let u = (iu,ju, ku), t = (it,jt, kt ) E S, such that u ~ Q, lun DI :s; 2, t ~ R\ Q, 
then it is easy to see that there exists an x E pf such that Xu = X t = 1. Define x' 

from x by first index interchange on u and t. vVe have X~, X~, = 1, x~ = x~ = 0, 

where u' = (it, ju, ku), t' = (iu, jt, k t ). Thus, u, u ' E F( Q, D), t, t' E S. Hence, 

x' E pf and ax = ax'. We obtain 

By (2.3), 

By (2.8), 

Combining (2.9)-(2.13), we have 

7ru = 7r u'. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

If we perform a second index exchange, we still have (2.14). If lu n DI = 2, we m<1y 

also perform a third index exchange to get (2.14). This shows that 7rijk are equal 

for all (i,j,k) E F(Q,D) except the case ofi E DJ,j E D],k E J(\DJ(. Denote 

this number by 7r, then 

(2.15) 

holds for these cases. Assume now i E D 1, JED], k E J( \ D J(. It is easy to see that 

there exists an x E pF such that Xijk = X r +l,r+l,r = 1. Performing a second index 

exchange on (i,j, k) and (r + 1,r + 1,r), we have an x' E pF such that ax = a:c ' . 

So, 

By (2.15) we have: 

and 
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(2.16) 

(2.17) 

(2.18) 

(2.19 ) 



Combining (2.16) to (2.19), we prove (2.15) also holds for i E D I,j E D J, k E 

J( \ D J(. This exhausts the cases of (i, j, k) E F( Q, D). 

Now, let u = (i,j, k) ~ D, then there exists an x E pf such that Xijk = 

X r+l,r+l,r+l = 1. Performing a third index exchange on (i,j, k) and (r + 1, r + 
1, r + 1), we still get an x' E pf. Because ax = ax', we have 

(2.20) 

Since (r + 1,7' + l,r + 1) E 5, (r + l,r + l,k) and (i,j,r + 1) E F(Q,D), by the 

first two equations of (2.1), we have 

(2.21) 

(2.22) 

and 

(2.23) 

Combining (2.20) to (2.23), we have 

l.e. the third equality of (2.1) holds for any (i,j, k) E B(D). 

Finally, let x be defined by Xiii = 1 for i = 1, ... , n, and Xt = 0 for all other t, 
then x E pf. Hence ax = ao. This leads to (2.2) and completes the proof of the 

theorem. II 

3. A Linear-Thlle Separation Algoritluu 

Now we discuss the subclass of bull facets with T = 1. 

vVe denote this subclass by C. 

Reillark 3.1. In fact, C is also a subclass of the facet class identified by Balas 

and Saltzman in Theorem 6.9 of [3] with p = 2. In the proof of Theorem 6.9 of [3], 
it was mentioned that those facets are of Chvatal rank 2. This claim is incorrect 

for this subclass. As we proved in Theorem 2.1, the Chvatal rank of a bull facet 

is actually 1. In Theorem 6.9 of [3], actually, it was proved only that those facets 

have at most Chvatal rank 2. II 
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Without loss of generality, we may assume a facet defining inequality in C has 

the form 

2xs + x(F(Q, s)) :::; 2, (3.1 ) 

where s = (is,js,k s) E S,Q1 = {is,iq},QJ = {js,jq},QJ( = {ks},is =I iq,js =I jq~ 
and 

F(Q,s)={tES: ItnQI ~2,2~ Itns\ ~ I}. 

For i E I,j E J, k E K, define 

x(i,j, K) = L {Xijk' : kf E I(}, 

x(i, J, k) = L {Xij'k : j' E J}, 

and 

x(I,j,k) = L{Xi'jk: if E I}. 

Since each of the above three definitions sums up n components of x, we call 

each of them an n-sum. Also in each n-sum, only one index is summed up. So 

we call the other two indices fixed indices of that n-sum. We call i, j fixed indices 

of x( i, j, I(). Two n-sums are called unrelated if they do not have common fixed 

indices in between. Whereas two n-sums are called related if they have one common 

fixed index in between. 

There are seven n-sums associated with (3.1). They are: Al = x( is,j s, J(), 
Az = x( is, jq, I(), A3 = x( iq, j s, K), A4 = x(iq, J, ks), A5 = x( is, J, ks), A6 = 

x(I,jq, ks), and A7 = X(I,jSl ks). 

Proposition 3.1 Suppose that Q and s are given as above, x is a given non

integer point in P and x violates (3.1), i.e., 

2xs + x(F(Q,s)) > 2. (3.2) 

Then there are two distinct At, 1 = 1, ... , 7 with val'l.Les greater than 1/4. 

Proof: In fact, 

7 

2xs + x(F( Q, s)) =2: Ai - Xs - 2Xi.jqk. 2Xiqj. k. - Xiqjqk.. (3.3) 
i=I 
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However, 

A4 + A5 + A6 + A7 - Xs - Xi.jqk. - Xiqj.-k. - Xiqjqk. :S LXijk. = 1, (3.4) 
i,j 

where the equality is one of the constraints of (1.1). By (3.2), (3.3) and (3.4), 

Al + A2 + A3 > 1. Thus, at least one of AI, A 2, A3 is greater than t. 
Similarly, 

and 

Al + A2 + A5 - Xs - Xi.jqk. :S L Xi.jk = 1, 
j,k 

Al + A3 + A7 - Xs - Xiqj.k. :S LXij,k = 1. 
i,k 

We have A3 + A4 + A6 + A7 > 1 and A2 + A4 + A5 + A6 > 1. Hence, at 

least one of A 3, A4, A6, A7 is greater than i and at least one of A2, A4, A5, A6 
is greater than i. Since there is no common element among the three groups 

{AI, A 2, Ad, {A3, A 4, A6, A7} and {A2' A 4, A 5, A 6 }, the conclusion follows. II 

'''e call an n-sum a big n-sum if its value is greater than ~. 

Proposition 3.2 There are at most O(n) big n-S1lms. 

Proof: We first consider n-sum x(i,j, K). For any x E P, since 

L {Xijk : j E J, k E K} 1 

and 

L{Xi.i k : j E J,k E K} = L {x(i,j,K): j E J}, (3.5) 

for any fixed io, there are at most three x(io,j, K) are big n-sums. Otherwise (3.5) 

will exceed 1. There are n such io 'so So for all i E I, there are no more than 3n 

x(i,j,K) are big n-sums. 

Analogously, for n-sums with the forms of x(i,J,k) and x(I,j,k), the same 

conclusion holds. 

So, for all possible forms of n-sums, there are at most O( n) of them are big 

n-sums. II 

Proposition 3.3 There are at most O( n 2
) pairs of unrelated big n-S1Lms and 

O( n) pairs of related big n-smns. 
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Proof: The conclusion on unrelated big n-sum pairs is a direct corollary of 

Proposition 3.2. 

Consider now related big n-sum pairs. As we showed in the proof of Proposition 

3.2, for any fixed io, there are at most threex(io,j,K) and three x(io,J,k) big n
sums. So among them, there are at most O( 1) selections can be made to form a 

related big n-sum pair with a common fixed index i o. There are n such io's. The 

same argument also works for related big n-sum pairs with common fixed indices 

in J and K. So, there are at most O(n) related big n-sum pairs. II 

By Propositions 3.1 and 3.2, a linear-time separation algorithm for C follows 

in a straightforward manner. 

We give a linear-time separation algorithm for the case with Q I = {is, iq}, Q J = 
{j s, j q }, Q}( = {k s }. There are two other cases: Q I { is, i q }, Q J = {j s }, Q K = 
{ks, kq} and Q I = {is}, Q J = {j s,jq}, Q}( = {ks, kq}. Since they are symmetric, 

the algorithm can be applied to them without any difficulties. 

We now describe the algorithm. 

Algorithm 3.1. Suppose that x is a noninteger point in P. 

Step 1. For all i E I, j E J and k E 1(, calculate all the n-sums x(i,j,K), 
x(i, J, k) and x(I,j, k). 

Step 2. Check all pairs of big n-sums. For each pair, if the pair is an unrelated 

one, add another adequate index in R to form Q and S; if the pair is a related one, 

add two other adequate indices in R to form Q and s. Consider all possible ways 

to form Q and s. Then use (3.3) to check whether (3.1) is violated in each case. III 

Theoreln 3.1. Algorithm 3.1 determines in O(n 3
) steps whether a given x E P 

violates a facet defining inequality (3.1). 

Proof: By Proposition 3.1, Algorithm 3.1 checks all possible situations when 

(3.1) may be violated. We now discuss the complexity of the procedure. Clearly, 

the complexity of Step 1 is O(n3 ). 

According to Proposition 3.3, there are O(n 2
) unrelated and O(n) related big 

n-sum pairs .. For each unrelated big n-sum pair, there are four distinct fixed indices. 

There are O( n) ways to select the additional index in R to form Q and s. So for 

the "unrelated" case, we have O(n 3
) ways to form Q and s. For each related big 

n-sum pair, there are three distinct fixed indices. There are 0 (n 2 ) ways to select 
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the two additional indices in R to form Q and s. So we also have G(n 3
) ways to 

form Q and s in the "related" case. 

The testing time for (3.1) by using (3.3) is 0(1) since the values of Ai have 

already been calculated in Step 1. So, for Step 2, the complexity is also G(n 3 ). 

Therefore, the overall complexity of the algorithm is G( n 3
). This completes 

the proof .• 

4. Two-Tooth COlllb Facets 

In this section, we discuss a special case of comb facets, i.e. comb facets with 

only two teeth. 

Let s, tIl t2 E S and assume that s n tl = 0, s n t2 

IEtI,D=sU{l}, 
C1(D) = {v E S: v cD}, 

C2 (D, tm) = {v E S: Iv n DI = 1, Iv n tml = 2}, 

S( t l , 1, L) = {v E S : Iv n tIl ~ 2, I E v}, 

where m = 1,2,L = I, J,K, and 1 E L. Let 

Then 

is a comb inequality with hvo teeth. 

\Ve prove it is a facet of PI. Define 

0. let 

(4.2) 

(4.3) 

Certainly, this pf is different from the one we used in Section 2. Since no confusion 

will occur, we use the same symbol. vVithout loss of generality, we may assume that 

DI = {1,2},DJ = DJ( = {1},t 1 = (2,2,2),t2 = (3,3,3). 

Theorenl 4.1. The ineq'uality (4.2) is 'valid and of Chvatal rank 2. 

Proof: For any t E S, define 

Set) = {t' E S: Itnt'l ~ 2}. 
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Then by [3], x(S(t)) ::; 1 defines a facet of PI with Chvatal rank 1. The inequality 

(4.2) can be obtained by adding the equations of Ax = e indexed by i E D I, JED J, 

k E D g , and twice the inequalities X(S(tl)) ::; 1 and X(S(t2)) ::; 1; dividing the 

resulting inequality by 3 and rounding down all coefficients to the nearest integers. 

Thus (4.2) is a valid inequality of Chvatal rank at most 2. 

It suffices now to prove that it is not of rank 1. If (4.2) is of rank 1, then there 

exists €, 0 < € < 1, such that every solution to the linear system Ax = e, x 2: 0 

satisfies 

We now show that there is x E P such that 

( 4.4) 

which proves the theorem. 

Let Xiii = 1 for i 4, ... , n. Let xl,2,2 Xl,3,3 = x2,1,2 = x3,1,3 = X2,2,1 
X3,3,1 = ~, and Xt = 0 for all other t's. Then x E P and (4.4) holds. II 

Theoren14.2. Assume n 2: 6. If C(D, t l , t 2 ) is defined by (4.1) ) then (4-2) 
defines a facet of PI. 

Proof: According to Theorem 4.1, (4.2) is of Chvatal rank 2, so (4.2) is linearly 

independent from the constraints of Ax = e, x ;::: O. By (4.3) we can see that dim 

(Pr) is less than dim (PI). Thus the inequality (4.2) does not induce an improper 

facet of PI. 

To show that (4.2) defines a facet of PI, i.e. that dim (Pr) = dim (PI) - 1, 
we use the same approach as Section 2 of this paper, i.e. we introduced scalars 

.Ai,i E I,/-lj,j E J,vk,k E]( and 7r such that if ax = ao for all x E Pr, then 

and 

Define 

l/k = annk, 
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i E I, 

j E J, 

k E K. 

( 4.5) 



The first equality of (4.5) can be proved in the same way as the proof of 

Theorem 2.2. The existence for relevant x and x' in pf can be observed directly 

or from general lemmas in the next section. Hence we omit the proof here. 

Consider any (i,j,k) E C(D,t 1 ,t2). Define 

(4.7) 

To prove the second equality of (4.5), we have to show that all 7rijk are equal for 

(i,j,k) E C(D,tl,t2)' 

Let x E pf be such that Xu = Xt = 1, where u = (iu,ju, ku) ~ D, t = 

(it, jt, kt ) = t 2 • It is easy to see this can be realized. Define x' from x by an 

index interchange on u and t. We have x~, = x~, = 1, x~ = x~ = 0, where u' = 

(it,ju,ku),t' = (iu,jt,k t ). Thus, u,t' E C(D,tI,t 2 ), u',t rt. C(D,t},t 2). Hence, 

x' E pf and ax = ax'. With the same arguments as (2.9)-(2.14), we have 

7r u = 7r t'. (4.8) 

Thus, all 7rijk are equal for (i,j,k) E C1(D) U C2(D,t 2). For u E C2 (D,t 1) U 

S(tl,2,I), t = t2,unt2 0, ku =J 3 and we perform a first index interchange, (4.8) 

holds. \Ve may also use u (2,3,2) and t = (3,2,1), or u = (2,2,3) and t = (3,1,2), 
and perform a first index interchange. Then (4.8) still holds. Combining all these 

cases, we see that all 7rijk are equal for (i,j,k) E C(D,tI,t2)' Then the second 

equality of (4.5) holds by (4.7). 

Finally, let x E pf, x E {O, 1}n3. By ax = aD, (4.3) and (4.5), we obtain (4.6) . .. 
Relllark 4.1. VVe may regard D as the handle of a comb and tl and t2 as 

two teeth. \Ve also may regard the common index of D and tl as the link between 

them. The link is necessary. If we replace DI = {1,2} by DI = {1,4}, we shall 

have no integer point x in pf such that X332 = 1. Thus, the dimension of pf will 
be less that that of PI by more than 1 and the resultant inequality does not define 

a facet ... 

VVe shall discuss the separation algorithm for (4.2) elsewhere. 

5. General COlllb Facets 

We now discuss the formulas of general comb facets. A subset of R is called a 

1lniform subset of R if the cardinalities of the intersections of this set with I, J and 

J( are the same. 

80 



Tl, '.0' TV ~ R. Denote T {Tl, ... , and TO = U~=l TIL. 
D as the handle and Tl, ... , TV as the teeth of the comb. Several 

restrictions are needed on the handle and the teeth. 

(a). Each tooth is an odd set, i.e., for J-l 

2rJt + 1, 1 I(TJthl S rw 

1, ... ,v and L = I,J,K, ITJtI = 

Let r 

(b). Any pair of teeth are disjoint, i.e., TJt U TP = 0 for all J-l i- p. 

(c). The whole index set DUTo is a uniform subset of and a = I(DUTO)!I = 

I(D U TO)JI = I(D U TO)KI S n - 2. 

(d). The cardinality of the handle satisfies IDI 3p - 21" + 2 for some p ~ r. 

(e). There is at most one link, i.e., one common index of a tooth and the 

handle, i.e., for J-l = 1, ... , v, ID n TJtI ::; l. 

(f). If a tooth T,L is linked, assume IJt is the link and IJl E LJt where Lp is one 

of I, J and Ie Then Tf = {ltL}' i.e., IJt is the sole index in Tf . w p, 

Lernnla 5.1. Let DO = D \ TO. Under the above conditions, the nmnber of 

unlinked teeth is 317 + 1) where 17 is a nonnegative integer and 

17=a-p-l. (5.1 ) 

Thu8 at least one tooth is unlinked. Furthermore, 

(5.2) 

for L = I,J,K. 

Proof: Let (be the number of linked teeth. By (c), (d) and (e), 

3p - 21" + 2 = ID\ = IDOl + ( = 3a - (2'1' + v) + (. 

Hence, the number of unlinked teeth is 

v - ( = 3( a - pI) + 1. 

This proves (5.1). Thus, at least one tooth is unlinked. By (d), 

(5.3) 

By (a), if we expand an odd set TIL to a uniform subset of R without eXT)an,clulg 

the of (Til)!, (T1l)J and (TIL)J(, than \ve add at most r{l 1 indices. So we 
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can expand TO to a uniform subset of R by adding no more than r v indices. By 

(5.3), there are still at least 3(p r) + v (+ 2 3(p T + 17 + 1) indices in IDol. 
By (c), these indices are 111Od"r1O, distributed in J, J and J(. This proves (5.2). II 

Without loss of generality, assume that the first C teeth are linked. Assume 

that the link for TIL is Itt and IlL E L ttl where L tt is I or J or Ie Let 

C\(D) = {t E S : t ~ D}, 

= {t E S : It n D I =:-.: 1, It n T It I = 

for p 1, ... , v, and 

for p 1, C. Let 

u u 

TheoreUl 5.1. Under the above CU',fH/':H'l,')n.3. 

~p 

a Its Chvatal rank is 

Before prove several lemmas. Let 

E 

vVithout loss of 2, ... , (J} for L = J, J, K. 

Under the abo'Ve rlnl.lI.l .. I.I./J any s j, l;;) E S \ 
wherei '# n,j '# n, k '# n; 

Call 

may reduce (J in the 

> 

s1tch tlwi x s .T nnn 1. 

if frorn call it \Ale 

ways. 

for some p. \Vithout loss of assume that 

from sand 

this is 

E such that 

and to our aBEmn1])t 

and Then the situation is 

the as 1'" and thus (J have been reduced 1. Hence it suffices to prove the 

dairn for all Tit = 1. 
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If there is a linked, s-free tooth Tft, above assumption, we have r ft = 1. 

Assume Tft = 1), E S. Add = 1 t.o the constra,ints. Then the situation is the 

same but v and (J have been reduced L 

teeth are There are at most three such ( :::; 3. 

If p > r, by (5.2), we may choose 1), such that ?l IS from sand 

1), c DO. As adding Xu 1 to the r""ctr':',", we reduce p and thus (J by 1. 

Hence we may aSSUlne that p r. 

If r] ? 1, 

them, say 

at least four unlinked teeth. At least there are three of 

for f-l = 1, :3. We now can find ?lo, 711, 112 and V,3 in such that v'o E , \V.Onv fL \ = 

1, IUft n Tftl 2 for f-l 1,2,3. Add .E u !' 1, ~l 1,2,3, to the constra.ints and 

remove the three indices out of the comb. Then conditions (a}( f) still 

hold but r] has been reduced 1, p has been reduced 3 and (J has been reduced 

4. we may assume that ry O. 

If ( = 0, then we have the situation Thus may assume that ( 1. 

Ifn ) E S such that U IS U"')IUlUv frOIIl .s 

and (J < \ve reduce n 1. 

we have limited cases to ( 1, 2, 3 wi t h p r = LI ( + 1, 

(J = P + 1 and n = cr + 2. direct ""'''C>'''HC>~'''''''' we 111ay draw conclusion. 

Lenl.llla 5.3. Under the above conditions, for any s Cn,.i, k) E S \ 

where j n, k i: n. Let h = n - 1. Let I n 1 if k i: n - 1 and I E 

k n - 1. Then there exists an x E such that Xs :r: hnZ 1 and an :i: E 

s1lch thai x nnn 1. 

Proof: Notice that TIJ IS unlinked. (h,j, I) rt the 

conclusion on x is a of Lemn'la 5.2. For x, if k i: '/1 - 1, then 

(h, n, I) (n -1, n, n-1). Since n 1 and n with to 

we may also draw the conclusion on x. If k = n 1, then (h, n, k) = (n -1, n, 'II -1). 

Thus there exists x E pf such that = X hnk 1. third index 

interchange on x, we x. Since (n,j, k), (n,j, I), (h, n, (h, n, 1) rt C(D, .1: IS 

also in pf. 11 

Lenuna 5.4. Under the above conditions, there exists x E P s1Lch that 

x(C(D, T)) = p + 1. 
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To prove Lemma we may use a reduction technique similar to that in 

proving Lemma 5.2 to reduce the case to a low-dimensional situation. Then we 

may construct x. Vile omit the proof detail here. 

\Ve are now to prove Theorem 5.1. 

Proof of Theorem 5.1: For p = 1, ... ,1/, define 

with Chvatal rank 1. The (5.4) 

e indexed i E D I, j E 

r lt for p 1, ... ,1/; 

nnlIH.llll.f[, down all coefficients to the nearest 

Lemrna 5.4 and an "'P('·l,,··npl~~ similar to the of Theorem 4.1, we may 

show that the Chvatal rank of 2. 

To prove defines a facet of we may follow the proof of Theorem 4.2 

and UnJC'"E-,'.H~'E-, the role of tl to any linked tooth 

and the role of tz 

The condition 

Theon~m 5.1. 

of Lemma 5.2. Lemma 

such that x s 1, then 

is from the Chvatal ,·,y·",,.·,,,,I,,,'<> in the of 

chle to the need of the 

there is no :c E 

Xs = o. will be less 

- 1, and does not define a facet in this case. Remark 4.1 

an that if we relax the 

define a fa.cet. If we relax the condition (f), the may illustrate 

the situation. Let D J = {I, {I, and {I}. Let T} = {2,3}, 

. Let I,J,K. Then the conditions (a)-(e) 

are satisfied but not (f). link is i = Then there is no x E pF such that 

:l~ 344 1. the condition (f) cannot be relaxed. Perhaps the condition (e) can 

be relaxed to allow more links for a tooth. We do not go into the details of this 

extension since the value of p will be too high to have efficient separation algorithm. 

I 
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6. Final Renlarks and Further 

In this paper, we have identified two more facet classes of the three-index as

signment polytope, namely, bull facets and comb facets. The bull facet has Chvatal 

rank 1, while the comb facet has Chvatal rank 2. For a comb facet-defining in

equality, the right-hand-side coefficient is a integer, and the left-hand-side 

coefficients to 0 or L For a bull facet-defining inequality, the right-hand-side 

coefficient is a positive even integer, and the left-hand-side coefficients equal to 0, 

1 or 2. Furthermore, we give an O(n3 ) (linear-time) separation algorithm for the 

subclass of bull facets with the right-hand-side coefficient 2. Combining the results 

in [1] and we now know five subclasses of facets of the three-index u,uc"(',, . .'-H.cvH 

ply tope, which possess linear-time (O(n3)) uv~JU.LUU.'V 
subclasses of facets, two of them are clique their defining inequalities 

have coefficients 0 and 1 three of them have right-hand-side coefficients 2 in 

their U<:OJ . .LLlJ.Hh inequalities. 

These raise a question: Do linear-tirne separation algorithms exist for any 

facet subclasses with right-hand-side coefficients p 2? (The answer is for 

p = 1 by [1] and [3].) For example, the two-tooth comb facet subclass discussed in 

Section 4 is such a facet subclass. tn(~rrnore, are there any other unknown facet 

subclasses with right-hand-side coefficients p 2? Are there any other unknown 

facet classes with Chvatal ranks 1 and 2? A further task is to apply the five faeet 

subclasses with linear-time separation algorithms to a practical solution 

for the three-index assignment problem. These need eomputational experiments. 

We are grateful to the referee for helpful comments. 

APPENDIX 

One may find the following definition of Chvaial rank on pages 210 and 226 of 

[10]. 

For S {x E Z+ : Ax ::; b} where A = (aI, ... ,an ), we do followings to Ax::; b: 

1. 

n 

L (uaJ)xJ ::; ub, Vu E R+; 
J=l 
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2. 

n 

:L(luajJXj:::; ub, 
j=l 

since x is nonnegative; 

3. 

n 

:L(LuajJxj:::; LubJ, 
j=l 

since x is an integer vector. 

The crucial step is step 3, where we invoke integrality to round down the 

right-hand side. 

The valid inequality 

n 

:L(luajJXj:::; lubJ 
j=l 

can be added to Ax :::; b, and then the procedure can be repeated by combining 

generated inequalities and/or original ones. This procedure is called the Chvatal

Gomory rounding method, and the inequalities it produces are called C- G inequal

ities. 

We say that a valid inequality 1T'X :::; 1T'o for S is of Chvatal rank k if 1T'X :::; 1T'o 

is not equivalent to or dominated by any nonnegative linear combination of C-G 

inequalities, each of which can be determined by no more than k - 1 applications 

of the C-G procedure, but is equivalent to or dominated by a nonnegative linear 

combination of some C-G inequalities that require no more than k applications of 

the procedure. 
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