Constructing Hadamard matrices from orthogonal designs

Christos Koukouvinos
Department of Mathematics
University of Athens
Panepistemiopolis
Athens 15784
Greece

Jennifer Seberry*
Department of Computer Science
and
University of Wollongong
Wollongong
NSW 2500
Australia

Abstract

The Hadamard conjecture is that Hadamard matrices exist for all orders $1,2,4 t$ where $t \geq 1$ is an integer. We have obtained the following results which strongly support the conjecture: (i) Given any natural number q, there exists an Hadamard matrix of order $2^{s} q$ for every $s \geq\left[2 \log _{2}(q-3)\right]$. (ii) Given any natural number q, there exists a regular symmetric Hadamard matrix with constant diagonal of order $2^{2 s} q^{2}$ for s as before.

A significant step towards proving the Hadamard conjecture would be proving "Given any natural number q and constant c_{0} there exists a Hadamard matrix of order $2^{c} q$ for some $c<c_{0}$."

We make steps toward proving the Hadamard conjecture by showing that "If there is an $O D\left(4 p ; s_{1}, s_{2}, s_{3}, s_{4}\right)$ and a set of T-matrices of order t there is an $O D\left(16 p^{2} t ; 4 p t s_{1}\right.$, $\left.4 p t s_{2}, 4 p t s_{3}, 4 p t s_{4}\right)$. In particular, if there is an $O D(4 p ; p, p, p, p)$ and a set of T-matrices of order t there is an $O D\left(16 p^{2} t ; 4 p^{2} t, 4 p^{2} t, 4 p^{2} t, 4 p^{2} t\right)$. Further, if there are Williamson matrices of order w there is a Hadamard matrix of $16 p^{2} t w$."

Currently the aforementioned matrices are known for $p, t \in\{$ orders of Hadamard matrices, orders of conference matrices, $1+2^{a} 10^{b} 26^{c}, a, b, c$ non-negative integers, $1,3, \ldots, 71,75,77,81,85,87,91,93,95,99\}$ or for all orders of $t \leq 100$ except possibly $t \in$ $\{73,79,83,89,97\}$ plus other orders, and w for a number of infinite families. New Tsequences for lengths $35,61,71,183$ and 671 are given.

This paper gives 36 new orders $<40,000$ for which Hadamard matrices exist. The current paper lends support to the belief that $c \leq 5$.

1 Introduction

Let $H=\left(h_{i j}\right)$ be a matrix of order h with $h_{i j} \in(1,-1) . H$ is called an Hadamard matrix of order h, if $H H^{T}=H^{T} H=h I_{h}$, where I_{h} denotes the identity matrix of order h.

An orthogonal design A, of order n, and type $\left(s_{1}, s_{2}, \ldots, s_{u}\right)$, denoted $O D\left(n ; s_{1}, s_{2}, \ldots, s_{u}\right)$ on the commuting variables $\left(\pm x_{1}, \pm x_{2}, \ldots, \pm x_{u}, 0\right)$ is a square matrix of order n with entries $\pm x_{k}$ where each x_{k} occurs s_{k} times in each row and column such that the distinct rows are pairwise orthogonal.

[^0]Australasian Journal of Combinatorics 6(1992). pp.267-278

In other words

$$
A A^{T}=\left(s_{1} x_{1}^{2}+\ldots+s_{u} x_{u}^{2}\right) I_{n}
$$

It is known that the maximum number of variables in an orthogonal design is $\rho(n)$, the Radon number, where for $n=2^{a} b, \mathrm{~b}$ odd, set $a=4 c+d, 0 \leq d<4$, then $\rho(n)=8 c+2^{d}$.
$O D(4 t ; t, t, t, t)$, otherwise called Baumert-Hall arrays, and $O D\left(2^{s} ; a, b, 2^{s}-a-b\right)$ have been extensively used to construct Hadamard matrices and weighing matrices. For details see Geramita and Seberry [8].

Cooper and J.S.Wallis (=Seberry) first defined T-matrices of order to construct $O D(4 t$; t, t, t, t) (which at that time they called Hadamard arrays). Four circulant (type 1) matrices $T_{1}, T_{2}, T_{3}, T_{4}$ of order t which have entries $0,+1$ or -1 and which are non-zero for each of the t^{2} entries for exactly one i, i.e.

$$
T_{i} * T_{j}=0 \text { for } i \neq j
$$

where * is the Hadamard (or element by element) product, and which satisfy

$$
\sum_{i=1}^{4} T_{i} T_{i}^{T}=t I_{t}
$$

are called T-matrices of order t.
We know that if the row sum (and column sum) of a T-matrix, T_{i}, of order t is x_{i} then

$$
\sum_{i=1}^{4} x_{i}^{2}=t
$$

Notation. We use $T=\left(t_{i j}\right)$ given by $t_{i j}=1$ for $j-i=1$ and 0 otherwise for the shift matrix.

Further, we have the following important theorem.
Theorem 1 (Cooper-Seberry-Turyn). Suppose there exist T-matrices $T_{1}, T_{2}, T_{3}, T_{4}$ of order t (assumed to be circulant or block circulant = type 1). Let a, b, c, d be commuting variables. Then

$$
\begin{gathered}
A=a T_{1}+b T_{2}+c T_{3}+d T_{4} \\
B=-b T_{1}+a T_{2}+d T_{3}-c T_{4} \\
C=-c T_{1}-d T_{2}+a T_{3}+b T_{4} \\
D=-d T_{1}+c T_{2}-b T_{3}+a T_{4}
\end{gathered}
$$

can be used in the Goethals-Seidel array (or J. Seberry Wallis-Whiteman array for blockcirculant i.e. type 1 and 2 matrices)

$$
\left[\begin{array}{rrrr}
A & B R & C R & D R \tag{1}\\
-B R & A & D^{T} R & -C^{T} R \\
-C R & -D^{T} R & A & B^{T} R \\
-D R & C^{T} R & -B^{T} R & A
\end{array}\right]
$$

where R is the permutation matrix which transforms circulant to back-circulant matrices or type 1 to type 2 matrices, to form an $O D(4 t ; t, t, t, t)$.

Replacing the variables of Theorem 1 by Williamson type matrices we have:
Method 1 (Cooper-Seberry-Turyn) Suppose there exist T-matrices $T_{1}, T_{2}, T_{3}, T_{4}$ of order t (assumed to be circulant). Let A, B, C, D be Williamson type matrices of order m. Then

$$
\begin{aligned}
X & =T_{1} \times A+T_{2} \times B+T_{3} \times C+T_{4} \times D \\
Y & =T_{1} \times-B+T_{2} \times A+T_{3} \times D+T_{4} \times-C \\
Z & =T_{1} \times-C+T_{2} \times-D+T_{3} \times A+T_{4} \times B \\
W & =T_{1} \times-D+T_{2} \times C+T_{3} \times-B+T_{4} \times A
\end{aligned}
$$

can be used in the Goethals-Seidel array to form an Hadamard matrix of order $4 m t$

$$
G S=\left[\begin{array}{cccc}
X & Y R & Z R & W R \\
-Y R & X & -W^{T} R & Z^{T} R \\
-Z R & W^{T} R & X & -Y^{T} R \\
-W R & -Z^{T} R & Y^{T} R & X
\end{array}\right]
$$

Remark 1 The survey of Seberry and Yamada [18] gives most presently known T-sequences and T-matrices. Some new results are given in this paper. For $t=67$ there are only Tmatrices known and not as yet T-sequences. These sequences, using Method 1 , are a prolific source of Hadamard matrices and $O D(4 t ; t, t, t, t)$.

Turyn has also a construction which says that an $O D(4 t ; t, t, t, t)$ implies the existence of an $O D(20 t ; 5 t, 5 t, 5 t, 5 t)$ and Ono-Sawade-Yamamoto another which gives an $O D(36 t ; 9 t, 9 t$, $9 t, 9 t)$ from an $O D(4 t ; t, t, t, t)$. However neither yields T-matrices and neither is recursive. In addition there are $O D(4 t ; t, t, t, t)$ whenever $2 t$ is the order of a Hadamard matrix [14, 6].

Hammer, Sarvate and Seberry [9] applied Kharaghani's method [11] to $O D\left(n ; s_{1}, \ldots, s_{u}\right)$ and in particular to $O D(4 t ; t, t, t, t)$ obtaining $O D\left(12 s^{2} t ; 3 s^{2} t, 3 s^{2} t, 3 s^{2} t, 3 s^{2} t\right)$ and $O D\left(20 s^{2} t\right.$; $\left.5 s^{2} t, 5 s^{2} t, 5 s^{2} t, 5 s^{2} t\right)$ where s is the length of T-sequences.

Yang has other important constructions which give long sequences with zero auto correlation function but not orthogonal designs. There are details in [4]. Yang has given powerful theorems reformulated in [13] which yield many new $O D(4 t ; t, t, t, t)$ and Hadamard matrices of order $4 t$ from T -sequences of length t. His construction may be stated as

Method 2 If there are base sequences of lengths $m+p, m+p, m, m$ and y is a Yang number then there are T-sequences of lengths $t=(2 m+p) y$.

For more information on the values $(2 m+p)$ and y see $[12,13,18]$. For the known values of Williamson type matrices see $[16,19,18]$ and the tables in $[10,18]$.

We find here the following new orders of Hadamard matrices: $4 . q(q<10,000)$ where $q=$ $213,781,1349,1491,1633,2059,2627,2769,3479,3763,4331,4899,5467,5609,5893,6177$, $6461,6603,6887,7739,8023,8591,9159,9443,9727,9869$.

2 Background and Kharaghani type results

Kharaghani (1985) defined $C_{k}=\left[h_{k i} \cdot h_{k j}\right]$ and applying that to Hadamard matrices of order $4 p$ obtained $4 p$ symmetric matrices of order $4 p$, satisfying

$$
\left.\begin{array}{ll}
C_{i} C_{j}=0 & i \neq j \tag{2}\\
\sum_{i=1}^{4 p} C_{i}^{2}=(4 p)^{2} I_{4 p} &
\end{array}\right\}
$$

He then used this to show there are Bush-type (blocks $J_{4 p}$ down the diagonal) and Szekeres-type ($h_{i j}=-1 \Rightarrow h_{j i}=1$ and not necessarily vice versa). By using a symmetric Latin square he could also have shown that regular symmetric Hadamard matrices with constant diagonal of order $(4 p)^{2}$ could be constructed by his method.

The result we now give is motivated by Hammer, Sarvate and Seberry [9] but uses a different technique to obtain more powerful results.

Before proceeding to our main theorem we will illustrate by two examples:
Use Kharaghani's method to form $4 p$ matrices of order $4 p$ satisfying (2) from a Hadamard matrix of order $4 p$.

Use these to form 4 block circulant matrices A, B, C, D with first rows
$A: C_{1} C_{2} \ldots C_{3 p}$
$B: C_{3 p+1} \ldots C_{4 p} C_{1} \ldots C_{2 p}$
$C: C_{2 p+1} \ldots C_{4 p} C_{1} \ldots C_{p}$
$D: C_{p+1} \ldots C_{4 p}$
These are now used in a modified Goethals - Seidel - or Seberry(Wallis) - Whiteman array. This gives the theorem:

Theorem 2 If there is a Hadamard matrix of order $4 p$ there is a Hadamard matrix of order 16.3. p^{2}.

Use Kharaghani's method to make $4 p$ matrices of order $4 p, C_{1}, C_{2}, \ldots, C_{4 p}$ as in Hammer, Sarvate, Seberry. The matrices now have variable entries
$A: C_{1}, \ldots, C_{p}, C_{2 p+1}, \bar{C}_{2 p+1}, \ldots, C_{4 p}, \bar{C}_{4 p}$
$B: C_{p+1}, \ldots, C_{2 p}, C_{2 p+1}, C_{2 p+1}, \ldots, C_{4 p}, C_{4 p}$
$C: C_{2 p+1}, \ldots, C_{3 p}, C_{1}, \bar{C}_{1}, C_{2}, \bar{C}_{2}, \ldots, C_{2 p}, \bar{C}_{2 p}$
$D: C_{3 p+1}, \ldots, C_{4 p}, C_{1}, C_{1}, C_{2}, C_{2}, \ldots, C_{2 p}, C_{2 p}$ where $\bar{C}_{s}=-C_{s}$.

Use these to form block circulant matrices which are used in the Goethals - Seidel array. This gives

Theorem 3 If there is an $O D(4 p ; p, p, p, p)$ there is an $O D\left(80 p^{2} ; 20 p^{2}, 20 p^{2}, 20 p^{2}, 20 p^{2}\right)$ and
an Hadamard matrix of order $16.5 p^{2}$ an Hadamard matrix of order 16.5.p2.

These examples do not give new Hadamard matrices of small order but do give new families. However, if the method is used starting with an $O D\left(4 p ; s_{1}, s_{2}, s_{3}, s_{4}\right)$ or $O D(4 p ; p, p, p, p)$ we can get new $O D$'s and Hadamard matrices.

Theorem 4 Suppose there exists an $O D\left(4 t ; s_{1}, s_{2}, s_{3}, s_{4}\right)$, in particular an $O D(4 t ; t, t, t, t)$, the following $O D$'s exist, the particular case is given in brackets.
(i) $O D\left(16 t^{2} ; 4 t s_{1}, 4 t s_{2}, 4 t s_{3}, 4 t s_{4}\right),\left(O D\left(16 t^{2} ; 4 t^{2}, 4 t^{2}, 4 t^{2}, 4 t^{2}\right)\right)$;
(ii) $O D\left(48 t^{2} ; 12 t s_{1}, 12 t s_{2}, 12 t s_{3}, 12 t s_{4}\right),\left(O D\left(48 t^{2} ; 12 t^{2}, 12 t^{2}, 12 t^{2}, 12 t^{2}\right)\right)$;
(iii) $O D\left(80 t^{2} ; 20 t s_{1}, 20 t s_{2}, 20 t s_{3}, 20 t s_{4}\right),\left(O D\left(80 t^{2} ; 20 t^{2}, 20 t^{2}, 20 t^{2}, 20 t^{2}\right)\right)$.

Proof. As in Hammer, Sarvate and Seberry, let $S=\left(a_{i j}\right)$ be the $O D$. Replace all the variables of S by 1 making a weighing matrix, U, of order $4 t$ and weight $w=s_{1}+s_{2}+s_{3}+s_{4}$
(in the particular case $w=4 p$). Write S_{k} and U_{k} for the k th rows of S and U respectively. Form

$$
C_{k}=S_{k} \times U_{k}^{T}
$$

where \times is the Kronecker product.
Then

$$
\begin{aligned}
C_{k} C_{j}^{T} & =\left(S_{k} \times U_{k}^{T}\right)\left(S_{j} \times U_{j}^{T}\right)^{T} \\
& =S_{k} S_{j}^{T} \times U_{k}^{T} U_{j} \\
& =0
\end{aligned}
$$

if $k \neq j$ because S is an orthogonal design.
Now

$$
\begin{aligned}
\sum_{k=1}^{4 p} C_{k} C_{k}^{T} & =\sum_{k=1}^{4 p}\left(S_{k} \times U_{k}^{T}\right)\left(S_{k} \times U_{k}^{T}\right)^{T} \\
& =\sum_{k=1}^{4 p} S_{k} S_{k}^{T} \times U_{k}^{T} U_{k} \\
& =\left(\sum_{j=1}^{4} s_{j} x_{j}^{2} w\right) I_{4 p}
\end{aligned}
$$

by the properties of U.
In particular where $s_{j}=p$, all j, we get

$$
\sum_{k=1}^{4 p} C_{k} C_{k}^{T}=4 p^{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) I_{4 p}
$$

The $C_{1}, \ldots, C_{4 t}$ are now used to form first rows for block circulant matrices, as in the examples leading to Theorems 4 and 5 for (ii) and (iii), or with

$$
\begin{aligned}
& A: C_{1} C_{2} \ldots C_{t} \\
& B: C_{t+1} \ldots C_{2 t} \\
& C: C_{2 t+1} \ldots C_{3 t} \\
& D: C_{3 t+1} \ldots C_{4 t}
\end{aligned}
$$

for (i).

The examples above illustrate that we really need $4 t$ matrices $P_{1}, \ldots, P_{4 t}$ of order q, with elements $0,+1,-1$ such that in each of the q^{2} places one and only one of the P_{i} has a nonzero element, i.e. $P_{i} * P_{j}=0, i \neq j$

$$
\begin{gathered}
\sum_{i=1}^{4 t} P_{i} \text { is a }(1,-1) \text { matrix } \\
P_{i} P_{i}^{T}=\text { constant } I
\end{gathered}
$$

Then

$$
\sum_{i=1}^{4 p} C_{i} \times P_{i}
$$

would be an Hadamard matrix of order $4 t q$ or an $O D(4 t q ; t q, t q, t q, t q)$ say.
Note we need no algebraic relation between the P_{i}, except disjointness, as $C_{i} C_{j}=0$, $i \neq j$.

The remainder of this paper is devoted to finding matrices such as the P_{i}. We give one method here which is a blending of ideas derived from writings of Turyn and C.H.Yang.

Let h, i, j, k be symbols so that $h^{2}=i^{2}=j^{2}=k^{2}=1, x y=0, x \neq y, x, y \in\{h, i, j, k\}$. Call a sequence of length m of symbols $\pm h, \pm i, \pm j, \pm k$ which have zero periodic (or non periodic) autocorrelation function an m, δ-sequence.

For example, $h i \bar{\imath} j j$ is a $5, \delta$-sequence with zero non-periodic (implies also periodic) autocorrelation function because for $h i \bar{\imath} j j$ we form the matrix

$$
\left[\begin{array}{ccccc}
h & i & \bar{\imath} & j & j \\
0 & h & i & \bar{\imath} & j \\
0 & 0 & h & i & \bar{\imath} \\
0 & 0 & 0 & h & i \\
0 & 0 & 0 & 0 & h
\end{array}\right]
$$

and notice the inner product of any row with any other is zero.
In particular, if $T_{1}, T_{2}, T_{3}, T_{4}$ are circulant T-matrices (which can be obtained from T sequences) of order t then the first row of

$$
X=h T_{1}+i T_{2}+j T_{3}+k T_{4}
$$

is a t, δ-sequence because

$$
\begin{gathered}
X X^{T}=h^{2} T_{1} T_{1}^{T}+i^{2} T_{2} T_{2}^{T}+j^{2} T_{3} T_{3}^{T}+k^{2} T_{4} T_{4}^{T} \\
=t I_{t}
\end{gathered}
$$

using $x y=0, x \neq y, x, y \in\{h, i, j, k\}$.
Construction 1 Suppose we have $4 p$ matrices $C_{1}, \ldots, C_{4 p}$ of order $4 p$ constructed by Kharaghani's method (as modified by Hammer, Sarvate and Seberry (i.e. with variable entries)) and an m, δ-sequence $m_{1}, m_{2}, \ldots, m_{m}$. To simplify writing write

$$
\begin{gathered}
D_{h} \text { for }\left[C_{1}: C_{2}: \ldots: C_{p}\right] \\
D_{i} \text { for }\left[C_{p+1}: \ldots: C_{2 p}\right] \\
D_{j} \text { for }\left[C_{2 p+1}: \ldots: C_{3 p}\right] \\
D_{k} \text { for }\left[C_{3 p+1}: \ldots: C_{4 p}\right] .
\end{gathered}
$$

We now form 4 first rows of A, B, C, D by replacing the elements of the m, δ-sequence. To form A replace h by D_{h}, \bar{h} by $-D_{h}, i$ by $D_{i}, \bar{\imath}$ by $-D_{i}, j$ by $D_{j},-j$ by $-D_{j}, k$ by D_{k}, $-k$ by $-D_{k}$ respectively and then complete to a block circulant matrix.
A is formed by

$$
\pm h \longrightarrow \pm D_{h}
$$

$$
\begin{aligned}
& \pm i \longrightarrow \pm D_{i} \\
& \pm j \longrightarrow \pm D_{j} \\
& \pm k \longrightarrow \pm D_{k}
\end{aligned}
$$

B is formed by

$$
\begin{aligned}
& \pm h \longrightarrow \pm D_{i} \\
& \pm i \longrightarrow \pm D_{j} \\
& \pm j \longrightarrow \pm D_{k} \\
& \pm k \longrightarrow \pm D_{h}
\end{aligned}
$$

C is formed by

$$
\begin{aligned}
& \pm h \longrightarrow \pm D_{j} \\
& \pm i \longrightarrow \pm D_{k} \\
& \pm j \longrightarrow \pm D_{h} \\
& \pm k \longrightarrow \pm D_{i}
\end{aligned}
$$

D is formed by

$$
\begin{aligned}
& \pm h \longrightarrow \pm D_{k} \\
& \pm i \longrightarrow \pm D_{h} \\
& \pm j \longrightarrow \pm D_{i} \\
& \pm k \longrightarrow \pm D_{j}
\end{aligned}
$$

Each is then completed to a block circulant matrix.

To illustrate we again use the $5, \delta$-sequence $h i \bar{\imath} j j$

$$
A=\left[\begin{array}{ccccc}
D_{h} & D_{i} & \bar{D}_{i} & D_{j} & D_{j} \\
D_{j} & D_{h} & D_{i} & \bar{D}_{i} & D_{j} \\
D_{j} & D_{j} & D_{h} & D_{i} & \bar{D}_{i} \\
\bar{D}_{i} & D_{j} & D_{j} & D_{h} & D_{i} \\
D_{i} & \bar{D}_{i} & D_{j} & D_{j} & D_{h}
\end{array}\right]
$$

where

$$
D_{h}=\left[\begin{array}{rrrlr}
C_{1} & C_{2} & C_{3} & \ldots & C_{p} \\
C_{p} & C_{1} & C_{2} & \ldots & C_{p-1} \\
\vdots & & & \ldots & \vdots \\
C_{2} & C_{3} & C_{4} & \ldots & C_{1}
\end{array}\right]
$$

So

$$
D_{h} D_{h}^{T}=I_{p} \times \sum_{i=1}^{p} C_{i}^{2}
$$

$D_{h} D_{i}^{T}=0$ and $D_{h} D_{j}^{T}=0$ since $C_{a} C_{b}=0, a \neq b$.
Thus

$$
A A^{T}=I_{5} \times\left(D_{h} D_{h}^{T}+2 D_{i} D_{i}^{T}+2 D_{j} D_{j}^{T}\right)+\left(T+T^{4}\right) \times\left(-D_{i} D_{i}^{T}+D_{j} D_{j}^{T}\right)
$$

$$
\begin{aligned}
& B B^{T}=I_{5} \times\left(D_{i} D_{i}^{T}+2 D_{j} D_{j}^{T}+2 D_{k} D_{k}^{T}\right)+\left(T+T^{4}\right) \times\left(-D_{j} D_{j}^{T}+D_{k} D_{k}^{T}\right) \\
& C C^{T}=I_{5} \times\left(D_{j} D_{j}^{T}+2 D_{k} D_{k}^{T}+2 D_{h} D_{h}^{T}\right)+\left(T+T^{4}\right) \times\left(-D_{k} D_{k}^{T}+D_{h} D_{h}^{T}\right) \\
& D D^{T}=I_{5} \times\left(D_{k} D_{k}^{T}+2 D_{h} D_{h}^{T}+2 D_{i} D_{i}^{T}\right)+\left(T+T^{4}\right) \times\left(-D_{h} D_{h}^{T}+D_{i} D_{i}^{T}\right)
\end{aligned}
$$

So

$$
\begin{gathered}
A A^{T}+B B^{T}+C C^{T}+D D^{T}=5 I_{5 p} \times \sum_{i=1}^{4 p} C_{i}^{2} \\
=20 p^{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) I_{20 p^{2}}
\end{gathered}
$$

We now use A, B, C, D in the modified GS array to form an $O D\left(80 p^{2} ; 20 p^{2}, 20 p^{2}, 20 p^{2}\right.$, $20 p^{2}$).

Using this method we can establish
Theorem 5 Suppose an $O D\left(4 p ; s_{1}, s_{2}, s_{3}, s_{4}\right)$ exists. Suppose there are T-matrices of order t. Then there is an $O D\left(16 p t ; 4 t s_{1}, 4 t s_{2}, 4 t s_{3}, 4 t s_{4}\right)$, an $O D\left(16 p^{2} t ; 4 p t s_{1}, 4 p t s_{2}, 4 p t s_{3}, 4 p t s_{4}\right)$ and an Hadamard matrix of order $16 p t$ and $16 p^{2} t$.

Proof. The matrix of order $16 p t$ follows by putting the $O D\left(4 p ; s_{1}, s_{2}, s_{3}, s_{4}\right)$ in place of the variables of the $O D(4 t ; t, t, t, t)$ constructed via the T-matrices.

The matrix of order $16 p^{2} t$ is constructed via the construction just given.

Corollary 1 Suppose an $O D\left(4 p ; s_{1}, s_{2}, s_{3}, s_{4}\right)$ exists. Then there is an $O D\left(16 p t ; 4 t s_{1}, 4 t s_{2}\right.$, $\left.4 t s_{3}, 4 t s_{4}\right)$ and an $O D\left(16 p^{2} t ; 4 p t s_{1}, 4 p t s_{2}, 4 p t s_{3}, 4 p t s_{4}\right)$ for all the orders of T-matrices listed above and in particular for all orders of $t \leq 100$ except possibly $t \in\{73,79,83,89,97\}$.

We give these sequences for odd lengths (Corollary 4.107 is in [7]):
3: hij
5: hhiij
7: hhらi ijik
9: hiiiī̄jјग̄j
11: $h \bar{h} \bar{h} i \bar{h} i \bar{h} \bar{\imath} \bar{\imath} i j$
13: Corollary $4.107 h h i \bar{h} i h i j j \bar{\jmath} j \overline{\jmath \jmath}$
15: ihjhkkk $\bar{h} \bar{k} k k h \bar{k} k \bar{k}$
17: Golay
19: Corollary 4.107 - $h h \bar{h} h h i i i i \imath \bar{j} j \overline{\jmath \jmath} k \bar{k} k \bar{k}$
21: Golay
23: Corollary 4.107
25: Corollary 4.107
27: Golay
29: Corollary 4.107
31: Corollary 4.107
33: Golay
35: Seberry - Sproul
37: Williamson

39: Yang
41: Golay
43: Williamson
45: Yang
47: Turyn
49: Yang
51: Corollary 4.107
53: Golay
55: Turyn ($5 \times$ construction), Yang.
57: Yang
59: Corollary 4.107
61: Hunt (T-matrix not sequence): T-sequences given below.
63: Yang
65: Golay
67: Sawade (T-matrix not sequence)
69: Yang
71: Koukouvinos, Kounias, Seberry, C.H. Yang and J. Yang 73:

3 New Hadamard matrices

We now give three new T-sequences of lengths $2 s+1=35,61$ and 71 . Each set of sequences is equivalent to a set of base sequences of lengths $s+1, s+1, s, s$.
The following are T-sequences (T-matrices) of length $35=5^{2}+3^{2}+0^{2}+1^{2}$.

$$
\begin{aligned}
& T_{1}=\{1,2,4,5,9,-10,14,-15,17\} \\
& T_{2}=\{3,-6,-7,8,11,-12,-13,-16,-18\} \\
& T_{3}=\{19,-21,23,-25,-26,-28,29,31,33,-35\} \\
& T_{4}=\{-20,-22,24,-27,30,32,34\}
\end{aligned}
$$

The following are T-sequences (T-matrices) of length $61=2^{2}+5^{2}+4^{2}+4^{2}$. Since these sequences are equivalent to base sequences of lengths $31,31,30,30$ they yield, using Yang multipliers, new T-sequences of lengths 183 and 671.

$$
\begin{aligned}
T_{1}= & \{1,-2,-4,-6,-8,-10,12,-14,-16,18,20,22,-24,26,-28,30\} \\
T_{2}= & \{3,5,7,9,-11,-13,15,-17,19,21,23,25,-27,-29,31\} \\
T_{3}= & \{-32,-33,-36,37,38,40,-42,43,44,46,-47,49,50,51,53,-55,-56,57, \\
& -60,61\} \\
T_{4}= & \{34,-35,39,41,-45,48,-52,54,58,59\}
\end{aligned}
$$

The following are T-sequences (T-matrices) of length $71=6^{2}+5^{2}+3^{2}+1^{2}$.

$$
\begin{aligned}
T_{1}= & \{1,-2,-3,4,5,6,-7,8,9,10,-11,-12,-13,-14,15 \\
& 16,-17,18,19,-20,21,22,23,24\}
\end{aligned}
$$

q			Method
213	$=$	3×71	1
781	$=$	11×71	1
1349	$=$	19×71	1
1491	$=$	21×71	1
1633	$=$	27×71	1
2059	$=$	29×71	1
2627	$=$	37×71	1
2769	$=$	39×71	1
3479	$=$	49×71	1
3763	$=$	53×71	1
4331	$=$	61×71	1
4899	$=$	69×71	1
5467	$=$	$7 \times 11 \times 71$	2
5609	=	79×71	1
5893	$=$	83×71	1
6177	$=$	87×71	1
6461	$=$	91×71	1
6603	$=$	93×71	1
6887	=	97×71	1
7739	=	71×109	1
8023	$=$	113×71	1
8591	$=$	121×71	1
9159	$=$	129×71	1
9443	$=$	$7 \times 19 \times 71$	2
9727	$=$	137×71	1
9869	$=$	139×71	1

Table 1New Hadamard matrices

$$
\begin{aligned}
T_{2}= & \{25,26,27,28,-29,30,31,-32,33,34,35,-36,37,-38 \\
& 39,-40,41,-42,-43,-44,-45,46,47\} \\
T_{3}= & \{48,49,50,51,-52,-56,57,58,60,-64,65,-66,-71\} \\
T_{4}= & \{-53,-54,55,-59,61,-62,63,67,68,-69,-70\}
\end{aligned}
$$

The new Hadamard matrices may now be constructed as in Table 1.
Method 3 Seberry and Yamada [18] gave the following definition:
Definition 1 We call k a Koukouvinos-Kounias number, or KK number, if $k=g_{1}+g_{2}$ where g_{1} and g_{2} are both the lengths of Golay sequences.

Then we have
Lemma 1 Let k be a $K K$ number and y be a Yang number. Then there are T-sequences of length t and $O D(4 t ; t, t, t, t)$ for $t=y k$.

q	t	t^{\prime}
917	3	4
1703	3	4
2227	3	4
2489	3	4
4061	3	4
5109	3	4
6419	3	4
6623	4	10
6943	3	4
9563	3	4

Table 2: New Hadamard matrices of order $2^{s} q, t \leq s<t^{\prime}$
Example. This gives T-sequences of lengths $2.101,2.109,2.113,8.127,2.129,2.131,8.151$, $8.157,16.163,2.173,4.179,4.185,4.193,2.201,2.205,2.209,2.213,2.221,2.257,2.261$, 2.269 .

With the application of this method we find new orders of Hadamard matrices which are given in Table 2.
(Note: t^{\prime} is given in Jenkins, Koukouvinos and Seberry [10, Table 6].)

References

[1] S.S.Agaian (1985). Hadamard Matrices and Applications, Springer-Verlag, Vol 1168, Berlin - Heidelberg - New York - Tokyo.
[2] K.A.Bush (1971). Unbalanced Hadamard matrices and finite projective planes of even order, J.Combinatorial Theory, 11, 38-44.
[3] K.A.Bush (1971). An inner orthogonality of Hadamard matrices, J. Austral. Math. Soc., 12, 242-248.
[4] G. Cohen, D. Rubie, J. Seberry, C. Koukouvinos, S. Kounias and M. Yamada (1988). A survey of base sequences, disjoint complementary sequences and OD $(4 t ; t, t, t, t), J C M C C$, 5, 69-104.
[5] Joan Cooper and Jennifer Seberry Wallis (1972). A construction for Hadamard arrays, Bull. Austral. Math. Soc., 7, 269-278.
[6] Warwick deLauney and Jennifer Seberry, The strong Kronecker product, (submitted).
[7] Genet M'gan Edmonson, Jennifer Seberry and Malcolm Anderson, On the existence of Turyn sequences of length less than 43, Mathematics of Computation, (accepted subject to revision).
[8] A.V.Geramita and Jennifer Seberry (1979). Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel.
[9] J.Hammer, D.G.Sarvate, Jennifer Seberry (1987). A note on orthogonal designs, Ars Combinatoria, 24, 93-100.
[10] B. Jenkins, C. Koukouvinos and J. Seberry. Numerical results on T-sequences (odd and even), T-matrices, $\mathrm{OD}(4 t ; t, t, t, t)$, Williamson matrices and Hadamard matrices constructed via OD $(4 t ; t, t, t, t)$ therefrom. Technical Report CS88/8, Department of Computer Science, University College, University of New South Wales, ADFA, 1989.
[11] H.Kharaghani (1985). New class of weighing matrices, Ars Combinatoria, 19, 69-72.
[12] C. Koukouvinos, S. Kounias, J. Seberry, C.H. Yang and J. Yang. On sequences with zero autocorrelation, Designs, Codes and Cryptography, (to appear).
[13] C. Koukouvinos, S. Kounias, J. Seberry, C.H. Yang and J. Yang. Multiplication of sequences with zero autocorrelation, Designs, Codes and Cryptography, (to appear).
[14] M. Plotkin (1972). Decomposition of Hadamard matrices, J. Comb. Theory (Ser A), 13, 127-130.
[15] Jennifer Seberry Wallis (1972). Hadamard matrices, Part IV of W.D.Wallis, Anne Penfold Street, and Jennifer Seberry Wallis, Combinatorics: Room Squares, Sum free sets and Hadamard Matrices, Lecture Notes in Mathematics, Vol 292, Springer-Verlag, Berlin-Heidelberg-New York.
[16] J. Seberry Wallis (1975). Construction of Williamson type matrices, J. Linear and Multilinear Algebra, 3, 197-207.
[17] Jennifer Seberry. A construction for orthogonal designs with three variables, Combinatorial Design Theory, Eds. C.J.Colbourne, R.A.Mathon, North Holland, 437-440.
[18] Jennifer Seberry and Mieko Yamada. Hadamard matrices, Sequences and Designs, Contemporary Design Theary - a Collection of Surveys, D.J. Stinson and J. Dinitz, Eds., Academic Press, (to appear).
[19] R.J. Turyn (1972). An infinite class of Williamson matrices, J. Combinatorial Theory (Series A), 13, 127-130.
[20] C.H.Yang (1982), Hadamard matrices and δ-codes of length 3n, Proc.Amer.Math.Soc., 85, 480-482.
[21] C.H.Yang (1983), A composition theorem for δ-codes, Proc. Amer.Math.Soc., 89, 375378.
[22] C.H.Yang (1983), Lagrange identities for polynomials and δ - codes of lengths $7 t$ and 13t, Proc.Amer.Math.Soc., 88, 746-750.
[23] C.H. Yang (1989), On composition of four-symbol δ-codes and Hadamard matrices, Proc. Amer. Math. Soc., 107, 763-776.
[24] C.H. Yang, On Golay, near normal and base sequences, (to appear).

[^0]: *Supported by Telecom grant 7027, an ATERB and ARC grant \#A.48830241.

