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ABSTRACT 

Let G be an antipodal distance regular cover of a complete graph with index 

T'. If T' = 2 then it is known that the neighbourhood of a vertex in G is strongly 

regular, and the Krein bound is tight for G. We use the theory of spherical designs 

( due to Delsarte, Goethals and Seidel) to show that if r > 2 and the Krein bound is 

tight for G then the neighbourhood of any vertex in G is strongly regular. Further, 

if e denotes the second largest eigenvalue of G then T' must divide () + 1, and if 

r = () + 1 then G arises by a standard construction from a generalised quadrangle 

with a spread. If e is a prime power and r divides e + 1, covers of index r for which 

the Krein bound holds can be constructed and in many cases the neighbourhoods 

of a vertex in these covers are new strongly regular graphs. 

1. ANTIPODAL DISTANCE REGULAR COVERS 

We are going to study a class of distance regular covers of complete graphs. Thus 

we begin by explaining what a cover is, and what it means for one to be distance 

regular. (However we assume that the reader knows what a distance-regular graph 

is. A brief introduction will be found in [1], and an extensive treatment in [2]. 

Unsupported assertions about properties of antipodal distance regular covers of I{ n 

are taken from [8].) 

We say that a graph H is cover of a graph G if there is a surjection f from 

V (H) onto V (G) such that f maps edges of H to edges of G, and the restriction 

of f to the neighbourhood of any vertex is an isomorphism. (If we view G and H 
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as topological spaces, this is equivalent to the topologist's definition of a cover, if it 

helps.) If v E V(G) then j-l(v) called a fibre of the cover. When G is connected 

it is not hard to show that all fibres must have the same cardinality, which we call 

the index of the cover. In general the cover is not determined just by the graphs 

Hand G - there may be more than one possible local isomorphism j from H to 

G, and so it may be necessary to explicitly identify the fibres. A cover H of G with 

diameter d is antipodal if two vertices of H are at distance d if and only they are 

in the same fibre. 

Informally, any cover of G wi th index r can be constructed as follows. For 

each vertex in G there is a corresponding set of r disjoint vertices in H, and if u 

and v are adjacent in G then the corresponding r-sets are joined by the edges of 

an r-matching. The cube is an antipodal cover of ]{4 with index two and the line 

graph of Petersen's graph is an antipodal cover of ]{s with index three. Both these 

covers have the property that the number of common neighbours of two vertices 

is determined by the distance between them. Any antipodal cover of ]{n with 

this property is distance regular, and must have diameter equal to three. If H is 

an antipodal distance regular cover of ]{ n then we denote the number of common 

neighbours of two adjacent points by aI' and the number of common neighbours of 

two points at distance two by c2 • The parameters n, r, a 1 and C2 are related by 

n - 2 - a 1 = (r - 1)c2' (1) 

Thus a1 is determined by the other three parameters. An expression such as "H 

is a cover with parameters (n, r, c2 )" will indicate that H is an distance regular 

antipodal cover of ]{n with index r, and a 1 determined by (1). We note that any 

distance regular cover of ]{n with diameter three must be antipodal. 

Let H be an (n,r,c2) cover. Since 1I is distance regular with diameter three, 

its adjacency matrix A( H) has exactly four distinct eigenvalues. Since it is a cover 

of Knl two of these eigenvalues are n - 1 and -1, with multiplicities 1 and n - 1 

respectively. The remaining two eigenvalues will be denoted by a and T, and are 

the zeros of the quadratic 

(2) 

We will refer to a and r as the non-trivial eigenvalues of G. We assume that a 2: r; 

from (2) we have ar = 1 n, whence we deduce that a > 0 > r. If m is the 

multiplicity of r as an eigenvalue of G then 

n(r - 1)8 
m = --'----

8-r 
(3) 
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The fact that m must be an integer is a very useful restriction on the parameter set 

(n, r, C2)' From (2) we have that 

B+ 7 = a 1 - C21 rC2 = -(B + 1)(7 + 1). 

If Band 7 are not integers then they are conjugate roots of (2) and their multiplic­

ities as eigenvalues of A( G) are equal, and hence equal to n(r - 1 )/2. From (3) we 

then obtain 7 = -B, and thus that a 1 = c2 . 

In addition to the above multiplicity condition, we also have the Krein condi-

tion, 

If r > 2 then 

(4) 

An antipodal distance regular cover of J{n with index two is equivalent to a "regular 

2-graph". These have received considerable attention. (See [12, 13].) It is known 

[2: Theorem 1.5.3(iii)), and comparatively easy to prove, that the neighbourhood of 

any vertex in such a cover must be strongly regular. When the index is greater than 

two, this is not generally true. In Section 4 however, we will prove that if ( 4) holds 

with equality then the neighbourhood of any vertex in the cover must be strongly 

regular. 

2. REPRESENTATIONS 

Let G be a distance regular graph on n vertices with adjacency matrix A, and let 

B be an eigenvalue of A with multiplicity m. Then, since A is symmetric, B is real 

and the eigenvectors belonging to B form a subspace of R Tn with dimension m. Let 

U be n x m matrix whose columns form an orthonormal basis for this eigenspace. 

Then UTU = I and AU = BU. If A = (aij) and Ui denotes the i-th row of U then 
the last equation is equivalent to 

BUi = 2..= U j' 

jrvi 

(Here we write j rv i to denote that j is adjacent to i in G.) 

(1) 

The mapping p which takes the vertex i of G to the vector u i will be called a 

representation of G, with eigenvalue B. We have the following important result, the 

proof of which may found in [7: Lemma 2.2} (for example). 

247 



2.1 LEMMA. Let G be a distance regular graph and let p be a representation 

of G with eigenvalue e. If i and j are two vertices of G then the inner product 

(p(i),p(j)) is determined by the distance between i and j in G. 0 

Applying this when i = j, we deduce that all the vectors p( i) have the same 

length. Hence the image of V(G) under p is contained in a sphere in R m , with 

centre at the origin. If i and j are at distance I we use Wr to denote the cosine of 

the angle between p( i) and p(j). If G has diameter d, we refer to (wo," . , W d) as 

the sequence of cosines belonging to e. From (1) we have 

ep(i) = L p(j). 
j",i 

Taking the inner products of both sides of this with p( i) we obtain easily that 

where k is the valency of G. More complicated expressions can be found for the 

other cosines. For our purposes the following will suffice. 

2.2 LEMMA. Let G be an antipodal distance regular cover of K n , with least 

eigenvalue T. Then the cosines with respect to Tare: 

Wo = 1, 
T 

WI =--, 
n-l 

T 

(/--l)(n-l)' 
1 

w3 =---.0 
1-1 

2.3 LEMMA. Let G be an antipodal distance regular graph with fibres of cardi­

nality I and antipodal quotient H. Let e be an eigenvalue of G which is not also an 

eigenvalue of H, and let its multiplicity m. Then the image of the neighbourhood 

of a vertex under the representation associated to e spans a space of dimension at 

most m -I + 2. 

Proof. Let p denote the representation associated to e, let N be the set of all 

neighbours of some vertex u in G, and let F be the fibre of G containing u. Suppose 

that G has diameter d. If v is in N and x and yare distinct vertices in F \ u then 

dist(v, x) = d -1 = dist(v,y) 

whence p( v) must be orthogonal to p(x) - p(y). Hence the image of N under plies 

in the subspace of R m orthogonal to the space spanned by 

{p(x) - p(y) : x, y E F\ u}. (2) 
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From [2: Proposition 4.2.3] and the remarks following, the representation p 

is injective on V( G) and the image of any fibre is a regular simplex spanning a 

subspace of dimension r - 1. This implies that the vectors in (2) span a subspace 

of dimension r - 2, and so the lemma follows. 0 

3. SPHERICAL DESIGNS 

Let X be a finite subset of the unit sphere in R m or, more generally, of any sphere 

centred at the origin. W"e say that X is a spherical t-design if the average value over 

the points in X of any polynomial in m variables of degree at most t, is equal to its 

average value over the entire sphere. The concept is due to Delsarte, Goethals and 

Seidel [6]. We will only be concerned with the cases where t :::; 3. 

Note that X is a I-design if and only if its centre of mass is the origin. Our 

first result is a special case of Theorem 3.1 from [9]. 

3.1 LEMMA. If X is a finite subset of the unit sphere in Rm then 

1 ~ 2 1 
IXI2 L..J (x, y) ~ m' 

x,yEX 

If X is a l-design then equality holds if and only if X is a 2-design. 0 

If G is a distance regular graph and p is a representation of G then p( G) 

is always a 2-design. It is not, in general, a 3-design. (If p belongs to the i-th 

eigenvalue of G then p( G) is a 3-design if and only if the i-th Krein parameter qii( i) 

is zero.) 

A subset X of the unit sphere in R m is an s-distance set if the distance between 

distinct elements of X takes on at most s values. Thus, a I-distance set would be 

a regular simplex. If Q js a real number then G a(X) will denote the graph with 

vertex set X, with vectors x and y from X adjacent if and only if (x, y) = Q. Of 

course, if Q is not chosen appropriately, then G a(X) is just a complicated notation 

for the empty graph. 

We will need the following result, which is a special case of [6: Theorem 7.4]. 

3.2 LEMMA. Let X be a 2-distance set on the unit sphere in R m containing two 

points with inner product Q. If X is a 2-design then G a(X) is strongly regular or 

complete, and the map taking a vertex of G to the corresponding point in X is a 

representation of G. 0 
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4. THE KREIN BOUND 

4.1 THEOREM. Let G be an antipodal distance regular cover of ]{n' with non­

trivial eigenvalues f} and T. If T = _f}2 then the neighbourhood of any vertex in G 
is strongly regular. 

Proof. Let n, r, a l and C2 be the parameters of our cover and let p be the repre­

sentation belonging to To Assume that 1 E V( G) and let N be the set of vertices 

adjacent to 1. If i E N define 

and let Ui be the corresponding unit vector. Then 

:L p(i) = Tp(l) 
iEN 

and therefore the vectors ui form a I-design. We aim to apply Lemmas 3.1 and 3.2 

to the set {ui : i EN}. 
If ui and U j correspond to adjacent vertices in N then 

2 

( 
~ ~) _ WI - WI 
Ui,Uj - 1 2 

-WI 

WI 

1 + WI 
T 

T+n-l 
T 

T - f}T 

1 
= I-f}' 

A similar computation show that i and j are not adjacent then 

_8_ -1 
( A A) r-l 

U i, U j = -f}-2---1-' 

Now fix i in N. Then, using the identity n - 2 - a1 = (r - 1)c2 , we find that 

As a1 - Cz f) + T, we can eliminate a 1 from the above expression. If we also make 

use of the fact that rC2 = -( f) + 1)( T + 1) then the outcome is that the right side 

equals 
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(r - 1)(B2 - l)(B - 1)' 

and, if r = _B2, this reduces to 

(r - 1)( B-1) , 

Let d be the dimension of the space spanned by the vectors Ui, for i in N. 

Applying Lemma 3.1 with IXI = -Br = B3 , we obtain the inequality 

(r - 1 )B( B-1) ::; d. (1) 

The multiplicity of r as an eigenvalue of G is 

n(r-1)B =(r-1)(B2 -B+1). 
B-r 

By Lemma 2,3, the span of p( N) has dimension at most 

(r -1)(B2 - B + 1) - r + 2 = (r - 1)(B2 - B) + 1. 

Since each vector ui is orthogonal to p(l), it follows that they span a space of 

dimension one less than this, thus 

d::; (r - 1)(B2 - B). 

Hence equality holds in (l)and so, by Lemma 3.1, we find that p(N) is a spherical 

2-design in Rd. As any two vertices in N are at distance at most two in G, we may 

now apply Theorem 3.2 to deduce that the subgraph of G induced by N is strongly 

regular or complete. If the neighbourhoods are complete then G is complete, and 

does not have diameter three. 0 

Let us call a distance regular cover of ]{n with diameter three and r = _B2 a 

Krein cover. The argument in the proof above does not determine the parameters 

of the neighbourhoods. For this purpose it suffices to compute their eigenvalues. 

If G is a Krein cover and N is the neighbourhood of a vertex in G, it follows 

from the proof of Theorem 4.1 that the map taking i in N to ui is a representation of 

N. If i and j are adjacent in N then (Ui' il j) is the first cosine of this representation. 

We saw that this inner product is equal to (1 - B)-l and as N has valency aI' we 

thus deduce that 
-~ 

B-1 

is an eigenvalue of N, with multiplicity (r - 1 )B( B 1). Since N is regular with 
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valency aI' we know that a1 is an eigenvalue with multiplicity at least one. If 
B-1 < a1 then N is connected, because the only strongly regular graphs which 

are not connected are the disjoint unions of complete graphs, and they have least 

eigenvalue -1. Hence a1 is a simple eigenvalue, and the multiplicity of the remaining 

eigenvalue is 

B3 - 1 - rB(B - 1) = (B - l)((B + 1)2 - rB). 

Using the fact that the sum of the eigenvalues of N is zero, we now deduce that 

these eigenvalues are: 

(J' = B _ (B + 1 )2 
r 

l/=B- B+1, 
r 

a, = (8 - 1) C 8 ~ 1)2 - 8) . 

Since B is an integer, (B + 1) / r is a rational number. As it is equal to the 

algebraic integer l/ - B, it is therefore an integer. Hence we deduce the useful 

restriction: 

4.2 LEMMA. If there is a Krein cover of ]{n with index r and second largest 

eigenvalue B then r divides B + 1. 0 

This condition eliminates many otherwise feasible parameter sets. The smallest 

instance of this is a (65,3,25) cover. From the expressions given for a 1 and rC2 at 

the end of the proof of Theorem 4.1, we also see that B-1 divides a1 and e2 - 1 

divides c2 • 

5. GENERALISED QUADRANGLES 

We will now show that Krein covers with r = B + 1 are equivalent to a class of 

generalised quadrangles. We assume some familiarity with the theory of generalised 

quadrangles as described, for example, in the book by Payne and Thas [11 J. We 

use GQ(s, t) to denote a generalised quadrangle with s + 1 points on each line, and 

t + 1 lines through each point. A spread in a generalised quadrangle is a set of lines 

which partition its point set. Thus it must contain exactly st + 1 lines. 

5.1 LEMMA (Brouwer). Let Q be a GQ(s, t) where t > 1, which contains a 

spread S. Let G be the graph with the points of Q as its vertices, and two vertices 

are adjacent if they are collinear, and tIle line joining them is not in S. Then G is 

a (st + 1, s + 1, t - 1) cover of a complete graph. 0 
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(This is a fairly straightforward consequence of the definitions.) Brouwer also 

notes that if a cover with these parameters exists, then the graph obtained from 

the cover by joining any two vertices in a fibre is strongly regular, with the same 

parameters as the point graph of a generalised quadrangle. (In particular, any 

cover such that r = B + 1 arises in this way.) We now observe that if G is a 

Krein cover of a complete graph with r = B + 1 then the parameters of G are 

(B3 + 1, B + 1, (12 - 1). Filling in the fibres of G thus provides a strongly regular 

graph with same parameters as the point graph of a GQ(B, (2). But Cameron, 

Goethals and Seidel [5: Theorem 7.9] have proved that any strongly regular graph 

with these parameters must be the point graph of a generalised quadrangle. Thus 

we have: 

5.2 LEMMA. A Krein cover of K s3+1 with second largest eigenvalue 8 and index 

8 + 1 is equivalent to a GQ(8, 8
2

) with a spread. 0 

If there is an automorphism of a GQ( 8,8
2

) with order m which fixes each 

component of a spread then we may apply [8: Theorem 6.2] to obtain a Krein cover 

of I{s3+1 with index rim. Whenever q is a prime power, there is a GQ(q,q2) with 

a spread (see [11: Chapter 3.4]) and this spread is fixed component-wise by a cyclic 

automorphism of order q + l. Thus we have the existence of Krein covers of K q3+1 

for all indices dividing q + l. For the details of this construction we refer the reader 

to [3], here we note one consequence. 

5.3 LEMMA. If q is a prime power and r divides q + 1 then there is a strongly 

regular graph with parameters 

Proof. The eigenvalues of the neighbourhood of a vertex in a Krein cover were 

determined in Section 4, and after somewhat tedious computations based on these, 

the above parameters result. 0 
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When 'r = (q + 1)/2 the graphs of Lemma 5.3 have the same parameters as 

the point graphs of a GQ(q - 1, q + 1). (We do not know that they must be point 

graphs of generalised quadrangles.) If 'r = 2 we recover the graphs in the family 

C20 from Hubaut [10]. The corresponding double covers of K q3+1 were found by 

Taylor. (See [13].) In the remaining cases the parameter sets (and the graphs) seem 

to be new. (The covers themselves were first obtained by Peter Cameron in [4]; the 

relationship is discussed at some length in [3].) 

6. APPENDIX 

6.1 LEMMA. For every prime power q there is a GQ(q, q2) with a spread, ~ say, 

such that the group of automorphisms of the quadrangle which fix each component 

of ~ is cyclic of order q + 1. 

Proof. Let V be a vector space of dimension four over G F( q2) and, if x, y E V, 

define 

h(x, y) := x6Yo + ... + xjY3' 

Thus h is a non-singular Hermitian form on V, and the lines spanned by the vectors 

x such that h(x, x) = 0 form a generalised quadrangle in projective 3-space over 

GF(q2), with q2+1 points per line, and q+1lines per point. Denote this generalised 

quadrangle by H. 

The intersection of 1{ with any non-tangent hyperplane is an ovoid [11). For 

the Hermitian form we are using we may take Xo = 0 as a non-tangent hyperplane. 

The matrices 

where ,\ is an element of GF(q2) with order dividing q + 1, represent unitary ho­

mologies with axis the hyperplane Xo 0 and centre (1,0,0, O)T. Since (1,0,0, O)T 

is not on H, any such homology acts fixed-point freely on the points of 1{ not on 

its axis. Hence they form non-trivial automorphisms of H fixing each point on an 

ovoid. It is easy to see that the matrices D('\) form a cyclic group of order q + l. 
Passing to the generalised quadrangle dual to H, we obtain a GQ(q, q2) with a 

spread fixed component-wise by a cyclic group of order q + 1. 0 

The above proof is an improvement of the author's original argument, and is 

due to Andries Brouwer. It can be shown that there is only one 'cyclic' spread in 

the unitary GQ, up to isomorphism. 
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