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Let G be a simple connected graph on 2n vertices with a perfect 

matching. G is k-extendable if for any set M of k independent edges, 

there exists a perfect matching in G containing all the edges of M. G 

is critically k-extendable if G is k-extendable but G + uv is not 

k-extendable for any non-adjacent pair of vertices u and v of G. The 

problem that arises is that of characterizing k-extendable and 

cri tically k-extendable graphs. This problem has been studied for 

k-extendable graphs and a number of results have been obtained. In 

particular, complete characterizations have been obtained for the case 

k = 1. Critically k-extendable graphs have not been studied. In this 

paper, we focus on the problem of characterizing cri tically 

k-extendable graphs. Complete characterizations are presented 

for k = 1, n - 2, n - 1 and n. 

1. INTRODUCTION 

All graphs considered in this paper are finite, connected, 
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loopless and have no multiple edges. For the most part our notation 

and terminology follows that of Bondy and Murty [1]. Thus G is a graph 

with vertex set V(G), edge set E(G) and minimum degree o(G). For 

VI ~ V(G), G[V/ ] denotes the subgraph induced by VI. Similarly G[E'] 

denotes the subgraph induced by the edge E' of G. NG(u) denotes the 

neighbour set of u in G. 

A matching M in G is a subset of E(G) in which no two edges have 

a vertex in common. M is a maximum matching if IMI ~ IM'I for any 

other matching MI of G. A vertex v is saturated by M if some edge of M 

is incident to v; otherwise v is said to be unsaturated. A matching M 

is perfect if it saturates every vertex of the graph. For simplicity we 

let V(M) denote the vertex set of subgraph G[M] induced by M. 

Let G be a simple connected graph on 2n vertices with a perfect 

matching. G is k-extendable if for any set M of k independent edges 

(two edges are independent if they do not have a common vertex), there 

exists a perfect matching in G containing all the edges of M. Clearly 

1 :!5 k :!5 n. We say that G is critically k-extendable or simply 

k-critical if it is k-extendable but G + uv is not k-extendable for any 

non-adjacent pair of vertices u and v of G. 

Observe that the complete graph K2n of order 2n and the complete 

bipartite graph K with bipartitioning sets of order n are k-critical n,n 

for 1 :!5 k :!5 n. On the other hand, the cycle C2n of order 2n ~ 6 is 

i-extendable but not i-critical. 

A number of authors have studied k-extendable graphs. An 

excellent survey is the paper of Plummer [6]. The problem of 

characterizing k-extendable graphs remains open for k ~ 3. k-critical 

graphs have not been previously investigated; the characterization 
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problem was recently posed by Saito [7]. In this paper, we shall focus 

on the problem of characterizing these graphs. 

For k = 1, n - 2, n - 1 and n we establish that a graph G of 

order 2n is k-critical if and only if G ~ K or K 
n,n 2n 

We also 

characterize 2-critical graphs; for this case there exist graphs which 

are not complete or bipartite. We present a number of properties of 

k-critical graphs, including an upper bound on the minimum degree. 

Section 2 contains some preliminary results that we make use of 

in our work. In Section 3 we prove two new properties of k-extendable 

that we use in establishing our main results in Section 4. 

2. PRELIMINARIES 

In this section, we state a number of resul ts on k-extendable 

graphs which we make use of in establishing our main results. We state 

only results which we use; for a more detailed account we refer to the 

paper of Plummer [6]. 

We begin with an important result of Berge (see [3] p. 90). Let 

M be a maximum matching in a graph G. The deficiency def(G) of G is 

defined as the number of M-unsaturated vertices of G. Denoting the 

number of odd components in a graph H by o(H) we can now state Berge's 

Formula : 

Theorem 2.1: For any graph G 

def(G) = max{o(G - X) - IXI X ~ V(G)} . o 

As noted in the introduction 1-extendable graphs have been 

characterized by Grant et al [2]. The result is 
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Theorem 2.2: A graph G of even order is i-extendable if and only if 

(i) o(G - S) :s lSi for all S c V(G) , 

and 

(ii ) o(G - S) :: lSi only if S is an independent set of 

vertices in G. 0 

Before stating a necessary condition for 2-extendable graphs we 

need the following definitions. A graph G is bicritical if 

G - u - v has a perfect matching for every pair of vertices u and v. A 

graph G is elementary if the graph G' induced by the edges 

E' = {e : e E E(G) and e is in some perfect matching in G} 

is connected. Plummer [4] proved the following three results. 

Theorem 2.3: Let G be a 2-extendable graph with 2n ~ 6 vertices. Then 

G is either bicritical or elementary bipartite. o 

Theorem 2.4: Let G be a k-extendable graph on 2n vertices, 

1 :s k :s n - 1. Then 

(a) G is (k i)-extendable; 

(b) G is (k + i)-connected; 

(c) if d
G 

(u) :: k + 1, then NG(u) is independent. 0 

Theorem 2.5: Let G be a graph on 2n vertices and 1 :s k :S n - 1. If 

o(G) ~ n + k, then G is k-extendable. o 

For bipartite graphs, Plummer [5] proved 
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Theorem 2.6: Let G be a k-extendable bipartite graph on 2n vertices, 

1 ~ k ~ n - 1, such that G + e is bipartite for some e ~ E(G). Then 

G + e is also k-extendable. o 

A consequence of Theorem 2.6 is the following Corollary 

Corollary: Let G be a k-extendable bipartite graph on 2n vertices, 

1. Then G is k-critical if and only if G is K 
n,n 

3. EXTENDABLE GRAPHS 

o 

In addition to the results mentioned in Section 2 we need, in our 

study of critically extendable graphs, two further results. In this 

section we present these results. Our first result concerns bipartite 

graphs. 

We have noted that K is k-extendable for all 1 ~ k ~ n. Since n,n 

an r-regular (connected) bipartite graph has a i'-factorization it is 

1-extendable for all r. However, it need not be k-extendable, k ~ 2. 

For example, for n ~ 2r it is easy to construct an r-regular bipartite 

graph on 2n vertices having connecti vi ty 2; an example is given in 

Figure 3.1, where H and HI are r-regular bipartite graphs on n 

u u' 

H - UV H' - u V 

Figure 3.1. 
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vertices containing the edges uv and u'v', respectively. For 

bipartite graphs having a prescribed minimum degree we have the 

following result. 

Theorem 3.1: Let G be a bipartite graph on 2n vertices with 

o(G) ~ n - 1. Then G is k-extendable for 1 ~ k ~ n - 2. 

Proof: In view of Theorem 2.4 Cal, it is sufficient to prove that G is 

(n - 2) -extendable. Let (U, W) be the bipartition of G and let M be 

matching of size (n - 2) in G. Consider G' = G V(M). G' is a 

bipartite graph consisting of four vertices and 0 (G') ~ 1. If 0 (G' ) 

2, then G' e: K
2

,2 and hence has a perfect matching. If on the other 

hand, 0 (G' ) 1, then G' is either 1-regular or a path of length 3. 

In either case it has a perfect matching. Consequently G 

is (n - 2)-extendable as required. o 

As a Corollary we have 

Corollary: An Cn - i)-regular bipartite graph on 2n vertices is 

k-extendable for 1 ~ k ~ n - 2. o 

We remark that an Cn - 2)-regular bipartite graph on 2n vertices 

need not be (n 3)-extendable as the following graph demonstrates. 

Start with an (n - 5)-regular bipartite graph on 2(n - 3) vertices 

with bipartitioning sets X and Y. Select non-adjacent vertices x E X 

Join u
l 

and u
2 

(v
1 

and v
2

) to every vertex of X (Y). Join u
3 
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and to every vertex of Y - Y (vi ,v
2 

and to every vertex of 

x - x). Call the resultant graph G. For n ~ 6, G has a matching M of 

size n - 3 that saturates only the vertices of 

cons i s t s of 2 odd components and consequent 1 y 

-extendable. 

x v Y. Now G - V(M) 

Gis no t (n - 3 ) 

In the proofs that follow we make frequent use of the following 

fact. If G is k-extendable. then for any vertex u, G - u cannot 

contain a matching of size at most k that saturates NG(u). 

Our next result is a generalization of Theorem 2.4 (c). 

Theorem 3.2: Let G be a k-extendable graph on 2n vertices with 

o(G) = k + t, 1 ~ t ~ k ~ n - 1. If dG(u) = o(G), then the subgraph 

G[NG(u)] has at most t - 1 independent edges. 

Proof: Suppose that dG(u) = o(G) and G[NG(u)] has a maximum matching 

M of size s ~ t. Since G is k-extendable we must have s ~ k - 1. 

Let v be an M-unsaturated vertex of NG (u). Then Mi = M v {uv} is a 

matching of size s + 1 ~ k in G. So Mi can be extended to a perfect 

matching F of G. Let 

Fi = {xy E F 

and B = V(G) - u - NG(u) - A. 

Figure 3.2 depicts the situation with the edges of M v F 1 drawn in 

solid lines. Then 

IAI k + t - 2s - 1 ~ k, and hence 

IBI 2n - 2k - 2t + 2s ~ 2. 
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u 

• • 
M 

• II 

Bec· ... ~ A 

Figure 3.2. 

If v is adjacent to a vertex b of B, then M2 M V Fl v {vb} is a 

matching in G of size s + (k + t - 2s - 1) + 1 = k + t - s ~ k. But 

then u is an isolated vertex in G V(M
2

) contradicting the fact that G 

is k-extendable. Hence NG(v) ~ B ¢. Now for dG(v) ~ k + t the only 

possibility is for v to be adjacent to every vertex of V(M) v A in 

which case dG(v) = k + t. 

If no vertex of B is adjacent to any vertex of 

G - A is disconnected and hence G is at most IAI-connected. Since 

IAI ~ k this contradicts Theorem 2.4(b). Let xy E E(G) with x E Band 

y E NG(u). Since y * v, Y E V(M) v V(F
1
). Let yz E F. Then z is in 

V(M) or A and so is adjacent to v. Consequently the path x, y, Z, v is 

an F-augmenting path in G with xy and zv not in F. But then 

M3 = M V Fl V {xy, zv}\{yz} 

is a matching of size k + t - s ~ k that saturates the vertices of 

NG(u), implying that G is not k-extendable. 

completes the proof of the theorem. 
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As a Corollary we have 

Corollary: Let G be a k-extendable, (k + t) -regular graph on 2n 

vertices. 1 :;; t :;; k :;; n - 1. Then G[NG(u)] contains at most t - 1 

independent edges for every u in G. o 

4. CRITICAL GRAPHS 

Recall that a k-critical graph is one that is k-extendable, but 

G + uv is not k-extendable for any non-adjacent pair of vertices u and 

v of G. Our first result provides a sufficient condition for a regular 

graph of diameter 2 to be k-critical. 

Theorem 4.1: Let G be a k-extendable, (k + t)-regular graph, 1 :;; t :;; k 

:;; n - 1, on 2n vertices having diameter 2. Let w be any vertex of G and 

u and v any pair of non-adjacent vertices of NG(w). If G[NG(w) - u - v] 

has exactly t - 1 independent edges, then G is k-critical. 

Proof: Let M be a matching of size t - 1 in G [N
G 

(w) - u - v 1. 

Then Ml = M v {uw} is a matching of size t :;; k in G and so can be 

extended to a perfect matching F of G. Let 

Fl = {xy E F : x E NGCw) - u - v , y ~ NG(w)} . 

Since, by Theorem 3.2, G[NG(w)) has at most t - 1 independent edges, 

IF11 k - t. But then M2 = M V Fl v {uv} is a matching in G + uv of 

size k and G + UV - V(M
2

) has w as an isolated vertex. 

k-critical, proving the theorem. 
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We remark that the graph G(2k,2k) obtained by joining two 

disjoint K 's 
2k 

by a perfect matching satisfies the conditions in 

Theorem 4.1. Hence as G(2k,2k) is k-extendable it is also k-critical. 

Our next result provides a sufficient condition for any 

k-extendable graph to be k-cri tical. We make use of the following 

terminology. We call a subset S of V(G) dependent if G[S] has at least 

one edge. 

Theorem 4. 2 : Let G '* K be 
2n 

a k-extendable graph on 2n 

vertices, 2 ~ k ~ n-l. If for any pair of non-adjacent vertices u 

and v of G there exists a dependent set S of G - u - v such 

that o(G - (S v {u,v})) = lSi, then G is k-critical. Moreover, the 

converse is true for a non-bipartite G and k = 2. 

Proof: Let u and v be any two non-adjacent vertices of G satisfying 

the hypothesis of the theorem. Then G' = G - u - v contains a 

dependent set S such that 

lsi o(G - (S u {u,v})) 

o(G' - S) . 

Hence, by Theorem 2.2, G' is not i-extendable. Consequently, G' is not 

(k - i)-extendable and thus G is k-critical. 

Suppose that G is a 2-critical non-bipartite graph. Consider the 

graph G' = G - x - y, where x and yare any two non-adjacent vertices 

of G. G' has a perfect matching by Theorem 2.3 but is not 

i-extendable. Hence, by Theorem 2.2, there exists a dependent set S 

such that o(G' - S) = lSi. Therefore o(G - (S v {x,y})) = lSi, as 

required. This completes the proof of the theorem. o 
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In view of Theorem 2.6 we have the following corollary. 

Corollary: Let G be a 2-extendable graph on 2n ~ 6 vertices. G is 

2-critical if and only if G is K or K 
2n n,n or for any pair of 

non-adjacent vertices u and v of G there exists a dependent set S of 

G - u - v such that o(G - (S v {u,v})) = lSi. o 

Remark 1: There exists 2-critical non-bipartite graphs which are not 

complete. For example, the graphs drawn in Figure 4.1. 

Figure 4.1. 

Remark 2: None of the graphs in Figure 4.1 are i-critical since, in 

each case, the deletion of any pair of non-adjacent vertices results in 

a graph having a perfect matching. Thus a k-critical graph need not be 

(k - i)-critical. 
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Theorem 2.4(b) implies that a k-extendable graph G has minimum 

degree at least k + 1. Our next task is to establish an upper bound on 

the minimum degree of a k-critical graph. We start with the following 

lemma. 

Lemma 4.1: Let G "* K be a k-cri tical graph on 2n 2n 

vertices, 1 :=; k :=; n - 1, and u and v any pair of non-adjacent vertices 

of G. Let M be a matching of slze - 1 in G - u - v. Then the graph 

G' :::: G - u - v V(M) has a matching of size at least n - 1. 

Proof: Suppose G' has a maximum matching MI of size at most 

n - k - 2. Then 

def(G') IVeG' ) I -, 21M' I 

2(n - k) 21M' I 
;?: 4 

By Theorem 2.1, there exists a subset Sf of V(G' ) such that 

o(G' -- Sf ) Is'l def G' ;?: 4 

Put S Sf U {u,v} and G == G 
1 

V(M) . Then 

a S) - lSi o(G' Sf) - Is'l - 2 ;?: 2 

Then def ;?: 2, implying that G is not k--extendable. This 

contradiction completes the proof of the Lemma. 0 

Let be a connected graph on 2n vertices wi th 

- 1 having a maxlmum ma tchlng M of size n - 1. Then for 

M-unsaturated vertlces u and of (v) . Furthermore, no 

two vertices of (u) are joined by an edge of M, and the vertices of 

(G) - form an independent set. 



Proof: Let ~ i ~ n - 1}. Observe that if X.U E E(G) 
1 

then y i veE (G) . Let 

M {xiYi E M UX i • uY i 
E E(G)} 

1 

M {XiYi 
E M VX i ' VY i 

E E(G)} and 
2 

M M\(M u M ) 
3 1 2 

From our earlier observation it follows that M n M 
1 2 

¢. By 

definition, if xiYi 
E M then u and v can each be joined to at most one 

3 

of x. and Y i' Consequently 
1 

2(n - 1) ~ dG(u) + dG(v) ~ 2( IM1 u M v M P 
2 3 

21MI 

2(n - 1) 

and hence each of u and v must be joined to exactly one end of each 

If == ¢ then, since G is connected, we have an M-augmenting 

path between u and v, contradicting the maximality of M. Hence M3 * ¢. 

We next establish that Ml = ¢. 

Suppose MI * ¢. Let X and Y respectively denote the vertices of 

VCM
3

) adjacent and non-adjacent to u. If ab E E(G) with a E Y and 

v 

Figure 4.2. 
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b ~ X, then G contains an M-augmenting u, v path, contradicting the 

maximality of M. Hence Y is an independent set of vertices in G and 

no vertex of Y is joined to any vertex of V(M) 
1 

v V(M). 
2 

Consequently for W E Y we have dG(w) ~ IXI ~ n - 2, a contradiction. 

Therefore Ml = ¢ and similarly M2 = ¢. This proves the lemma. D 

Theorem 4.3: If G * K
2n 

is k-critical on 2n vertices, 1 ~ k ~ n - 1, 

then 

o(G) ~ { n 
k-1 

n+2LTJ • 

n < 2k 

(4.1) 

n ;,,: 2k . 

Proof: Let u and v be any pair of non-adjacent vertices of G and 

M a matching of size k - 1 in G - u - v. Consider the graph G' = 

G - u - v - V(M). Since G is k-critical G' has no perfect matching. 

Further, the subgraph G[V(M) v {u,v}] has a maximum matching of size at 

most k-1, for otherwise G is not k-extendable. We distinguish two 

cases according to the value of k. 

Case 1: n < 2k. 

Suppose that o(G) ;,,: n + 1. Let M' be a maximum matching in the 

graph G' defined above. By Lemma 4.1, IM'I = n - k - 1 (note that 

v(G' ) 2n - 2k). Let x and y be M' -unsatura ted vertices of G'. 

Clearly x and yare not adjacent. Since o(G) ;,,: n + 1 and M' is a 

maximum matching in G', there must be an edge e of M such that x and y 

are adjacent to different end vertices of e, say a and b, 

respectively. Then M' v {xa,yb} is a matching of size n k + 1 ~ k. 



But 

G - (V(M') v {x,a,y,b}) = G[(V(M) - {a,b}) v {u,v}] 

has a matching of size at most k - 2. This contradiction proves that 

o(G) ~ n for n < 2k. 

Case 2: n 2:: 2k. 

Suppose that o(G) 2:: n + k. 

and 

Let G = G o 
u v. 

o(G) 2:: o(G) - 2 2:: (n - 1) + (k 1). 
o 

Then 

By Theorem 2.5, Go is (k - 1}-extendable contradicting the fact that G 

is k-critical. Hence o(G) ~ n + k - 1. Thus we need only consider the 

case k even. For this case we will prove that o(G) ~ n + k - 2. 

Suppose that o(G) = n + k - 1. Now by the choice of G', 

o(G') 2:: o(G) - 2k = n - k - 1. 

We now prove that G' is connected. Suppose that G' is disconnected. 

Then G' contains exactly two components as 

v(G') = 2(n - k) 2:: 2(o(G') + 1). 

In fact, G' consists of two disjoint Kn_k's. Since G' has no perfect 

matching, n k and hence n must be odd. 

Since o(G) = n + k - 1, every vertex of G' must be adjacent, in 

G, to every vertex of V(M) v {u,v}. Let x and y be any two 

non-adjacent vertices of G'. Now consider the graph G G + xy. We 

will establish that G' is connected by showing that G is k-extendable. 

Suppose G is not k-extendable. Then since G is k-extendable, 

there exists a set M of k independent edges, with xy E M, that does not 

extend to a perfect matching in G. If ab E M and a, b ~ V(G'), 



then A' = (A~{xy,ab}) u {xa,yb} is a matching in G of size k 

But then G cannot be k-extendable, a 

contradiction. We get a similar contradiction when ab E M with 

a E V(G') arid b ~ V(G'). We conclude therefore that V(M') ~ V(G'). If 

V(M) *- V(G' ) then the graph G" = G - V(M) - veA) consists of 

K v (K uK) for some p and q. Note that V(f ) = {u,v}. But G" has 
2 2p 2q 2 

a perfect matching implying that A is k-extendable. Hence V(A) = V(G') 

and so n - k = k implying that n is even, a contradiction. Therefore 

e is k-extendable, contradicting the cri ticali ty of G. Hence G' is 

connected. 

Now Lemma 4.1 together wi th the fact that G' has no perfect 

matching implies that G' has a maximum matching M' of size n - k - 1. 

Let u' and Vi be the two HI-unsaturated vertices of G'. By Lemma 4.2 

N
G

, (u') N
G

, (Vi). Let N
G

, (u' ) Lemma 4.2 

implies that no two xi's are joined by an edge of M' and the set 

V(G' ) N
G

, (u') is an independent set of vertices. Since (5 (G) 2: 

n + k 1 and G[V(H) u {u,v}] has a maximum matching of size at most 

k - 1, at least one of u or v, say u, is joined to a vertex, w say, of 

N
G

, (u' ). (See Figure 4.3). 

u 

v 

M ~M' 

Figure 4.3. 
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Consider the matching Mil == M v {uw}. The subgraph Gil' ::: G - V(M") 

contains a set ~ {v-}-v (NG,(u/)\.{w}) such that OCG/" ...: 5) > 151. 

Hence Gill does not contain a perfect matching and so G is not 

k-extendable; a contradiction. This completes the proof of the 

theorem. o 

Remark 3: For n < 2k the graph K achieves the bound (4.1). For 
n,n 

n ::: 2k the graphs Hi and H2 drawn in Figure 4.4 achieve the bound given 

in (4.1) for k odd and even, respectively. Note that in our diagrams a 

"double line" denotes the join. That Hand Hare k-cri tical is 

easily established. For example, 

-@ 
H1 ,k odd 

Figure 4.4. 

1 2 

in the case 

H
2

, k even 

H 
1 

if 

uv e E(H
1
), then u and v are in diagonally opposi te ~'s and so for 

odd k it is easy to find a matching M of size k, with uv E H, such 

that H1 - V(H) consists of two odd components. 

Our next lemma establishes that i-critical graphs are regular. 

Observe that a graph G is i-critical if and only if G - u - v has no 

perfect matching for every pair of non-adjacent vertices u and v. 
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Lemma 4.3: If G is a 1-critical graph on 2n vertices, then G is 

regular. 

Proof: Suppose to the contrary that G is not regular. Let 

o(G) r. Since G is connected there exists adjacent vertices u and v 

with dG(u) = rand dG(v) > r. 

Let F be a perfect matching in G containing edge uv. Let 

A {xye Fix e NG(u) - v, y ~ NG(u)} 

B {xye Flx,y e NG(u)} . 

If v is adjacent to x e NG(ul - v and xy e A, then G - u - y has a 

perfect matching, namely (F\{uv,xy}) v {vx}. But this contradicts the 

fact that G is 1-critical. Hence v is not adjacent to any vertex of 

NG(u) A veAl. Consequently, since IAI + 21BI = r - 1, v is joined to a 

vertex, w say, different from u that does not belong to veAl v V(B). 

Let wz be the edge of G that is in F. The choice of w implies that wz 

~ A v B. Now (F\{uv,wz}) v {vw} is a perfect matching in G - u - Z, 

contradicting the criticality of G. This proves the lemma. 0 

In the remainder of this paper, we make frequent use of the 

following notation. For u E V(G), we write NG(U) = V(G)\(NG(u) v {u}). 

The following theorem provides a characterization of 1-critical 

graphs. 

Theorem 4.4: A graph G on 2n vertices is 1-critical if and 

only if G s:: K or K . n,n 2n 
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Proof: The sufficiency is obvious as K and K are k-critical for n,n 2n 

1 ~ k ~ n. So we need to prove the necessity. 

Let G be 1-critical. Then, by Lemma 4.3, G is r-regular for some 

r ~ 2. Take u, v, F, A and B as in the proof of Lemma 4.3. Then 

r = IAI + ZIBI + 1 and v is not adjacent to any vertex of NG(u) A veAl. 

We now prove that G ~ K when B = ~. n,n 

Suppose B =~. If vw E E(G), with w E NG(u)'Y(A), then 

F' = (F'{uv,ww'}) v {vw} , 

where ww' E F, is a perfect matching in G - u - Wi. But then G is 

not 1-critical. Hence v is not adjacent to any vertex of NG(u)'Y(A). 

Now since v has degree r it must be joined to every vertex of 

veAl n NGCu). Let x be any vertex of NG(u) - v. Suppose that xy E E(G) 

with y * u and y E NG(U) A veAl. Let xx' and yy' belong to F. Then v 

is adjacent to at least one of x' or y', say x'. Since B = ~, u is not 

adjacent to y/. Now 

(F'{uv,xx' ,yy'}) v {vx/,xy} 

is a perfect matching in G - u - y', contradicting the criticality of 

G. Hence NG (u) is an independent set, each vertex of which is 

adjacent to every 

~. Hence r 

vertex of NG (u) A V (A) . Consequently, 

nand G ~ K n,n 

We next prove that G ~ K2n when B *~. Suppose B *~. Consider 

the edge bb' E B. If vb E E(G), then (F'{uv,bb'}) v {ub'} is a perfect 

matching in G - v - b, contradicting the criticality of G. Hence V(B) 

~ NG(v). A similar argument establishes that any two vertices of V(B) 

are adjacent. Therefore the vertices u, v and V(B) form a complete 

subgraph in G. Now let aa' E A with a E NG (u). I f va It E (G). then 
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(F\{uv,aa'}) v {ua'} is a perfect matching in G - v - a, contradicting 

the criticality of G. Hence v is joined to every vertex of 

Consider any edge bb' E B. If ab Q; E (G) , then 

(F\{aa' • bb' • uv}) v {ua', vb'} is a perfect matching in G - a - b, a 

contradiction. Consequently each vertex of NG(u) n veAl is adjacent to 

every vertex of v v V(B). 

Suppose s,t are non-adjacent vertices with s E veAl A NGCu) and 

t E veAl A NGCu). Let tt', ss' E A. Now 

(F\{ss' ,ttl ,uv}) v {ut' ,vs'} 

is a perfect matching in G - s - t. a contradiction. Hence each vertex 

of veAl A NGCu) is adjacent to every vertex of veAl A NG(u). 

Consequently NG(u) ~ NG(a) for every a E veAl A NG(u). Further, since 

G is r-regular NG(u) = NG(a). 

Now suppose that NG(u)\VCA) ¢ </> and let p E NG(u)\VCAL 

Since G is r-regular p is not adjacent to any vertex of 

(V(A) A NG(u» or ({v} v V(B». Since G is connected, pq E E(G) 

for some q E veAl A NG(u). Let pp', qq' E F. Now 

CF\{pp' ,qq' ,uv}) V {pq,vq/} 

is a perfect matching in G - u - pi, a contradiction. Hence 

NGCu)\V(A) = </>. We complete the proof by showing that A = </>. 

Suppose A * </> and let a
1 

E veAl A NG(u). Since a
1 

is not joined 

to v or any vertex of V(B), we have 

r = IAI + 21BI + 1 s 21AI 

and hence IAI ~ 21BI + 1 ~ 3. Let 

a a' E A. 
2 2 

matching in G - a' - a'. Since a~ a; ~ E(G), this contradicts the 
1 2 

criticality of G. Hence the vertices of NG(u) A veAl form an 
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independent set. But then d
G

(a
1

) ~ IAI + 1 < r, a contradiction. This 

proves that A = ¢ and hence G ~ K
2n 

This completes the proof of the 

theorem. o 

Since a graph G of order 2n is n-critical if and only if 

G - u - v has no perfect matching for every non-adjacent pair of 

vertices u and v, it follows that G is n-critical if and only if it is 

i-critical. Hence we have : 

Theorem 4.5: A graph G on 2n vertices is n-critical if and only 

if G ~ K or K o 
n,n 2n 

The following result gives a characterization of Cn - 1) -

critical graphs : 

Theorem 4.6: Let G be a graph on 2n ~ 4 vertices. Then G is 

(n - i)-critical if and only if G ~ K or K 
n,n 2n 

Proof: We need only prove the necessity condition as K and K 
n,n 2n 

are clearly (n 1 )-critical. So suppose that G is (n - i)-critical 

and G ~ K and K We can assume that n ~ 3 as otherwise the 
n,n 2n 

result follows from Theorem 4.4. Then n < 2(n - 1) and so, by theorems 

2.4 (b) and 4.3, o(G) = n. 

n. By Theorem 2.4 (c), NG(u) is independent. 

Consequently every vertex in NG (u) is adjacent to every vertex in 

Consider any vertex v E NG (u) . 

independent. Hence NGCu) is an independent set and therefore G ~ K 
n,n 
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This completes the proof of the theorem. 0 

We now turn our attention to (n - 2)-critical graphs. We begin 

with the following lemma. 

Lemma 4.4: If G is an (n - 2)-critical graph on 2n ~ 6 vertices, then 

o(G) > n - 1. 

Proof: Suppose to the contrary that o(G) ~ n - 1. Then, by Theorem 

2.4(b), o(G) = n - 1. If n = 3, then. by Lemma 4.3 and Theorem 2.4(b), 

G is the cycle C
6

, 

consider n ~ 4. 

But C
6 

is not 1-cri tical, and so we need only 

Consider a pair of adjacent vertices u and v with 

By Theorem 2.4(c) NG (u) is an independent set of 

vertices. Let F be a perfect matching of G containing the edge uv. 

Then there exists an edge xy in F such that x and yare in NGCu). We 

now prove that the subgraph H induced by the vertices in NG(U) contains 

only one independent edge. Suppose xy and x'y' are independent edges 

of H. Then the graph 

G' = G - {x,y,x' ,y'} 

has 2n - 4 vertices and contains NG(u) as an independent set of 

n vertices. Clearly G' cannot have a perfect matching, 

contradicting the fact that G is k-critical, k ~ 2. Hence H contains 

only one independent edge. 

Now since H contains one independent edge, ING(u) I = n ~ 4 and 

8(G) = n - 1, at least one of x or y is adjacent to a vertex of 



NG(u). Suppose xz E E(G) with Z E NGCu). If yw E E(G), w * Z E NG(u), 

then the graph Gil = G - {x, y, z, w} contains two disjoint independent 

sets of order n - 1 and n - 3 and hence cannot have a perfect matching. 

Since G is k-critical, k ::!: 2, we must have ING(y) n NG(u) I :::; 1. In 

fact, if ING(y) n NG(u)1 == 1 then yz E E(G) and so each of x,y and Z 

have degree, in G, at least n (Theorem 2.4 (c)). Consequently, y is 

joined to every vertex of NG(u) . Thus H consists of a star 

with centre y. Therefore the graph G'" G - u Y is a 

biparti te graph with bipartition (NG(u) , NG(u) - y) and o (G'll ) ::!: 

n - 2. But then, by Theorem 3. 1 , Gil' is (n 3)-extendable 

implying that G + uy is (n - 2)-extendable, a contradiction. This 

completes the proof of the lemma. o 

We now characterize (n - 2)-critical graphs on 2n vertices which 

have minimum degree n. 

Theorem 4.7: Let G be an (n - 2) -cri tical graph on 2n vertices wi th 

o(G) = n ::!: 5. Then G ~ K 
n,n 

Proof: Let dG (u) == n. The main task in proving the theorem is to 

prove that NG(u) is an independent set. Suppose that this is not so 

and that v and ware adjacent vertices of NGCu). Then by Theorem 3.2, 

the subgraph induced by the vertices of NG(u) contains only one 

independent edge. 

Let t be any vertex of NG (u) v - w (since n ::!: 5 such a t 

exists) and F a perfect matching of G containing the edges ut and vw. 

Denote the subgraph of G induced by the vertices in 
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Clearly F contains an edge, xy say, of H. We claim that H contains 

only one independent edge. For let x'y' and xy be a pair of 

independent edges in H. Then the graph G' = G - {x,y,x' ,y' ,v,w} has 

2n - 6 vertices and contains an independent set of order n - 2 and 

hence cannot contain a perfect matching. This contradicts the fact 

that G is k-extendable, k ~ 3. Hence H contains only one independent 

edge. Consequently the graph G == G - {v,w,x,y} is bipartite with 

bipartitioning sets ex, Y), wi th x Y 

(~G(u) U {u})\{x,y}. 

If (NGCx) U NG(y)) n NG(u) = {v,w}, then every vertex of ~G(u) is 

joined to x and y, as otherwise dG(x) or dG(y) is less than n. But 

then, since n 5, H contains a pair of independent edges. 

Consequently, we may assume without loss of generality that G contains 

the edge XZ, Z E NG(u) - v - w. Since n ~ 5, Y is joined to vertices 

other than v, w, x and z. Let z' be any such vertex. 

then G - Z - z' is bipartite with bipartitioning sets of order n - 2 

and n - 4 and hence does not have a perfect matching. But the subgraph 

G[v,w,x,y,Z,Z'] has 3 independent edges and these edges must extend to 

a perfect matching in G. Hence Consequently 

eu) I ~ n 

3, then vw and xz are two independent edges 

(Theorem 3. 2) . Consequently y is 

joined to every vertex of ~G(u) and ~G(u) - y is an independent set; 

otherwise, H contains a pair of independent edges. This establishes 

that ~G(u) - y is an independent set. 

We claim that NGCu) v or NGCu) w is independent. 

Suppose that this is not the case. Then tv and tw E E(G) for some 



Now consider any vertex t' E NG(uh{v,w,t,z}; t' exists 

since n ~ 5. Since G[NGCu)] contains only one independent edge, 

t l is not adjacent to any vertex in NGCu) and hence NG Ctl ) ~ 

NGCu) u {u} . From our earlier discussion we known that t ' is not 

adjacent to y. But then ING(t') I :5 n - 1, a contradiction. Thus at 

least one of NG(u) - v or NGCu) - w is independent. 

any loss of generality that NG(u) - v is independent. 

Suppose wi thout 

If vy ~ E(G), then dG(y) == nand NG(y) = {w,z} u (NG(u)~{y}), 

Since NG(u) - v is independent, v is the only vertex of NG(u) that is 

adjacent to w. Therefore w is joined to at least n 4 ~ 1 

vertices of NG(U)~{x,y}. Let Wi be such a vertex. But now ww' and xz 

are two independent edges in G[NG(y)], contradicting Theorem 3.2. 

Hence vy E E(G). 

We now show that NG(v) (\ NGCu) == {y} . Suppose that this is not 

the case and v is adjacent to the vertex v' =t. y inNGCu). Theorem 3.2 

together with the fact that uv and xy are independent edges implies 

that w is joined to a vertex, Wi say, of NGCu) that is different 

from x, y and v'. If x =t. Vi, then vv / , ww' and xz are three 

independent edges in G. Further, 

at least two of these independent edges are in 

contradicting Theorem 3.2. Hence x = v'. Now if vz E E(G), then 

applying to z the above argument used on w, we establish the existence 

of the edge zz' with z' E NG(u)~{X,y,W/}. Note that if vz ~ E(G), then 

for dG(z) ~ n there must still exist such a vertex z'. Now the edges 

vx, ww' and zz' are independent and at least two are in G[NG(y)], again 

contradicting Theorem 3.2. This establishes that NG(v) (\ NG(U) = {y}. 

* Now the graph G G - u - y is biparti te with bipartitioning 
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* sets A = NG(u) - v and B = {v} v (NG(u)\{y}). Further o(G ) ~ n - 2. 

* By Theorem 3.1, G is (n - 3)-extendable. But then G + uy is (n - 2) 

-extendable, contradicting the fact that G is (n - 2)-critical. This 

proves that NG(u) is an independent set. Consequently the neighbour 

set of every vertex of degree n is an independent set. It thus follows 

that G K n,n This completes the proof of the theorem. o 

Remark 4: When n = 4, the graphs in Figure 4.1 having 8 vertices, are 

2-critical and all non-bipartite. 

Our final result characterizes (n - 2)-critical graphs of order 

2n. 

Theorem 4.8: A graph G on 2n ~ 10 vertices is (n - 2)-critical if and 

only if G ~ K or K n,n 2n 

Proof: Again we need only consider the necessity part. Suppose G is 

an Cn - 2)-critical graph on 2n ~ 10 vertices and G ~ K and 
2n 

K n,n 
Then n < 2(n - 2) and so, by theorems 2.4(b) and 4.3, we have 

n - 1 ~ o(G) ~ n. But now, by Lemma 4.4, o(G) = n and so, by Theorem 

4.7, G ~ K . This completes the proof of the theorem. n,n 
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