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Abstract: Let H be a normal subgroup of a finite group G. We show that: 
If a GBRD(v, k, A.; G IH) exists and a GBRD(k,j, JA.; H) exists then a 

GBRD(v,j, AJA.; G) exists. We apply this result to show that: 
i) If k does not exceed the least prime factor of IG I, then a GBRD(k, k, A; G) exists 

for all A EO (mod IG I); 
ii) If G is of order IG Ie lor 5 (mod 6) then a GBRD(v, 3, A = t IG I; G), v>3, 

exists if and only if a BIBD(v, 3, t) exists; 
iii) If G is a nilpotent group of odd order then the necessary conditions are sufficient 

for the existence of a GBRD(v, 3, A; G); and, 
iv) If G is ap -group,p ;f2, then the necessary conditions are sufficient for the 

existence of a GBRD(v, 3, A.; G). 

1. Introduction 

A balanced incomplete block design, BIBD(v, b, r, k, A), is a design (X,'B) with v 
points andb blocks such that: 
i) each point appears in exactly r blocks; 
ii) each block contains exactly k «v) points; and 
iii) each pair of distinct points appear together in exactly A blocks. 

As r (k -1) = A(v -1) and vr = bk are well known necessary conditions for the 
existence of a BIBD(v, b, r, k, A) we denote this design by BIBD(v, k, A). 

Throughout this paper we denote the identity matrix of size n by In and a mxn 
matrix in which each entry is 1 by lm,n. The square matrix of size n whose entries are 
1 's is denoted by lrr 

Let G = {hI = e, h2' ... , hg } be the finite group (with identity element e) of order 
IG I = g. Now form the v x b matrix W, 

g 

W =.2: hjAj, 
i = 1 
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with entries taken from G U{O}, and the v xb (O,l)-matrixN, 
g 

N=I Ai 
;=1 

where AI' ... , Ag are v x b (0,1) - matrices such that the Hadamard product 
Aj *Aj = 0 for any i;t j. Let 

w+ =(fl ht1AJ 
If each column and row of N contains k and r l's respectively and the matrices W 

and N satisfy the conditions 
g 

1..2: hi 
W+ ;=1 ( ) W = reIv + -g-- Jv -Iv 

then we say that W is a generalized Bhaskar Roo design over the group G based on 
the matrix N. We denote Wby GBRD(v, b, r, k, A; G). In W. we can the group 

element entries non-zero entries and the other entries zero entries. 

If k = v then b = r and N is a v x b matrix whose entries are alII's. If k < v, the 
second condition requires that Nbe the incidence matrix of BIBD(v, b, r, k, A). In 
either case, we can use the shorter notation OBRD(v, k, A; G) for a generalized Bhaskar 
Rao design over G based on N. 

A GBRD(v, k, A; G) with v = b is a symmetric generalized Bhaskar Rao design or 
a generalized weighing matrix. A symmetric generalized Bhaskar Rao design which 
has no zero entries is also known as a generalized Hadamard matrix. A Bhaskar Rao 
design is a generalized Bhaskar Rao over Z 2. 

The concept of a generalized Bhaskar Rao design has been extended to cover the 
case where N is the incidence matrix of a group divisible design (see Palmer (1989), 
(199 ». 

In this paper we give a new construction for generalized Bhaskar Rao designs and 
then use this construction to establish necessary and sufficient conditions for the 
existence of generalized Bhaskar Rao designs over large classes groups of odd order. 
We then show how to construct group divisible designs from these new generalized 
Bhaskar Rao designs. 

2. The Construction 

Let G be a finite group. Also let x = (Xl, ... , xn) and y = (Yl' ... , Yn), where Xj and 
Yi are any elements of G u {O}, be row vectors of length n. For each vector, the group 
element entries are called non-zero entries and the other entries are called zero entries. 

In the following: any product of elements of G u {O} which involve a zero entry 
is a zero entry and if X is zero entry then X -lis taken to be a zero entry. 



If a belongs to G we write a x as (ox l , ... ,oxn ), x a as (xla, ... ,x",p) and we define 
y-l to be (yel , '" ,Yn-1). The product xyT is defined to be the usual matrix product, 
xlYl + ... + x~n ' where the sum is taken to be in the group ring, Z (G ) of G over the 
integers, Z. 

Theorem 2.1. Let H be a normal subgroup ojafinite group G. lja 
GBRD(v, b, r, k, A; K=G IH), A, exists and a GBRD(k, c, s,j, ~; H), B, exists, then a 
GBRD(v, be, rs,j, A~; G), C, exists. 

Proof: Let t be the index of H in G and suppose that S = { al= e, a2, ... ,at }is a set of 
coset representatives in G. We observe that the non-zero entries of the matrix A are the 
cosets of alH, 1= 1, ... , t and the non-zero entries of B are elements of the subgroup H. 
We denote the k rows of B by ai, 1= 1, "', k. 

We now form the matrix Cfrom the matrices A and B. This is achieved by 
replacing each entry of A by a row vector of length c. In the first column of A replace 
the first non-zero entry, say alH, by the row vector alaI, the second non-zero entry, say 
amH, by the row vector ama2 and so on. This process is repeated for the remaining b 
-1 columns of A. Finally, we 'replace each zero entry of A by the row vector (0, ... ,0) 
consisting of c zero entries. 

As A is based on a BIBD(v, b, r, k, A) andB is based on a BIBD(k, c, s,j, I-t) we 
observe that Cis based on a BIBD(v, be, rs,j, AI-t). We claim that Cis a 
GBRD(v, be, rs,j, "-!-t; G). 

Example 2.2. Take Gto be the dicyclic group 0;= {I, x, ... , x 5, Y, xy . ... , xSy} 
generated by x and Y subject to the relations x 6 = 1, Y 2 = X 3, yxy -1 x-I. 

We now take H as <x>, a normal subgroup of Q6' Also Z 2 is isomorphic to 
GIH. From de Launey (1984) we have the GBRD (7,4,2; Z2) 

-1 1 1 0 1 0 0 
o -1 1 1 0 1 0 
o 0 -1 1 1 0 1 
1 0 0 -1 1 1 0 
o 1 0 0 -1 1 1 
1 0 1 0 0 -1 1 
1 1 0 1 0 0 -1 

where the zero entries are denoted by 0 and -1 and + 1 are elements of Z 2. 
and Y as coset representatives in G we obtain the GBRD(7, 4, 2; G IH) 

yH H H 0 H 0 0 
0 yH H H 0 H 0 
0 0 yH H H 0 H 

A= H 0 0 yH H H 0 
0 H 0 0 yH H H 
H 0 H 0 0 yH H 
H H 0 H 0 0 yH 

Ifwe take 1 



As Z6=Z2 x Z3 and consequently Z2 is normal in Z6, a GBRD(4, 3, 6; Z6) can be 
obtained by combining a GBRD(4, 3,2; Z0 with a GBRD(3, 3,3; Z3) on application 
of Theorem 2.1. On noting that is isomorphic to < x> we exhibit a 
GBRD(4, 3, 6; <x » 

Finally, we apply Theorem 2.1. to obtain a GBRD(4, 3, 12; Q6), C, which is shown 
below: 

yal lal lal 0 la1 0 0 
0 ya2 la2 hl1 0 la1 0 
0 0 ya3 182 0 la1 

c= 182 0 0 ya3 183 la2 0 
0 la3 0 0 YS 4 183 la2 

la3 0 la4 0 0 Y84 183 
1a4 1a4 0 0 0 Y8 4 

As H is a normal subgroup in the finite group G = H x K we see that Theorem 
2.2 (and its Corollary 2.3) of Lam and (1984) are consequences of Theorem 
2.1. Indeed the "direct product" construction contained in Theorem 2.2. of Lam and 
Seberry( 1984) was the motivation for our "coset" construction contained in our 
Theorem 2.2. 

Similarly, we have 

Corollary 2.3. Suppose that G is the semidirect product of subgroups Hand K (with 
Hnormal in G). If the designs GBRD(v, k, A; K) and GBRD(k,j, 1-1; H) exist then 
there exists a GBRD(v,j, AI-1; G). 

Proof: As G is a semidirect product of Hand K, H is normal in G, HK = G, 
H n K = {I}. Thus, by the Second Isomorphism Theorem, K is isomorphic to G IH 
We now apply the construction contained in Theorem 2.1. 

3. Existence Results 

Theorem 3.1. Suppose that Gis afinite solvable group. Let pbe the smallest prime 
factor oflG I. Then, if k 5. p, there exists a GBRD(k, k, A; G) for all 
A= 0 (mod IG I). 

Proof: Let G have a composition series {I} = lis <Hs- 1 < ... <Ho= G, where the factor 
groups Fi = H/ ~+l' i = 0, ... , s -1, are cyclic (and of prime order). It is well known 
(see, for example, Seberry (1979» that, when q is prime, a GBRD(q, q, q; Za) exists. 
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Thus, for each i, i::::: 0, .. , ,s-l, we can construct a k, IFi I; Fi ) by selecting k ~ 
P distinct rows from a GBRD (IFil, IFil, I; Fi ). We now apply Theorem 2.1. s 
times to the composition series {I}::::: <.,. G to obtain a GBRD(k, k, IG 
I; G). Finally, we construct a GBRD(k, k, A; G) by taking copies of a GBRD(k, k, IGI; 
G). 

'oll",nlh ... v 3.2. Suppose that G is a group of odd order. Then there exists a 
A; G)for all A=O (mod IG I). 

Proof: the Thompsc)ll Theorem G is solvable and hence the result follows from 
Theorem 

An alternative derivation of 3.2, is found in Denes and 
Theorem wherein it was that: 
e, is of odd order then 

drew upon the wen known fact that in G, IG I 
square root. 

A generalllzed 
incidence matrix of a 

3, A; v> 3, is based on the 

When v 3, 
satisfied. Thus, 

3, A; is based on the 

v :2:3 
is a condition for the existence of a 

are 

The product of two distinct rows of a 3, A; is a multiple of 
group ring sum of the elements of G so we have the necessary condition: 

A =0 (mod IGI). 

We now establish necessary and sufficient conditions for the existence of GBRDs 
over two classes of groups of odd order. 

Theorem 3.4. Let G be a group of order IG 1= 1 or 5 (mod 6). If v> 3, then a 
GBRD(v, 3, t IG I; G) exists whenever a BIBD(v, 3,t) exists. 

Proof: As IG 1 = 1 or 5 (mod 6 ) the necessary conditions for the existence of a 
GBRD(v, 3, t IG I; G) can be written as 



v 3 
t(v 1) o (mod 2) 
tv (v 1) 0 (mod 6). 

By Hanam's Theorem ( Hall Theorem these are the necessary and 
sufficient conditions for the existence of t). Also a GBRD (3,3, IG I; G) 
exists as IH I is odd (Corollary 3.2). As t ) and a GBRD (3,3, IG I; G) can 
be combined to construct a GBRD(v, IG on application of Corollary 2.3 of Lam 
and Seberry (1984) we have the result. 

We now direct our attention to finite groups. We first prove 

Lemma 3 . .5. necessary conditions are sufficient for the 
existence of a 

Proof: Consider a t L If the par:ameters of a 
3, A;F) 

COITe~;DOlnding set of necessary 

we see, from 

then the necessary conditions are 

The case IG I := Theorem 3.3. We direct our 
is the direct of its 

::::: S where is the 
J-comp!cmelnt of G. 

necessary conditions: 

then the par'amleters of a the C,,)lT,~~n:'\C'n,dJmL"" necessary 
conditions and hence exists by Lemma 

Now, as I C!:= 1 or (mod 6) a I; C) exists (Theorem 3.1). Thus, a 
GBRD(v, 3, A; G) can be constructed on application of Theorem 2.1. 

4. 

As in Street and Rodger(1980) and Seberry (1982), we can construct the incidence 
matrix of a group divisible design from a GBRD(v, b, r, k, A;G). Our existence results 
for generalized Bhaskar Rao designs over non-abelian groups gives rise to possibly new 
group divisible designs. 
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