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Abstract. A graph X with at least two independent edges is 2-extendable if any two 
independent edges of X are contained in a perfect matching of X. In this paper, we 
prove that a connected Cayley graph of even order on a dihedral group is 2-extendable 
if and only if it is not isomorphic to anyone of the following circulant graphs: 

(I) Z2n(1, 2n - 1), n ~ 3; 

(II) Z2n(1,2,2n-l,2n-2), n~3; 

(III) Z4n(1,4n -1,2n), n ~ 2; 

(IV) Z4n+2(2,4n, 2n + 1), n ~ 1; and 

(V) Z4n+2(1,4n+l,2n,2n+2), n ~ 1. 

1. Introduction. 

For a simple graph X, we use V(X) and E(X) to denote the vertex-set and the 

edge-set of X respectively. For any set S <; V(X), we denote by X[S) the subgraph 

of X induced by S. The edge incident with vertices x and y is denoted by xy. 

Let G be a group and S a subset of G such that the identity element 1 f/; S 

and x-I E S for each xES. The Cayley graph X(G; S) on the group G has the 

elements of G as its vertices and edges joining 9 and g8 for all 9 E G and 8 E S. 

We call 5 the symbol set, and say that the edge g(g8) has the symbol s. It is well

known that every Cayley graph is vertex-transitive. For S <; G, we denote by (S) 

the subgroup of G induced by S. When the group is cyclic, or G ~ Zm, the Cayley 

graph X (G; S) is called a circ'U,lant and is denoted by Zm (S). 

The dihedral group Dn is a group which is generated by two elements p and 

T, where pn T2 = 1 and TpT = p-l. vVe denote {XT I x E (p)} by (p)T. From 

the relations pn = T2 = 1 and TpT = p-l, we can easily obtain (piT)2 = 1 and 

pi Tp - j = Tp-(i+ j ) = pi+jT,which are useful later. It is easy to see that Dn has a 

cyclic subgroup (p) of index 2 which is isomorphic to Zn. Moreover, Dn = (p) U (p)T. 

A perfect matching of a graph X is a set of independent edges which together 

cover all the vertices of X. For a positive integer k, if IVI is a set of k independent 
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edges of X and M* is a perfect matching of X such that M ~ M*, we call M* a 

perfect "!batching extension of M, ~r M can be extended to M*. A graph X is said 

to be k-extendable if it contains k independent edges and any k independent edges 

of X can be extended to a perfect matching of X. 

The concept of k-extendability was introduced by Plummer [5] in 1980 and he 

(see [5], [6], [7]) studied the relationship between k-extendability and other graph 

parameters, e.g., degree, connectivity, genus, etc .. The motivation for studying k

extendable graph is to determine a greatest lower bound on the number of different 

perfect matchings in a graph (which has a perfect matching). See, for instance, 

[5] for more details. Little, Grant and Holton [3] gave a characterization of 1-

extendable graphs and Yu [11] further obtained a characterization for k-extendable 

graphs. Schrag and Cammack [8J and Yu [10] classified the 2-extendable generalized 

Petersen graphs. Recently, Chan, Chen and Yu [2] classified the 2-extendable Cayley 

graphs on abelian groups. Their classification, as stated below, will be used in the 

proof later. 

Theorem 1.1. (Chan, Chen and Yu [2]) Let X = X( G; S) be a Cayley graph 

on the abelian group G of even order. Then X is 2-extendable if and only if it is 

not isomorphic to any of the following graphs: 

(I) Z2n(1,2n -1), n ~ 3; 

(II) Z2n(1, 2, 2n - 1, 2n - 2), n ~ 3; 

(III) Z4n(1,4n 1,2n),n~2; 

(IV) Z4n+2(2,4n, 2n + 1), n ~ 1; and 

(V) Z4n+2(1,4n + 1, 2n, 2n + 2), n ~ 1. 

Stong [9] has proved that any Cayley graph on a dihedral group is I-factorizable. 

His result implies that X(Dn; S) is I-extendable. In this paper, we shall give a 

classification for 2-extendable Cayley graphs on dihedral groups by showing that, 

except for the five classes of graphs in Theorem 1.1, X(Dn; S) is 2-extendable. 

From now on, we shall assume that X = X(Dn; S) is connected, that is, S is 

a generating set of D n , or (S) = Dn. For convenience, we let S' = S n (p) and 

S" = Sn((p)r). Then clearly, S" f:. 0 as X(Dn; S) is connected. Also, without loss 

of generality, we may always assume rES". Let Es be a set of edges which has the 

symbol s for any s E S. Then, for s E S", Es is a perfect matching of X(D n; S). 

vVe introduce a class of graphs, denoted by C[2q, s, t] (where s+t == a (mod 2)), 

which are defined as follows. The vertex-set is {( i, j) I a ::; i ::; 2q 1, a ::; j ::; s - I}, 
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which is the cartesian product of Z2q and Zs' The edge-set consists of three types 

of pairs as given below: 

(1) (i,j)(i + 1,j) and (2q -1,j)(O,j), where i = 0,1,2, ... , 2q - 2 and j = 0,1,2, ... , 

s -1; 

(2) (i,j)(i,j + 1), where i + j == ° (mod 2), i = 0,1,2, ... ,2q 1 and j = 

0,1,2, ... , s - 1; and 

(3) (2i + 1, O)(2i + 1 + t, s - 1), where i = 0,1, ... , q - 1 and the first coordinates 

are computed modulo 2q. 

Clearly, C[2q, s, t] is a 3-regular graph. Alspach and Zhang [1] introduced the brick

product of C2q with Ps which is a C[2q, s, t] without edges of type (3). It was proven 

in [1] that C[2q, s, t] is a Cayley graph on a dihedral group. As an example, The 

graph C[6, 5, 1] is given in Figure 1.1. 

(0,1) (0,2) (0,3) (0,4) 
(0,0)"---' 

(1,0) 

(2,0).-+--' 

(3,0) 

( 4,0) .-r---"7~ 

(5,0) 

Figure 1.1. The graph C[6, 5,1] 

To conclude this section, we make the following obs·ervation which sketches the 

structure of Cayley graphs on dihedral groups. 

Observation 1.2. A Cayley graph X = X(Dn; 5) on a dihedral group Dn 
can be decomposed into two subgraphs on (p) and (p)T together with a class of 

perfect matchings joining them. The two subgraphs on (p) and (p)T are isomorphic 

and both are isomorphic to a circulant H on Zn' Furthermore, if 15"1 = I, then X 

is isomorphic to H X J{2. 

Proof. Let X[(p)] and X[(p)T] be the induced subgraphs on (p) and (p)T, 
respectively. Then X[(p)] = X((p); 5') ~ Zn(5*), where 5* = {i I pi E 5'}, which 

is a circulant and rP : X((p)] --t X[(p)T] defined by rP(pi) = /T is an isomorphism 

(note that X [ (p)] may be edgeless). 

The class of perfect matchings is {E sis E 5"}. Moreover, if 5" = {T}, then, 

since the isomorphism rP carries eac:h pi to piT which is adjacent to pi, we have: 

X ~ H X J{2. I 
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We set EI = E(X[(p))), E2 

E(X) = EI U E2 U E3. 

2. Basic .Lemmas. 

E(X[(p)TJ) and E3 = E(X(DniS")). Then 

We need the following lemmas in the proof of the main theorem. 

Lemma 2.1. If n is odd, then Zn(S) x J(2 ~ Z2n(2S U {n}). 

Proof. Define a mapping f from Zn(S) x J(2 to Z2n(2S U {n}) by 

{ 
2x (mod 2n) if y = 0, 

f( x, y) = 2x + n (mod 2n) if y = 1. 

Then, it is easy to see that f is the required isomorphism. III 

Lemma 2.2. Let X = X(Dn; {f/T, pj T, p±k}) be connected. 

(1) If X(Dni {piT, pjT}) is connected, then X is a 3- or 4-regular circulant. 

(2) If X(Dni {piT, pJ T}) is disconnected, then X has C2m X Ph as a spanning sub

graph for some m 2:: 2 and h 2:: 2. 

Proof. (1) Let Xl = X(Dn; {piT, pjT}). Since piT and pjT are of or

der 2, Xl is a 2-regular graph. If it is connected, then it is a 2n-cycle 
1(piT)(pi-j)(p2i-jT)(p2(i-j») ... (p(n-l)(i-j»)(pni-(n-I)jT)l. We use {O, 1,2, "'j 

2n - I} to relabel this cycle so that pti-(t-l)j T f-t 2t - 1 and pt(i- j) f-t 2t. Then 

the cycle becomes 012··· (2n - 1)0 after the relabelling. 

Let pk = ph(i- j ). Then edges of X with symbol l (resp., p-k) be

come edges with symbol 2h (resp., -2h) after relabelling. Therefore, X = 
X(Dn; {/T,pjT,p±k}) ~ Z2n({1,2n - 1, ±2h}). If h = %, then X is 3-regular. 

Otherwise, it is 4-regular. 

(2) If Xl = X(Dn; {piT, pjT}) is disconnected, then it is a union of h disjoint 

even cycles C2m , for some m > 1, h > 1. 'We can arrange the vertices of each cycle 

in a column such that the first column begins with 1, the second column begins 

with pk (note that pk does not belong to the first column, for otherwise X will 

be disconnected), the third column begins with p2k, and so on. We thus obtain 

a 2m x h array in which each row forms an h-path whose edges have the same 

symbol pk or p-k (an example with X = X(D12; {T,p4 T,p5,p-5}) is illustrated in 

Figure 2.1). Therefore, X has a spanning subgraph C2m X Ph. .. 

vVe quote the following result from [1], which is implied in the proof of Theo

rem 3.1 of [1). 
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1 

.\ .\ .\ \ \ \ \ 
p4T p7 T 

p4 p7 

p8 T pH T 

I I 

V 1/ 1/ il 
p8 pll 

T p3 T 
pST plOT 

Figure 2.1. 

Lemma 2.3. (Alspach and Zhang [1]) Let X = X(Dn; {piT,pjT,pkT}) be con

nected. If X(Dn; {piT, pjT}) is disconnected, then X is isomorphic to C[2q, 5, t] for 

some q ;:: 2, s :;:: 2 and t ;:: l. 

We also need the following result in [2]. 

Lemma 2.4. (Chan, Chen and Yu [2]) C2m X Ph (m > 2, h > 2) tS 2-

extendable. 

3. The Main Theorem. 

In this section, we shall prove the following result which is a characterization of 

2-extendable Cayley graphs on dihedral groups. 

Theorem 3.1. Let X = X(Dn; S) be connected, n ;:: 2. Then X tS 2-

extendable if and only if. X is not isomorphic to any of the following graphs. 

(I) Z2n(1,2n-l),n;::3; 

(II) Z2n(1, 2, 2n - 1, 2n - 2), n ;:: 3; 

(III) Z4n(1,4n - 1, 2n), n ;:: 2; 

(IV) Z4n+2(2,4n,2n + 1), n;:: 1; and 

(V) Z4n+2(1,4n + 1, 2n, 2n + 2), n ;:: 1. 

Proof. It is not hard to see that each class of graphs in (I) - (V) can be 

realized by Cayley graphs on dihedral groups. If X is isomorphic to any graph in 

these classes, then X is not 2-extendable, by Theorem 1.1. 

Let X = X(Dn; S). vVe shall show that if X is not isomorphic to any of the 

graphs in the five classes, then X is 2-extendable. 

If n = 2, then X = X(D2; 5) is either C4 or J{4. In any case, X is 2-extendable. 

So we may assume that n ;:: 3. Choose arbitrarily two independent edges el and 
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ez of X. Recall that El = E(X[(p)]), Ez = E(X[(p)r]), E3 = E(X(Dn; 5")) and 

rES. 

Case 1. AI = {el' ez} ~ E1 or Ez. 

Since X[(p)] == X[(p)r], we may assume that AI ~ E1. Suppose el = (pi)(pi) 

and ez = (pk)(ph). Then i,j,k and h are all distinct. Let 1\1/* = (Er U 

{el' ez, (pir)(pjr), (pkr)(phr)}) - {(pi)(pir), (pj)(pjr), (pk)(lr), (ph)(phr)}. Then 

l1/1* is a perfect matching containing J\1. 

Case 2. 1'v! n E3 i- 0 and ~V1 n (El U E2 ) i- 0. 

Without loss of generality, assume el (pi)(pi) E E1 and e2 = 
(pk)(pk+hr) E E3 , where k,i and j are all distinct and phr E 5". Then 

(Ephr U {el,(pi+hr)(pj+hr)}) - {(pi)(pi+hr),(pj)(pj+hr)} is a perfect matching 

of X which contains 1\1. 

Case 3. e1 EEl, ez E Ez. 

Let GI , Gz, ... , Gr be the components of X[(p)). Then G j == Gj for 1 :::; i,j :::; r. 

Let Gi be the subgraph of X[(p)r] induced by {xr ! x E V(G j )}. Then G~ == Gj 

(l~i:::;r). 

Then, we have the following subcases to consider. 

Case 3.1. el and ez lie in G i and Gj, respectively, and i =I=- j. 

Let el = (pi)(pj) and ez = (pkr )(ph r ). Then 

Er U {el' ez, (pir)(pjr), (pk)(ph)}) - {(/)(pi r ), (pJ)(pir), (pk)(pkr), (ph)(phr)} 

is a perfect matching containing el and e2. 

Case 3.2. el and ez lie in G i and Gi, respectively, and !V(Gi)! = IV(GDI is 

even. 

It is easy to see that every connected circulant of even order is I-extendable 

and each component of X[(p)] is a circulant. Hence el can be extended to a perfect . 

matching Nh in X[(p)] and ez can be extended to a perfect matching .iV1z in X[(p)r]. 

Then lvh U N1z is a perfect matching of X as required. 

Case 3.3. el E E(Gi ), ez E E(GD for some i and IV(G i )! = !V(Gi)1 is odd. 

Let el = (pi)(pj) and ez = (l ~)( phr). 

(a) If X [(p)] is disconnected. then so is X (Dn; 5' U {r}). Since X is connected, 

there exists pmr E 5" so that pi. pTn r = pi+mr i- V(Gi). Therefore, {x· (pmr)! 

x E V( Gin .n V( Gi) = 0. In this case, 

(Epmr U {el' e2, (pi+mr)(pj+mr), (pk-m)(ph-m)}) 

_{(pi)(pi+mr), (pj)(pj+mr), (/-m)(/r), (ph-m)(phr)} 
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is a perfect matching which contains el and e2' 

(b) If X [(p)] is connected, then n is odd. Let n = 2k + l. 
If 15'1 ~ 4, then, by Observa.tion 1.2 and Lemma 2.1, X' = X(Dni 5' u {;}) ~ 

Zn(S*)XK2 ~ Z2n({n}U2S*) where 5* = {i I pi E 5'} (by Lemma 2.1). Hence X' 

is a circulant of degree at least 5 and is 2-extendable by Theorem 1.1. But X' is a 

spanning subgraph of X which contains el and e2' Hence {el' e2} can be extended 

to a perfect matching of X. 

Suppose now 5' = {p±i}. Then el and e2 have the same symbol. If 5" = {;}, 
then X is 3-regular and X ~ Z4k+2(2k + 1,2, 4k), which is a graph belonging to class 

(IV). Hence we must have iS"1 2: 2. When 15"1 = 2 and X(D n ; 5") is disconnected, 

X(Dn; 5" US') has C2m X Ph as a spanning subgraph by Lemma 2.2, where h 2: 2. 

Since h is odd, so we have h 2: 3. Therefore, we can rearrange the column in the 

proof of Lemma 2.2, such that el, e2 E E( C2m X Ph). But C2m X Ph is 2-extendable 

(by Lemma 2.4). Hence el and e2 can be extended to a perfect matching of X. 

When 5" = 2 and X(Dni 5") is connected, X(Dn; 5" U 5') is a 4-regular 

circulant by Lemma 2.2 again. If X = X(Dni 5) = X(D 2k+1 i 5) ~ Z4k+2(1, 4k + 
1, 2k, 2k+2), then X is a graph of class (V), which is not 2-extendable. (For instance, 

X(Dsi {;, pr, p2, p3}) ~ Zlo(l, 4, 6, 9) is such a graph.) In any other cases, X(Dnj 5) 

is 2-extendable by Theorem 1.1. 

Now assume 15"1 > 2, we shall show that el and e2 can be extended to a perfect 

matching of X. Note again that el and e2 have the same symbol (as 5' = {p±i}). 

Without loss of generality, we assume that el = l(pi), e2 = (pi; )(p2i;). If pi; E 5", 

then (Epir U {el, e2}) - {l(pi;), (pi)(p2i;)} is a perfect matching containing el and 

e2. If pi; ¢:. 5", then there is a pj; E 5" such that j #- 0, j #- 2i as IS" I 2: 3. Let 

M* =(Epir U {el,e2,(pj;)(pi+ j;),(pi- j )(p2i- j )}) {l(pj;),(pi)(pi+ j;)), 

(pi- j)(pi;), (p2i- j )(p2i;)}. 

Then M* is a perfect matching of X which extends el and e2. 

Case 4. {el, e2} ~ E 3 · 

If el and e2 have the same symbol pi/. Then Epir is a perfect matching of X 

which contains el and e2. So we assume that el has symbol pi; and e2 has symbol 

pjr,i>j. 

Case 4.1. If Xl = X(Dni {pi;,pj;)}) is disconnected. Then Xl is a disjoint 

union of some even cycles. If e 1, e2 belong to different cycles, then we can easily 

extend el and e2 to a perfect matching of X. So suppose that el and e2 belong 
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to the same cycle and no perfect matching of this cycle contains both el and e2' 

Let G1 ,G2 , ... ,Gh be disjoint cycles of Xl, where Gi ~C2m (1 ~ i ~ h) and 

el, e2 E E( G1 ). Since X is vertex-transitive, we may assume el = l(piT). Thus G 1 

is a 2m-cycle 1(piT)(pi-j)(p2i-jT)(p2(i-j») ... (p(m-l)(i-j»)(pmi-(m-l)jT)l (where 

m(i - j) == 0 (mod n)). 

(a) Suppose 5' {pi- j, pZ(i- j), ... , p(m-l)(i- j)} is not empty, say containing pk. 

Since pk f:. V(Gd, we may assume that pk E V(G2 ). Then, by Lemma 2.2, the sub

graph of X(Dn; {piT, pjT, l, p-k}) induced by V( Gd U V( G2) contains a spanning 

subgraph which is isomorphic to CZm x ](z and contains el, e2. By Lemma 2.4, 

CZm x ](2 is 2-extendable. Thus there is a perfect matching lvI' of C2m X K2 con

taining el and ez. For other Gi, i 2: 3, simply choose a perfect matching Mi of Gi. 
h 

Then M' U (,U M i ) is a perfect matching of X containing el and e2. 
)=3 

(b) If 5' {pi-j ,p2(i-j), ... ,p(m-l)(i- j)} = 0, then X(Dni5' U {piT,piT}) is 

disconnected. Since X is connected, there is a pT T E 5" such that the edges with 

symbol pTT join G1 and another Gi. Let X' = X(Dni {piT,pjT,pTT}). Then each 

component of X' is also a Cayley graph on a dihedral group Db for some b. So, 

without loss of generality, we assume that X' is connected. By Lemma 2.3, XI is 

isomorphic to C[2q, s, t] for some q 2: 2, s 2: 2 and t 2: 1. 

In this case, we may assume that el = (0,0)(1,0) and e2 = (2p+ 1, 0)(2p+2, 0). 

If s is even, let 

lvI = { (0, j) (1, j) I j = 0, 1, 2, ... , 8 - 2} U {( 2, i) (2, i + 1) I i = 0, 2, 4, ... , 8 - 2} U 

{(i,j)(i+l,j) I i=3,5, ... ,2q-3;j =0,1,2, ... ,8-2}U 

{(2q-l, 0)(2q-l +t, 8 -1), (2q-l, 1 )(2q-1, 2,), ... , (2q 1, 8-3)(2q-l, 8 - 2)} 

UB 

where B is a perfect matching of (CZq x {s - I}) - {(2, s - 1), (2q - 1 + t, s - I)} 

which is a union of paths of odd length (since 2q - 1 + t 2 = 2q - 3 + t is odd). 

Then A1 is a perfect matching of X which contains el and e2. 

If s is odd, let 

lvI ={(O,j)(l,j) I j = 0,1,2, ... , 8-2} U {(2, i)(2, i+l) Ii = 0,2,4, ... ,s-3}U 

{(i,j)(i+1,j) li=3,5, ... ,2q-3;j =0,1,2, ... ,8 2}U 

{(2q-1, 0)(2q-1+t, s -1), (2q-1, 1 )(2q-1, 2,), ... , (2q-1, s -2)(2q-l, s-l)} 

UB 
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el 1··.··········1·\ r··,.·········!······ 1·········· 
""'" .:."." .... " .'":' ........ " 

"" .:, ~ 
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. i· . '. """ .~. /', . 

Figure 3.1. 

el r·······}·. I .... '1: ... 1. 
: ':'" :', 

~ .. \ 
:: .... ; .. :. 

e2 ri ..... !· ri ' ''1. 
. . . . 

~ 

Figure 3.2. 

where B is a perfect matching of (C2q x {s -I}) - {(2q-1, s -1), (2q -1 +t, s -I)} 

which is a union of paths of odd length (since 2q -1 + t - (2q -1) = t is odd). Then 

M is a perfect matching of X which contains el and e2. (We illustrated the above 

patterns with C[6, 6, 2] and C[6, 5, 3] in Figures 3.1 and 3.2, respectively.) 

Case 4-2. Xl = X(Dni {piT, pjT}) is connected. Then Xl ~ C2n . 

(a) If S = {piT, pjT}, then X ~ C2n = Z2n(1, 2n -1), (n ?: 3), which is in class 

(I). 

(b) If S {piT, pjT, pn/2}, then n is even, say n = 2m. By the proof of 

Lemma 2.2, X(Dn; S) is a 3-regular circulant and X(Dn; S) ~ Z2n(1, 2n -1, n) = 
Z4m(1, 4m - 1, 2m). This is a graph of class (III). 

(c) If S = {piT,pjT,pk,p-k}, (k # ~), then X(Dni 5) is a 4-regular circulant 

by the proof of Lemma 2.2. Since a circulant is a Cayley graph on abelian group, by 

Theorem 1.1, X(Dn; S) is 2-extendable if it is either not isomorphic to Z4k+2(1, 4k+ 

1, 2k, 2k + 2), (which belongs to class (V)), or to Z2n(1, 2, 2n -1, 2n - 2), (which is 

a graph in class (II)). 

(d) If IS'I ?: 3, then X( Dn; S' U {piT, pjT}) is a circulant of degree at least 5, by 

the proof of Lemma 2.2. By Theorem 1.1, X(D n; S U {piT, pjT}) is 2-extendable. 

Hence {el' e2} can be extended to a perfect matching of X. 



(e) If 15'1 = 0, then 15"1 ~ 3. vVe have l T E 5" for some k distinct from i and 

J. We shall show that, for some pkT E 5", X' = X(Dn; 5*) has a perfect matching 

containing {el,ed, where 5* = {piT,piT,pkT}. 

If X(Dn;{piT,piT}) is disconnected, then we can choose pkT E S" (because 

X is connected) such that the edges with symbol pkT join two cycles produced by 

piT and piT. This case was dealt in Case 4.1(b) and we know the el and e2 can be 

extended to a perfect matching of X(Dn; 5*) and then a perfect matching of X. 

T 

.... ----. .... 

\ 
p-(m~ 

~ ~}~ ~ ~ .............•.. 

Figure 3.3. 

Assume now that X(Dn; {piT, pjT}) is connected. Then it is isomorphic 

to C2n . For convenience, we can assume that piT = T. Then C2n = 
1(T)(p-i)(p-iT)(p-2j)(p-2iT)'" (piT)l. Also assume that el = l(T), e2 = 
(p-qjT)(p-(q+l)j). Let pk = p-m j . We can assume that m > q+ 1, (or else consider 

p-k). Let e3 = (p-j)(p-(m+l)j T). Then C2n - {I, T, p-qiT, p-(q+1)i, p-j, p-(m+l)j} 

is a union of paths of even order and so contains a perfect matching lv!. Then 

1'v1 U {el' e2, e3} is a perfect matching of X' which contains el and e2 (see the 

illustration in Figure 3.3, for the case q = 1). III 
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