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Abstract: Let H be a normal subgroup of a finite group G. We show that:
If a GBRD(, k, A; G /H ) exists and a GBRD(¥, j, w; H) exists then a

GBRD(v, j, Mt; G) exists. We apply this result to show that:

i) If k does not exceed the least prime factor of IG |, then a GBRD(k, k, A; G) exists
for all A =0 (mod IG I);

ii) If Gis of order IG!=1or 5 (mod 6) thena GBRD(v, 3, A=1IG |; G), v>3,
exists if and only if a BIBD(v, 3, 1) exists;

iiiy If Gis a nilpotent group of odd order then the necessary conditions are sufficient
for the existence of a GBRD(v, 3, A; G); and,

iv) If Gisap -group, p #2, then the necessary conditions are sufficient for the
existence of a GBRD(v, 3, A; G).

1. Introduction

A balanced incomplete block design, BIBD(v, b, 1, k, )), is a design (X, ) with v
points andb blocks such that:
i)  each point appears in exactly r blocks;
ii)  each block contains exactly k (<v) points; and
iiiy each pair of distinct points appear together in exactly A blocks.

Asr(k-1) =My -1) and vr = bk are well known necessary conditions for the
existence of a BIBD(v, b, r, k, \) we denote this design by BIBD(, k, A).

Throughout this paper we denote the identity matrix of size n by I, and a mxn ‘
matrix in which each entry is 1 by J,,,, . The square matrix of size n whose entries are
1's is denoted by J,,

Let G={h;=¢, hy, ..., hy } be the finite group (with identity element e ) of order
IGl=g. Now form the v xb matrix W,

8
w =z hiAi,
i=1
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with entries taken from G U{0}, and the v xb (0,1) - matrix N,
g
N= Z A;
i=1

where Ay, ..., A, are v x b (0,1) - matrices such that the Hadamard product
A;xA;=0foranyi=j. Let

8 T
W =3 blA,
i=1

If each column and row of N contains & and 7 1's respectively and the matrices W
and N satisfy the conditions

8

S Iy

WW* = rel, + =L (7, -1,)

NN*=(r-N1, +0J,

then we say that W is a generalized Bhaskar Rao design over the group G based on
the matrix N. We denote W by GBRD(v, b, 7, k, A; G). In W, we call the group

element entries non-zero entries and the other entries zero entries.

Ifk=vthenb=r and Nis av xb matrix whose entries are all 1's. Ifk<v, the
second condition requires that N be the incidence matrix of BIBD(v, b, r, k, 7). In
either case, we can use the shorter notation GBRD(v, k, A; G) for a generalized Bhaskar
Rao design over G based on N.

A GBRD(v, &, \; G) with v = b is a symmetric generalized Bhaskar Rao design or
a generalized weighing matrix. A symmetric generalized Bhaskar Rao design which
has no zero entries is also known as a generalized Hadamard matrix. A Bhaskar Rao
design is a generalized Bhaskar Rao over Z;.

The concept of a generalized Bhaskar Rao design has been extended to cover the
case where N is the incidence matrix of a group divisible design (see Palmer (1989),
(199)).

In this paper we give a new construction for generalized Bhaskar Rao designs and
then use this construction to establish necessary and sufficient conditions for the
existence of generalized Bhaskar Rao designs over large classes groups of odd order.
We then show how to construct group divisible designs from these new generalized
Bhaskar Rao designs.

2. The Construction

Let G be a finite group. Alsoletx=(xy,...,x,) and y = (y, ..., ¥,,), where x;and
y; are any elements of G U {0}, be row vectors of length n. For each vector, the group

element entries are called non-zero entries and the other entries are called zero entries.
In the following: any product of elements of G U {0} which involve a zero entry
is a zero entry and if x is zero entry then x -lis taken to be a zero entry.



If a belongs to G we write a x as (axy,...,ax,), xa as (xa,... ,x;,a) and we define
y-ltobe (y71, ..., y,1). The product xy" is defined to be the usual matrix product,
XYy + -+ + Xy, , where the sum is taken to be in the group ring, Z (G ) of G over the
integers, Z.

Theorem 2.1. Let H be a normal subgroup of a finite group G. Ifa
GBRD(, b, r, k, h; K=G /H), A, exists and a GBRD(k, ¢, s, j, w; H), B, exists, then a
GBRD(v, b, rs, j, My, G), C, exists.

Proof. Let?be the index of Hin G and suppose that S ={ a\= e, a, ... , a, }is a set of
coset representatives in G. We observe that the non-zero entries of the matrix A are the
cosets of a;H, I = 1,..., t and the non-zero entries of B are elements of the subgroup H .
We denote the krows of Bby a;, [=1, ..., k.

We now form the matrix C from the matrices A and B. This is achieved by
replacing each entry of A by a row vector of length ¢. In the first column of A replace
the first non-zero entry, say a;H, by the row vector a;a,, the second non-zero entry, say
a,,H, by the row vector a,,a, and so on. This process is repeated for the remaining b
-1 columns of A. Finally, we replace each zero entry of A by the row vector (0, ..., 0)
consisting of ¢ zero entries.

As A is based on a BIBD(v, b, r, k, \) and B is based on a BIBD(%, ¢, s, j, ) we
observe that Cis based on a BIBD(v, bc, s, j, Mi). We claim that Cis a
GBRD(v, bc, 13, j, My, G).

Example 2.2. Take G to be the dicyclic group Q= {1, %, ..., x5, y, Xy, .., X% }
generated by x and y subject to the relations x6= 1, y2=x3, yxy-1 =x -1,

We now take H as <x>, a normal subgroup of Q. Also Z is isomorphic to
G/H. From de Launey (1984) we have the GBRD (7,4, 2; Z»)
-11 10100

—_
Ib—i

i
L

]

— O
[N e
_—— = O

i
[ay

bt et D b OO
_—0 e OO
O == OO
-0 O

[ e

o]

—

L. o

where the zero entries are denoted by 0 and ~1 and +1 are elements of Z,. If we take 1
and y as coset representatives in G we obtain the GBRD(7, 4, 2; G [H)

y& H H 0 H 0 0
0 yd H H O H O
0 0 yd H H 0 H
A=| H 0 0 yd H H O
0 H 0 0 yi H H
H 0O H 0 0 yH H

| H H 0 H 0 0 yH




As Zg=Z, x Z3 and consequently Z, is normal in Zg, a GBRD(4, 3, 6; Z¢) can be
obtained by combining a GBRD(4, 3, 2; Z) with a GBRD(3, 3, 3; Z ) on application
of Theorem 2.1. On noting that Z ¢ is isomorphic to <x > we exhibita

GBRD(4, 3, 6; <x >)

111111111000

a
1x4x2x3xx5000 111 a,
B= =
1x2x40 0 0x3x x5x3x x5 a3
a,

L0 0 0 1 x2x4%x3x5x 1 x2x4

Finally, we apply Theorem 2.1. to obtain a GBRD(4, 3, 12; Q¢), C, which is shown
below:

ya; la; la, 0 1la; O 0O ]
0O ya; la; lag 0O 1la; O
0 0 yaz lap la, O 1la;
C=|1la, 0 O ya; lagy la, O
0O laz O 0 yas laz lap
laz 0 lag O 0 yas las
| lay lay O lay O 0 yay

As H is a normal subgroup in the finite group G = H x K we see that Theorem
2.2 (and its Corollary 2.3) of Lam and Seberry (1984) are consequences of Theorem
2.1. Indeed the "direct product” construction contained in Theorem 2.2. of Lam and
Seberry(1984) was the motivation for our "coset"” construction contained in our
Theorem 2.2.

Similarly, we have

Corollary 2.3. Suppose that G is the semidirect product of subgroups H and K (with
Hnormal in G). If the designs GBRD(v, k, A, K) and GBRD(Kk, j, w; H) exist then
there exists a GBRD(v, j, My; G).

Proof: As G is a semidirect product of H and K, His normal in G, HK = G,
HN K ={1}. Thus, by the Second Isomorphism Theorem, X is isomorphic to G /H.
We now apply the construction contained in Theorem 2.1.

3. Existence Results

Theorem 3.1. Suppose that G is a finite solvable group. Let pbe the smallest prime
factor of \G 1. Then, if k <p, there exists a GBRD(k, k, \; G) for all
A=0(mod IG1).

Proof: Let G have a composition series {1} = H<H,_; <... <Hy= G, where the factor
groups F;=H;/ Hy,,,i=0, ..., s-1, are cyclic (and of prime order). Itis well known
(see, for example, Seberry (1979)) that, when q is prime, a GBRD(q, ¢, g; Z,) exists.

224




Thus, foreachi,i=0, ..., s-1, we can construct a GBRD(, &, IF;1; F;) by sefecting k=<
p distinct rows from a GBRD (IF}|, IF}, IF;|; F;). We now apply Theorem 2.1. s
times to the composition series {1} = H.<H_;<...<Hy= G to obtain a GBRD(k, k, |G
I; G). Finally, we construct a GBRD(%, k, A; G) by taking copies of a GBRD(k, k, I1G1;
G).

Corollary 3.2. Suppose that G is a group of odd order. Then there exists a
GBRD(3, 3, A; G) for all A =0 (mod |G ).

Proof: By the Feit-Thompson Theorem ( is solvable and hence the result follows from
Theorem 3.1.

Remark 3.3. An alternative derivation of Corollary 3.2. is found in Denes and
Keedwell ((1974), Theorem 1.4.3.) wherein it was shown that;
HG={hi=¢eh,, .., hg} is of odd order then

€ fp--hy
2 2
e h?,"'hg

isa GBRD(3, 3, IG1; G). The proof drew upon the well known fact thatin G, 1G | odd,
every element has a unique square root.

A generalized Bhaskar Rao design, GBRD(v, 3, A; G), v> 3, is based on the
incidence matrix of a BIBD(v, 3, A; G) and so
My ~1) =0 (mod 2) 3.1
(v -1) =0 (mod 6) 3.2)
are necessary conditions of a GBRD(v, 3, k; G), v>3. Indeed, the conditions (3.1) and
(3.2) are sufficient conditions for the existence of a BIBD(v, 3, A; G) (Hall (1967),
Theorem 15.4.5).

When v =3, the GBRD(y, 3, A; G) is based on the matrix J 5, ; and (3.1) and (3.2) are
satisfied. Thus,
v =3 (3.3)
is a necessary condition for the existence of a GBRD(v, 3, A; G).
The inner product of two distinct rows of a GBRD(v, 3, A; G) is a multiple of

group ring sum of the elements of G so we have the necessary condition:
A =0 (modIGH).

We now establish necessary and sufficient conditions for the existence of GBRDs
over two classes of groups of odd order.
Theorem 3.4. Let G be a group of order \Gl=10r5(mod6). If v>3,thena
GBRD(, 3, tIG |; G) exists whenever a BIBD(v, 3,1) exists.

Proof: AslGl=1or5(mod 6) the necessary conditions for the existence of a
GBRD(v, 3, tIG1; G) can be written as



v=3

t(v-=1)=0(mod2)

(v -1) =0 (mod6).
By Hanani's Theorem ( Hall (1967), Theorem 15.4.5) these are the necessary and
sufficient conditions for the existence of a BIBD(v, 3,7 ). Alsoa GBRD (3.3,IG; G)
exists as |1H 1 is odd (Corollary 3.2). AsaBIBD(v,3,¢ )anda GBRD (3,3,IGl; G) can
be combined to construct a GBRD(v, 3, 11G |; G) on application of Corollary 2.3 of Lam
and Seberry (1984) we have the result.

We now direct our attention to finite nilpotent groups. We first prove

Lemma 3.5. Let FF be a 3-group. Then the necessary conditions are sufficient for the
existence of a GBRD(v, 3, \; F).

Proof: Consider a 3-group, F, of order 3¢*1, t= 1. If the parameters of a
GBRD(v, 3, A; F) satisfy the necessary conditions
v=3
My = 1) =0 (mod 2)
w(v-1)=0(mod6),
then the parameters of a GBRD(v, 3, M3/ ; 7 4) satisfy the corresponding set of necessary
conditions and hence exists (Seberry((1982), Theorem 5)).
But the 3 - group of order 37, H say, is normal in F; and, as (H | is odd, we see, from
Corollary 3.2, thata GBRD (3, 3, 3%, H) exists.
Noting that Z 5 is isomorphic to 7 /H we apply Theorem 2.1 with the designs
GBRD(v, 3,M3% F /H) and a GBRD(3, 3, 3; H) to construct a GBRD(, 3,MF).

Theorem 3.6. If G is a nilpotent group of odd order, then the necessary conditions are
sufficient for the existence of a GBRD(v, 3, A; G).

Proof: The case |G |=1 or 5(mod 6) is covered by Theorem 3.3. We direct our
attention to the case IG'l =3 (mod 6). As Gis nilpotent then G is the direct product of its
Sylow subgroups (Rotman (1965), Theorem 6.26). Thus G = § x C where § is the
Sylow 3- subgroup of Gand C, ICl= 1 or 5 (mod 6), is a 3-complement of G.
If the parameters of a GBRD(v, 3, A; G ) satisfy the necessary conditions:
vz3
A=0(modIG)
Ay ~1) =0 (mod 2)
W (v ~1) =0 (mod 6)
then the parameters of a GBRD(v, 3, M | C; § ) satisfy the corresponding necessary
conditions and hence exists by Lemma 3.5.
Now, as | Cl=1 or 5 (mod 6) a GBRD(@3,3,IC I, C ) exists (Theorem 3.1). Thus, a
GBRD(v, 3, A; G) can be constructed on apptication of Theorem 2.1.

4. Application
~ Asin Street and Rodger(1980) and Seberry (1982), we can construct the incidence
matrix of a group divisible design from a GBRD(v, b, r, k, A;G ). Our existence results

for generalized Bhaskar Rao designs over non-abelian groups gives rise to possibly new
group divisible designs.

226



5. Acknowledgements

The enthusiastic support and encouragement offered to the writer, in the
preparation of this paper, by Professor Jennifer Seberry and Dr Philip Kirkpatick is
gratefully acknowledged. The author also wishes to acknowledge the assistance of the
referee whose comments were found most useful.

References

Beth, T., Jungnickel,D. and Lenz, H. (1986). Design Theory, Cambridge Untversity
Press, Cambridge.

Bhaskar Rao, M. (1966). Group divisible family of PBIBD designs. J. Indian Statist.
Assoc. 4, 14-28.

Bhaskar Rao, M. (1970). Balanced orthogonal designs and their application in the
construction of some BIB and group divisible designs. Sankfiya Ser. A 32, 439-448.
Bowler, A., Quinn, K. and Seberry, J. (199). Generalised Bhaskar Rao designs with
elements from cyclic groups of even order. Australas. J. Combin. (1o appear).

Brock, B.W. (1988). Hermitian congruence and the existence and completion of
generalized Hadamard matrices, relative difference sets and maximal matrices. Journal of
Combinatorial Theory, Ser. A 49, 233-261.

Clatworthy, W.H. (1973). Tables of iwo-associate-class Partially Balanced Designs,
NBS Applied Math. Ser. No. (63).

Curran, D.J. and Vanstone, S.A. (1989). Doubly resolvable designs from generalized
Bhaskar Rao designs. Discrete Math. 73, 49-63.

Denes,J. and Keedwell,A.D.(1974), Latin squares and their applications, Enlisn
Universities Press, London.

de Launey, W. (1984). On the non-existence of generalized Hadamard matrices. J.
Statist. Plann. and Inference 10, 385-396.

de Launey, W. (1989A). Square GBRDs over non-abelian groups. Ars Combinatoria
27.,40-49.

de Launey, W. (1986), A survey of generalized Hadamard matrices and difference
matrices D(k,1;G) with large k. Ultilitas Math. 38, 5-29

de Launey, W. (1989B). Some new constructions for difference matrices, generalized
Hadamard matrices and balanced generalized weighing matrices. Graphs and
Combinatorics 5, 125-135.

de Launey, W., Sarvate, D.G., and Seberry, J. (1985). Generalized Bhaskar Rao designs
with blocks size 3 over Z;.

de Launey, W. and Seberry, J. (1984). On generalized Bhaskar Rao designs of block size
four, Congressus Numerantium, 41, 229-294,

Feit, W and Thompson, J. (1963), Solvability of groups of odd order, Pacific J. Math. 13,
775-1029.

Gibbons, P.B. and Mathon, R. (1987A). Construction methods for Bhaskar Rao and
related designs. J. Australian Math. Soc. A 42,5-30.

Gibbons, P.B. and Mathon, R. (1987B). Group signings of symmetric balanced
incomplete block designs. Ars Combinatoria. 23A, 123-134.

Hanani, H. (1975). Balanced incomplete block designs and related designs. Discrete
Math. 11, 255-369.

Jungnickel, D. (1979). On difference matrices, resolvable TD's and generalized
Hadamard matrices. Math. Z. 167, 49-60.

227



Lam, C. and Seberry, J. (1984). Generalized Bhaskar Rao designs. J. Statist. Plann. and
Inference 10, 83-95.

Mackenzie, C. and Seberry, J. (1988). Maximal g-ary codes and Plotkin's bound, Ars
Combinatoria 268, 37-50.

Palmer,W.D. (1990). Generalized Bhaskar Rao designs with two association classes,
Australas. J. Combin. 1, 161-180.

Palmer,W.D. (199 ), Partial generalized Bhaskar Rao designs over certain abelian groups,
Australas. J. Combin. (to appear).

Palmer,W.D. and Seberry, J. (1988), Bhaskar Rao designs over small groups, Ars
Combinatoria 26A, 125-148.

Raghavarao, D. (1971), Construction and combinatorial problems in design of
experiments, Wiley, New York.

Rotman, J.J. (1965). The theory of groups: an introduction, Allyn and Bacon, Boston.
Sarvate, D.G., and Seberry, J. (199 ), Constructions of balanced ternary designs based on
generalized Bhaskar Rao designs. J. Statist. Plann. and Inference (submitted).

Seberry, J. (1979), Some remarks on generalized Hadamard matrices and theorems of
Rajkundlia on SBIBDs. Combinatorial Mathematics IV, Lecture Notes in Math., 748,
Springer, Berlin, 154-164.

Seberry, J. (1982), Some families of partially balanced incomplete block designs. In:
Combinatorial Mathematics IX, Lecture Notes in Mathematics No. 952, Springer -
Verlag, Berlin-Heidelberg- New York, 378-386.

Seberry, J. (1984), Regular group divisible designs and Bhaskar Rao designs with block
size 3,J. Statist. Plann. and Inference 10,695-82.

Seberry, J. (1985), Generalized Bhaskar Rao designs of block size three, J. Statist. Plann.
and Inference 11,373-379.

Street, D.J. (1979), Generalized Hadamard matrices, orthogonal arrays and F-squares, Ars
Combinatoria 8, 131-141.

Street, D.J. and Rodger, C.A. (1980), Some results on Bhaskar Rao designs,
Combinatorial Mathematics VII, Lecture Notes in Mathematics No. 829, Springer -
Verlag, Berlin-Heidelberg- New York, 238-245.

Street, A. P. and Street, D. J. (1987) Combinatorics of Experiment Design, Oxford
University Press, Oxford.

(Received 3/10/91; revised 20/7/92)

228



