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ABSTRACT:

Let G be a simple connected graph on 2n vertices with a perfect
matching. G is k-extendable if for any set M of k independent edges,
there exists a perfect matching in G containing all the edges of M. G
is critically k-extendable if G is k-extendable but G + uv is not
k-extendable for any non-adjacent pair of vertices u and v of G. The
problem that arises 1is that of characterizing k-extendable and
critically k-extendable graphs. This problem has been studied for
k-extendable graphs and a number of results have been obtained. In
particular, complete characterizations have been obtained for the case
k = 1. Critically k-extendable graphs have not been studied. In this
paper, we focus on the problem of characterizing critically
k-extendable graphs. Complete characterizations are presented

for k =1, n -2, n -1 and n.

1. INTRODUCTION

All graphs considered in this paper are finite, connected,
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loopless and have no multiple edges. For the most part our notation
and terminology follows that of Bondy and Murty [1]. Thus G is a graph
with vertex set V(G), edge set E(G) and minimum degree 8(G). For
V' < V(G), GIV’'] denotes the subgraph induced by V’. Similarly G[E‘]
denotes the subgraph induced by the edge E’ of G. NG(u) denotes the
neighbour set of u in G.

A matching M in G is a subset of E(G) in which no two edges have
a vertex in common. M is a maximum matching if |M| = |M’'| for any
other matching M’ of G. A vertex v is saturated by M if some edge of M
is incident to v; otherwise v is said to be unsaturated. A matching M
is perfect if it saturates every vertex of the graph. For simplicity we
let V(M) denote the vertex set of subgraph G[M] induced by M.

Let G be a simple connected graph on 2n vertices with a perfect
matching. G is k-extendable if for any set M of k independent edges
(two edges are independent if they do not have a common vertex), there
exists a perfect matching in G containing all the edges of M. Clearly
1 = k = n. We say that G is critically k-extendable or simply
k-critical if it is k-extendable but G + uv is not k-extendable for any
non-ad jacent pair of vertices u and v of G.

Observe that the complete graph K2n of order 2n and the complete
bipartite graph Kn,n with bipartitioning sets of order n are k-critical
for 1 = k = n. On the other hand, the cycle C2n of order 2n = 6 is
1-extendable but not 1-critical.

A number of authors have studied k-extendable graphs. An
excellent survey is the paper of Plummer [6]. The problem of
characterizing k-extendable graphs remains open for k = 3. k-critical

graphs have not been previously ‘investigated; the characterization
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problem was recently posed by Saito [7]. In this paper, we shall focus
on the problem of characterizing these graphs.

For k =1, n - 2, n - 1 and n we establish that a graph G of
order 2n is k-critical if and only if G = Kn,n or Kmf We also
characterize 2-critical graphs; for this case there exist graphs which
are not complete or bipartite. We present a number of properties of
k~critical graphs, including an upper bound on the minimum degree.

Section 2 contains some preliminary results that we make use of

in our work. In Section 3 we prove two new properties of k-extendable

that we use in establishing our main results in Section 4.

2. PRELIMINARIES

In this section, we state a number of results on k-extendable
graphs which we make use of in establishing our main results. We state
only results which we use; for a more detailed account we refer to the
paper of Plummer [6].

We begin with an important result of Berge (see [3] p. 90). Let
M be a maximum matching in a graph G. The deficiency def(G) of G is
defined as the number of M-unsaturated vertices of G. Denoting the
number of odd components in a graph H by o(H) we can now state Berge’s

Formula :

Theorem 2.1: For any graph G

def (G) = max{o(G - X) - |[X] : X € V(G)} . o

As noted in the introduction l-extendable graphs have been

characterized by Grant et al [2]. The result is
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Theorem 2.2: A graph G of even order is l-extendable if and only if

(1) o(G - S) = [8] for all S c V(G) ,
and
(ii) o(G - 8) = |S| only if S 1is an independent set of
vertices in G. [a}
Before stating a necessary condition for 2-extendable graphs we
need the following definitions. A graph G is Dbicritical if

G - u - v has a perfect matching for every pair of vertices u and v. A
graph G is elementary if the graph G’ induced by the edges
E’ = {e : e € E(G) and e is in some perfect matching in G}

is connected. Plummer [4] proved the following three results.

Theorem 2.3: Let G be a 2-extendable graph with 2n = 6 vertices. Then

G is either bicritical or elementary bipartite. o

Theorem 2.4: Let G be a k-extendable graph on 2n vertices,

1 s=k=n-1. Then

(a) G is (k - 1)-extendable;
(b) G is (k + 1)-connected;
(c) if dG(u) =k + 1, then NG(u) is independent. o

Theorem 2.5: Let G be a graph on 2n vertices and 1 =k =n - 1. If

8(G) =z n + k, then G is k~extendable. a}

For bipartite graphs, Plummer [5] proved :
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Theorem 2.6: Let G be a k-extendable bipartite graph on 2n vertices ,
1 =k =n -1, such that G + e is bipartite for some e ¢ E(G). Then

G + e is also k-extendable. s]

A consequence of Theorem 2.6 is the following Corollary :

Corollary: Let G Dbe a k-extendable bipartite graph on 2n vertices,
1 =k =n-1. Then G is k-critical if and only if G is Kn,n' 8]
3. EXTENDABLE GRAPHS

In addition to the results mentioned in Section 2 we need, in our
study of critically extendable graphs, two further results. In this
section we present these results. Our first result concerns bipartite
graphs.

We have noted that Kn,n is k-extendable for all 1 = k = n. Since
an r-regular {(connected) bipartite graph has a 1-factorization it is
l-extendable for all r. However, it need not be k-extendable, k = 2.
For example, for n = 2r it is easy to construct an r-regular bipartite

graph on 2n vertices having connectivity 2; an example is given in

Figure 3.1, where H and H’ are r-regular bipartite graphs on n

u u'
8 5 eo & ® LY @
1 )
1 1
1 i
i 1
ol 1
1 1
\% v'
H-uv H-u'v
Figure 3.1.




vertices containing the edges uv and wu’v’, respectively. For
bipartite graphs having a prescribed minimum degree we have the

following result.

Theorem 3.1: Let G be a Dbipartite graph on 2n vertices with

8(G) = n -~ 1. Then G is k-extendable for 1 <=k =n - 2.

Proof: In view of Theorem 2.4 (a), it is sufficient to prove that G is
(n - 2)-extendable. Let (U,W) be the bipartition of G and let M be
matching of size (n - 2) in G. Consider G’ = G - V(M). G’ is a
bipartite graph consisting of four vertices and 8(G’) = 1. If &(G') =
2, then G’ = 1(2’2 and hence has a perfect matching. If on the other
hand, 8(G’) = 1, then G’ is either l-regular or a path of length 3.

In either case it has a perfect matching. Consequently G

is (n - 2)-extendable as required. o

As a Corollary we have :

Corollary: An (n - 1)-regular bipartite graph on 2n vertices is

k—-extendable for 1 s k s n - 2. [a]

We remark that an (n - 2)-regular bipartite graph on 2n vertices
need not be (n - 3)-extendable as the following graph demonstrates.
Start with an (n - 5)-regular bipartite graph on 2(n ~ 3) vertices
with bipartitioning sets X and Y. Select non-adjacent vertices x e X
and v € Y and join them. Add 6 new vertices, ul,uz,u Aq,vz, and Vi

3

Join u  and u (v1 and v2) to every vertex of X (Y). Join u, ( v3) to
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ul,u2 and to every vertex of Y -y (V1’V2 and to every vertex of
X - x). Call the resultant graph G. For n = 6, G has a matching M of
size n - 3 that saturates only the vertices of X v Y. Now G - V(M)
consists of 2 odd components and consequently G is not (n - 3)
-extendable.

In the proofs that follow we make frequent use of the following
fact. If G is k-extendable, then for any vertex u, G - u cannot
contain a matching of size at ﬁost k that saturates NG(u).

Our next result is a generalization of Theorem 2.4 (c).

Theorem 3.2: Let‘ G be a k-extendable graph on 2n vertices with
8(G) =k +t, 1 =t=k=n-1.If dG(u) = 8(G), then the subgraph

G[NG(u)] has at most t - 1 independent edges.

Proof: Suppose that dG(u) = §(G) and G[NG(u)} has a maximum matching
M of size s = t. Since G 1is k-extendable we must have s = k - 1.
Let v be an M-unsaturated vertex of NG(U)‘ Then M1 =M u {uv} is a
matching of size s + 1 = k in G. So M1 can be extended to a perfect
matching F of G. Let

F
1

{xy e F : x € NG(u) -v, vy é NG(u]} ,

A

It

V(Fl)\NG(u) , and B = V(G) - u - NG(u) - A.

Figure 3.2 depicts the situation with the edges of M v F1 drawn in
solid lines. Then
|A| =k +t -2s-1=k, and hence

|B]

2n - 2k - 2t + 2s = 2.
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Figure 3.2.

If v is adjacent to a vertex b of B, then M2 =Muvu F1 v {vb} is a

matching in G of size s + (k + t - 25 - 1) + 1 =k + t -~ g =< k. But

then u is an isolated vertex in G V(MZ) contradicting the fact that G

is k-extendable. Hence NG(V) nB=¢. Now for dG(v) =z k + t the only

possibility is for v to be adjacent to every vertex of V(M) U A in
which case dG(V) =k + t.

If no vertex of B is adjacent to any vertex of NG(u), then
G - A is disconnected and hence G is at most |A|-connected. Since
|A] = k this contradicts Theorem 2.4(b). Let xy € E(G) with x € B and
y € NG(u). Since y # v, y € V(M) v V(F1)' Let yz € F. Then 1z is in
V(M) or A and so is adjacent to v. Consequently the path x, y, z, v is

an F-augmenting path in G with xy and zv not in F. But then

M3 = Mvu F1 v {xy, zvi\{yz}
is a matching of size k + t - s = k that saturates the vertices of
NG(u), implying that G is not k-extendable. This contradiction

completes the proof of the theoren. s}
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As a Corollary we have :

Corollary: Let G be a k-extendable, (k + t)-regular graph on 2n

vertices, 1 =t s k =n - L. Then G[NG(u)] contains at most t - 1
independent edges for every u in G. o
4. CRITICAL GRAPHS

Recall that a k-critical graph is one that is k-extendable, but
G + uv is not k-extendable for any non-ad jacent pair of vertices u and
v of G. Our first result provides a sufficient condition for a regular

graph of diameter 2 to be k-critical.

Theorem 4.1: Let G be a k-extendable, (k + t)-regular graph, 1 =t =k
<n - 1, on 2n vertices hdving diameter 2. Let w be any vertex of G and
u and v any pair of non-adjacent vertices of NG(w). If G[NG(w) - u - vl

has exactly t - 1 independent edges, then G is k-critical.

Proof: Let M be a matching of size t -1 in G[NG(w) - u - vl].
Then M1 = M u {uw} is a matching of size t = k in G and so can be
extended to a perfect matching F of G. Let

F1 = {xy e F: x € NG(w) -u-v,yé€ NG(w)}

Since, by Theorem 3.2, G[NG(w)] has at most t — 1 independent edges,

[Fll = k - t. But then M2 =Mu F1 v {uv} is a matching in G + uv of
size k and G + uv - V(Mz) has w as an isolated vertex. Hence G is
k-critical, proving the theorem. [a]

u7



We remark that the graph G(2k,2k) obtained by Jjoining two
disjoint sz‘s by a perfect matching satisfies the conditions in
Theorem 4.1. Hence as G(2k,2k) is k-extendable it is also k-critical.

Our next result provides a sufficient condition for any
k-extendable graph to be k-critical. We make use of the following

terminology. We call a subset S of V(G) dependent if G[S] has at least

one edge.

Theorem 4.2: Let G = K2n be a k-extendable graph on 2n
vertices, 2 = k = n-1. If for any pair of non-adjacent vertices u
and v of G there exists a dependent set S of G -u-v such

that o(G - (S v {u,v})) = |S|, then G is k-critical. Moreover, the

converse is true for a non-bipartite G and k = 2.

Proof: Let u and v be any two non-adjacent vertices of G satisfying
the hypothesis of the theorem. Then G' = G - u - v contains a

dependent set S such that

[S] = 0(G ~ (S v {u,v}))

o(G’ - S)
Hence, by Theorem 2.2, G’ is not l-extendable. Consequently, G’ is not
(k - 1)-extendable and thus G is k-critical.

Suppose that G is a 2-critical non-bipartite graph. Consider the
graph G = G - x - y, where x and y are any two non-adjacent vertices
of G. G’ has a perfect matching by Theorem 2.3 but is not
l1-extendable. Hence, by Theorem 2.2, there exists a dependent set S
such that o(G’ - S) = [S|. Therefore o(G - (S v {x,y})) = [S|, as

required. This completes the proof of the theorem. o
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In view of Theorem 2.6 we have the following corollary.

Corollary: Let G be a 2-extendable graph on 2n = 6 vertices. G is
2-critical if and only if G is Kzn or Kn,n or for any pair of
non~ad jacent vertices u and v of G there exists a dependent set S of
G -u-v such that o(G - (S v {u,v})) = |S]. a

Remark 1: There exists 2-critical non-bipartite graphs which are not

complete. For example, the graphs drawn in Figure 4.1.

Figure 4.1.

Remark 2: None of the graphs in Figure 4.1 are l-critical since, in
each case, the deletion of any pair of non-adjacent vertices results in

a graph having a perfect matching. Thus a k-critical graph need not be

(k - 1)-critical.
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Theorem 2.4(b) implies that a k-extendable graph G has minimum
degree at least k + 1. Our next task is to establish an upper bound on
the minimum degree of a k-critical graph. We start with the following

lemma.

Lemma 4.1: Let G = K2n be a k-critical graph on 2n
vertices, 1 =k =n - 1, and u and v any pair of non-adjacent vertices

of G. Let M be a matching of size k - 1 in G - u - v. Then the graph

G’ =G - u =~ v - V(M) has a matching of size at least n - k - 1.

Proof: Suppose G’ has a maximum matching M’ of size at most

n - k - 2. Then

def (G') = |V(G')| ~ 2|M’|

2(n - k) - 2|M |

v

4

By Theorem 2.1, there exists a subset S’ of V(G’) such that

1l

o(G" - 8") ~ | def G’ = 4

Put S = 8 v {u,v} and G1 =G - V(M). Then

o(G - 8) - [8] =0(G -58) - |s']| -2=2.
Then def(Gl) =z 2, implying that G 1is not k-extendable. This
contradiction completes the proof of the Lemma. u]

Lemma 4.2: Let G Dbe a connected graph on 2n  vertices with
8(G) = n - 1 having a maximum matching M of size n - 1. Then for
M-unsaturated vertices u and v of G NG(u) = NG(V). Furthermore, no
two vertices of NG(u) are joined by an edge of M, and the vertices of

V{(G) - NG(u) form an independent set.
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Proof: Let M= {xiy.l : 11 =n-1}. Observe that if X,u € E(G)
then y;v ¢ E(G). Let

M = (Xiyi e M : ux,, uy; € EG)} ,

M = (xiy:.L e M : VX, VY, € E(G)} , and

M =M\(M uM)
1 2

From our earlier observation it follows that M1 n M2 = @. By
definition, if Xy, € M3 then u and v can each be joined to at most one

of xi and Yy Consequently

2n = 1) =d.(u) +dolv) = 2([M uM U M|
= 2|M|
=2(n - 1) ,
and hence each of u and v must be joined to exactly one end of each
edge in M3. In fact, NG(U) n V(M3) = NG(V) n V(M3)

If M3 = ¢ then, since G is connected, we have an M-augmenting
path between u and v, contradicting the maximality of M. Hence M3 = ¢,
We next establish that M1 = ¢.

Suppose M1 # ¢. Let X and Y respectively denote the vertices of

V(M3) ad jacent and non-adjacent to u. If ab € E(G) with a e Y and

Figure 4.2.
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b ¢ X, then G contains an M-augmenting u,v path, contradicting the
maximality of M. Hence Y is an independent set of vertices in G and
no vertex of Y is Jjoined to any vertex of V(M1) V] V(MZL
Consequently for w € Y we have dG(w) = |X| = n - 2, a contradiction.

Therefore M1 = ¢ and similarly M2 = ¢. This proves the lemma. a]

Theorem 4.3: If G = K2n is k-critical on 2n vertices, 1 =k =n -1,

then

n , n < 2k
5(G) = (4.1)
n+ 2| K%E , n =z 2k .

Proof: Let u and v be any pair of non-adjacent vertices of G and
M a matching of size k-1 in G - u - v. Consider the graph G’ =
G ~-u-v - V(M. Since G is k-critical G’ has no perfect matching.
Further, the subgraph G[V(M) u {u,v}] has a maximum matching of size at
most k-1, for otherwise G 1s not k-extendable. We distinguish two

cases according to the value of k.

Case 1: n < 2k.

Suppose that 8(G) =z n + 1. Let M’ be a maximum matching in the

graph G’ defined above. By Lemma 4.1, |[M’| = n - k - 1 (note that
v(G') = 2n - 2k). Let x and y be M’ -unsaturated vertices of G’.
Clearly x and y are not adjacent. Since 8(G) =z n + 1 and M’ 1is a

maximum matching in G’, there must be an edge e of M such that x and vy
are ad jacent to different end vertices of e, say a and b,

respectively. Then M’ u {xa,yb} 1is a matching of sizen - k + 1 = k.
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But
G - (VM) v {x,a,y,b}) = GI(V(M) - {a,b}) v {u,v}]
has a matching of size at most k - 2. This contradiction proves that

8(G) = n for n < 2k.

Case 2: n = 2k.

Suppose that 8(G) =z n + k. Let Go =G -u-v. Then

i

VG )| =2 - 1)
and
8(G0) z38(G) -2z (n-1)+ (k- 1).
By Theorem 2.5, G0 is (k - 1)-extendable contradicting the fact that G
is k-critical. Hence 8(G) =n + k - 1. Thus we need only consider the
case k even. For this case we will prove that 8(G) = n + k - 2.
Suppose that 8(G) = n + k = 1. Now by the choice of G’,
8(G’) 2 38(G) -2k =n - k - 1.
We now prove that G’ is connected. Suppose that G’ is disconnected.

Then G’ contains exactly two components as

v(G') = 2(n - k) = 2(8(G") + 1).

’

In fact, G’ consists of two disjoint Kn~k

s. Since G’ has no perfect
matching, n - k and hence n must be odd.
Since 8(G) = n + k - 1, every vertex of G’ must be adjacent, in
G, to every vertex of V(M) u {u,v}. Let x and y be any two
non-ad jacent vertices of G’. Now consider the graph G =G + xy. We
will establish that G’ is connected by showing that G is k-extendable.
Suppose G is not k-extendable. Then since G is k-extendable,

there exists a set M of k independent edges, with xy e ﬂ, that does not

extend to a perfect matching in ¢. If ab e M and a, b ¢ V(G'),



~

then M’/ =‘(ﬁ\{xy,ab}) v {xa,yb} is a matching in G of size k
with V(M) = V(ﬂ'j. But then G cannot be k—extendable, a
oontradictiop. We get 'a similar contradiction when ab € M with
a € V(G’) and b ¢ V(G’). We conclude therefore that V(M’) € V(G'). If
V(M) = V(G") then the graph G” =G - V(M) - V(M) consists of
K2 v (sz v qu) for some p and . Note that V(Kz) = {u,v}. But G” has
a perfect matching implying that fi is k-extendable. Hence V(M) = V(G')
and so n - k = k implying that n is even, a contradiction. Therefore
G is k-extendable, contradicting the criticality of G. 'Hence G’ is
connected.

Now Lemma 4.1 together with the fact that G’ h;; no perfect
matching implies that G’ has a maximum matching M’ of size n - k - 1.
Let u’ and v/ be the two M’ -unsaturated vertices of G’. By Lemma 4.2

N., (u) = NG,(V'). Let N, (u’) = (X1’X R

G’ G 5 ""Xn"k—l}' Lemma 4.2

implies that no two xi’s are Jjoined by an edge of M’ and the set
V(G’) - NG,(u’) is an independent set of vertices. Since &8(G) =
n+k-1 and GIVM) u {u,v}] has a maximum matching of size at most
k - 1, at least one of u or v, say u, is joined to a vertex, w say, of

N., (u’). (See Figure 4.3).

G/
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Consider the matching M” = M v (uw).v The subgraph G”/ = G - V(M")
contains a set S = {v}'u (NG,(u’)\{w}) such that o(G”’ - S) > |S].
Hence G”’ does not confain a perfect matching and so G 1is not
k-extendable, a contradiction. This completes the proof of the

theorem. s}

Remark 3: For n < 2k the graph Kn,n achieves the bound (4.1). For
n = 2k the graphs H1 and H2 drawn in Figure 4.4 achieve the bound given
in (4.1) for k odd and even, respectively. Note that in ou} diagrams a
"double line" denotes the join. That H1 and H2 are k-critical 1is

easily established. - For example, in the case of H1 if

Ht’k odd H,., keven

Figure 4.4.

uv ¢ E(H1)’ then u and v are in diagonally opposite Kk's and so for
odd k it is easy to find a matching M of size k, with uv € M, such
that H - V(M) consists of two odd components.

Our next lemma establishes that 1-critical graphs are regular.
Observe that a graph G is 1l-critical if and only if G -~ u - v has no

perfect matching for every pair of non-adjacent vertices u and v.
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Lemma 4.3: If G is a 1-critical graph on 2n vertices, then G is

regular.

Proof: Suppose to the contrary that G is not regular. Let
8(G) = r. Since G is connected there exists ad jacent vertices u and v
with dG(u) = r and dG(v) >r.

Let F be a perfect matching in G containing edge uv. Let

A

it

{xy € F|x € NG(u) -V, VY # NG(u))

B

{xy € F|x,y e NG(u)}

If v is adjacent to x € NG(u) - vand Xy € A, then G - u - y has a
perfect matching, namely (F\{uv,xy}) u {vx}. But this contradicts the
fact that G is 1-critical. Hence v is not adjacent to any vertex of
NG(u) n V(A). Consequently, since |A| + 2|B| =r - 1, v is joined to a
vertex, w say, different from u that does not belong to V(A) u V(B).
Let wz be the edge of G that is in F. The choice of w implies that wz
€ A v B. Now (F\{uv,wz}) v {vw} is a perfect matching in G - u - z,

contradicting the criticality of G. This proves the lemma. o

In the remainder of this paper, we make frequent use of the

following notation. For u € V(G), we write ﬁG(u) = V(G)\(NG(u) v {u}).

The following theorem provides a characterization of 1-critical

graphs.

Theorem 4.4: A graph G on 2n vertices is l-critical if and

only if G 2 K or K
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Proof: The sufficiency is obvious as Kn n

and Kzn are k-critical for
1 =k =n. So we need to prove the necessity.

Let G be 1-critical. Then, by Lemma 4.3, G is r-regular for some
rz2. Take u, v, F, A and B as in the proof of Lemma 4.3. Then
r - |[A| + 2|B| + 1 and v is not adjacent to any vertex of N.(u) n V(A).
We now prove that G = Kn,n when B = ¢.

Suppose B = ¢. If vw € E(G), withw e ﬁG(u)\V(A), then

F' = (F\{uv,ww’}) v {vww} ,
where ww’ € F, is a perfect matching in G - u - w’. But then G is
not 1-critical. Hence v is not adjacent to any vertex of ﬁG(u)\V(A).
Now since v has degree r it must be joined to every vertex of
V(A) n ﬁG(u). Let x be any vertex of NG(u) - v. Suppose that xy € E(G)
withy 2#uand y ¢ ﬁG(u) n V(A). Let xx’ and yy’ belong to F. Then v
is adjacent to at least one of x’ or y’, say x’. Since B = ¢, uis not
adjacent to y’. Now

(F\{uv,xx’,yy’ }) v {vx’,xy}
is a perfect matching in G - u - y’, contradicting the criticality of
G. Hence NG(u) is an independent set, each vertex of which is
ad jacent to every vertex of ﬁG[u) n V(A). Consequently,

ﬁG(u)\V(A) = ¢. Hence r and G 2 K

n,n’

I
=]

R

We next prove that G Kzn when B # ¢. Suppose B # ¢. Consider
the edge bb’ € B. If vb ¢ E(G), then (F\{uv,bb’}) u {ub’} is a perfect
matching in G - v - b, contradicting the criticality of G. Hence V(B)
< NG(V)‘ A similar argument establishes that any two vertices of V(B)

are adjacent. Therefore the vertices u,v and V(B) form a complete

subgraph in G. Now let aa’ € A with a ¢ NG(u). If va ¢ E(G), then
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(F\{uv,aa’}) v {ua’} is a perfect matching in G - v - a, contradicting
the criticality of G. Hence v is joined to every vertex of
V(A) n NG(u). Consider any edge bb’ e B. If ab ¢ E(G), then
(F\{aa‘’,bb’,uv}) v {ua’,vb’} is a perfect matching in G - a - b, a
contradiction. Consequently each vertex of ﬁG(u) n V(A) is adjacent to
every vertex of v v V(B).
Suppose s,t are non-adjacent vertices with s € V(A) n NG(u) and
t € V(A) n N (u). Let tt’, ss’ € A. Now
(F\{ss’,tt’,uv}) v {ut’,vs’}
is a perfect matching in G - s - t, a contradiction. Hence each vertex
of V(A) n ﬁG(u) is adjacent to every vertex of V(A) n NG(u).
Consequently NG(u) [« NG(a) for every a € V(A) n NG(U). Further, since
G is r-regular NG(u) = NG(a).
Now suppose that NG(u)\V(A) # ¢ and let p € ﬁG(u)\V(AL
Since G is r-regular p is not adjacent to any vertex of
(V(A) n ﬁG(u)) or ({v} v V(B)). Since G 1is connected, pq € E(G)
for some q € V(A) n NG(u). Let pp’, aqq’ € F. Now
(F\{pp’,qq’,uv}} v {pq,vq’}
is a perfect matching in G - u - p’, a contradiction. Hence
ﬁG(u)\V(A) = ¢. We complete the proof by showing that A = ¢.
Suppose A ¢V¢ and let a € V(A) n NG(u). Since a, is not joined
to v or any vertex of V(B), we have
r = |A| +2|B] + 1 = 2|A|
and hence |A| = 2[B| + 1 2 3. Let a € V(A) n NG(u) and a_a’

11’

’ ’ ’ 3
aal € A. If aa, € E(G), then (F\(aial,azaz}) V] {adaz} is a perfect

matching in G - a; - a;. Since a;a; ¢ E(G), this contradicts the

criticality of G. Hence the vertices of NG(u) n V(A) form an
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independent set. But then dG(a1) = |A| + 1 < r, a contradiction. This

R

proves that A = ¢ and hence G K . This completes the proof of the

2n

theorem. o

Since a graph G of order 2n is n-critical if and only if
G - u - v has no perfect matching for every non-adjacent pair of
vertices u and v, it follows that G is n-critical if and only if it is

1-critical. Hence we have :

Theorem 4.5: A graph G on 2n vertices is n-critical if and only

if G 2K or K_ . ‘ ]
n,n 2n

The following result gives a characterization of (n - 1) -

critical graphs :

Theorem 4.6: Let G be a graph on 2n = 4 vertices. Then G is
(n - 1)-critical if and only if G & K or K
n,n 2n

Proof: We need only prove the necessity condition as Kn,n and Kzn
are clearly (n - 1)-critical. So suppose that G is (n - 1)-critical
and G # Kn,n and Kzn' We can assume that n =z 3 as otherwise the
result follows from Theorem 4.4. Then n < 2(n - 1) and so, by theorems
2.4 (b) and 4.3, 8(G) = n.

Let dG(uJ = n. By Theorem 2.4 (c), NG(U) is independent.
Consequently every vertex in NG(u) is adjacent to every vertex in

NG(u). Consider any vertex v € NG(U)‘ dG(v) = n and so NG(V) is

independent. Hence ﬁG(u) is an independent set and therefore G = Kn 0
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This completes the proof of the theorem. o

We now turn our attention to (n - 2)~critical graphs. We begin

with the following lemma.

Lemma 4.4: If G is an (n - 2)-critical graph on 2n = 6 vertices, then

8(G) >n - 1.

Proof: Suppose to the contrary that &(G) = n - 1. Then, by Theorem
2.4(b), 8(G) =n - 1. If n= 3, then, by Lemma 4.3 and Theorem 2.4(b),
G is the cycle Cs“ But C6 is not 1-critical, and so we need only
consider n = 4.

Consider a pair of adjacent vertices u and v with
dG(u) =n - 1. By Theorem 2.4(c) NG(u) is an independent set of
vertices. Let F be a perfect matching of G containing the edge uv.
Then there exists an edge xy in F such that x and y are in NG(u). We
now prove that the subgraph H induced by the vertices in ﬁG(u) contains
only one independent edge. Suppose xy and x’y’ are independent edges
of H. Then the graph

G’ =G - {x,y,x",y’}
has 2n - 4 vertices and contains NG(u) as an independent set of
n - 1 wvertices. Clearly G’ cannot have a perfect matching,
contradicting the fact that G is k-critical, k = 2. Hence H contains
only one independent edge.

Now since H contains one independent edge, lﬁG(u)| =n = 4 and

8(G) = n -1, at least one of x or y is adjacent to a vertex of
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NG(u). Suppose xz € E(G) with z € NG(u). If yw e E(G), w # z € NG(u),
then the graph G” = G - {x,y,z,w} contains two disjoint independent
sets of order n — 1 and n - 3 and hence cannot have a perfect matching.

Since G is k-critical, k = 2, we must have |NG(y) n NG(u)I = 1. In

fact, if ]NG(y) n NG(u)I 1 then yz € E(G) and so each of x,y and z
have degree, in G, at least n (Theorem 2.4 (c)). Consequently, y 1is
joined to every vertex of ﬁG(u). Thus H consists of a star
with centre y. Therefore the graph G” =G - u -y is a
bipartite graph with bipartition (NG(u), ﬁG(u) - y) and 3(G"") =
n - 2. But then, by Theorem 3.1, G"’ is (n - 3)-extendable

implying that G + uy is (n - 2)-extendable, a contradiction. This

completes the proof of the lemma. o

We now characterize (n - 2)-critical graphs on 2n vertices which

have minimum degree n.

Theorem 4.7: Let G be an (n - 2)-critical graph on 2n vertices with
3(G) =n=5. Then G = Kn,n'
Proof: Let dG(u) = n. The main task in proving the theorem is to
prove that NG(u) is an independent set. Suppose that this is not so
and that v and w are adjacent vertices of NG(u). Then by Theorem 3.2,
the subgraph induced by the vertices of NG(u) contains only one
independent edge.

Let t be any vertex of NG(U) - v - w (since n = 5 such a t
exists) and F a perfect matching of G containing the edges ut and vw.

Denote the subgraph of G induced by the vertices in NG(u) by H.
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Clearly F contains an edge, xy say, of H. We claim that H contains
only one independent edge. For let x’y’ and xy be a pair of
independent edges in H. Then the graph G’ = G - {x,y,x’,y’,v,w} has
2n - 6 vertices and contains an independent set of order n - 2 and
hence cannot contain a perfect matching. This contradicts the fact
that G is k-extendable, k = 3. Hence H contains only one independent
edge. Consequently the graph G = G - {v,w,x,y} is bipartite with
bipartitioning sets (X,Y), with X = NG[u)\{v,w} and Y =
(Ng(w) U {ub\{x,y}.

If (NG(x) V] NG(y)) n NG(u) = {v,w}, then every vertex of ﬁG(u) is
Jjoined to x and y, as otherwise dG(x) or dG(y) is less than n. But
then, since n = 5, H contains a pair of independent édges.
Consequently, we may assume without loss of generality that G contains
the edge xz, z € NG(u) - Vv -wW. Sincen =5, y is joined to vertices
other than v, w, x and z. Let z’ be any such vertex. If z' ¢ ﬁG(u),
then G ~ z - z’ is bipartite with bipartitioning sets of order n - 2
and n - 4 and hence does not have a perfect matching. But the subgraph
Glv,w,x,y,2,2z’] has 3 independent edges and these edges must extend to
a perfect matching in G. Hence z' e ﬁG(u). Consequently
|NG(y) n ﬁG(u){ = n - 3, and \NG(y) n NG(u)I = 3.

if ]NG(y) n NG(u)| = 3, then vw and xz are two independent edges
in G[NG(y)] and so dG(y) z n + 1 (Theorem 3.2). Consequently y is
joined to every vertex of NG(u) and ﬁG(u) - y is an independent set;
otherwise, H contains a pair of independent edges. This establishes
that ﬁG(u) - y is an independent set.

We claim that NG(u) - v or NG(u) - W is independent.

Suppose that this is not the case. Then tv and tw € E(G) for some
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t e NG(u). Now consider any vertex t’ e NG(u)\{v,w,t,z}; t’ exists
since n = 5. Since G[NG(u)] contains only one independent edge,
t’ is not adjacent to any vertex in NG(u) and hence NG(t’) <
ﬁG(u) v {u}. From our earlier discussion we known that t’ is not
ad jacent to y. But then [NG(t’)] <= n - 1, a contradiction. Thus at
least one of NG(u) - v or NG(u) - w is independent. Suppose without
any loss of generality that NG(u) - v is independent.

If vy ¢ E(G), then dG(y) =n and NG(y) = {w,z} v (ﬁG(u)\{y}).
Since NG(u) - v is independent, v is the only vertex of NG(u) that is
adjacent to w. Therefore W is Jjoined to at least n - 4 =z 1
vertices of ﬁG(u)\(x,yj. Let w’ be such a vertex. But now ww’ and xz
are two independent edges in G[NG(y)], contradicting Theorem 3.2.
Hence vy € E(G).

We now show that NG(V) N ﬁG(u) = {y}. Suppose that this is not
the case and v is adjacent to the vertex v’ # y in ﬁG(u). Theorem 3.2
together with the fact that uv and xy are independent edges implies

that w is joined to a vertex, w’ say, of NG(u) that is different

from x, y and v’. If x # v/, then vv’, ww' and xz are three
independent edges in G. Further, since NG(y) < ﬁG(u) v {v,w,z}
at least two of these independent edges are in G[NG(y)]

contradicting Theorem 3.2. Hence x = v’.

Now if vz € E(G), then
applying to z the above argument used on w, we establish the existence
of the edge zz’ with z’ e ﬁG(u)\{x,y,w’}, Note that if vz ¢ E(G), then
for dG(z) =z n there must still exist such a vertex z’. Now the edges
vx, ww’' and zz’ are independent and at least two are in G[NG(y)], again

contradicting Theorem 3.2. This establishes that NG(V) n NG(u) = {y}.

¥*
Now the graph G = G - u - y is bipartite with bipartitioning

63



sets A = NG(u) - vand B = {v} v (ﬁG(u)\{y}). Further 6(G*) = n - 2.
By Theorem 3.1, G* is (n - 3)-extendable. But then G + uy is (n - 2)
-extendable, contradicting the fact that G is (n - 2)-critical. This
proves that NG(u) is an independent set. Consequently the neighbour
set of every vertex of degree n is an independent set. It thus follows
that G = Kn,n‘ This completes the proof of the theorem. o
Remark 4: When n = 4, the graphs in Figure 4.1 having 8 vertices, are
2-critical and all non-bipartite.

Our final result characterizes (n - 2)-critical graphs of order

2n.

Theorem 4.8: A graph G on 2n z 10 vertices is (n - 2)-critical if and
only if G =& Kn,n or Kzn'

Proof: Again we need only consider the necessity part. Suppose G is
an (n - 2)-critical graph on 2n = 10 vertices and G K2n and
Kn,n' Then n < 2(n - 2) and so, by theorems 2.4(b) and 4.3, we have

n -1 =23(G) =n. But now, by Lemma 4.4, 3(G) = n and so, by Theorem

4.7, G 2K . This completes the proof of the theorem. o
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