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Abstract

Let G be a connected graph and let µ(G) = DD(G) − W (G), where
DD(G) and W (G) stand for the detour and Wiener numbers of G, re-
spectively. Nadjafi-Arani et al. [Math. Comput. Model. 55 (2012), 1644–
1648] classified connected graphs whose difference between Szeged and
Wiener numbers are n, for n = 4, 5. In this paper, we continue their
work to prove that for any positive integer n �= 1, 2, 4, 6 there is a graph
with µ(G) = n.

1 Introduction

It is well-known that an important domain in chemical graph theory is distance
properties of molecular graphs. A topological invariant is a numeric quantity from
the molecular graph of a molecule based on distances between any pair of vertices,
degrees of vertices, combination of distance and degree etc. Hosoya was the first
scientist who proposed the term topological index for characterizing the topological
nature of a graph [11]. The Wiener number or Wiener index is one of distance-
based topological invariants. It has been researched from the purely mathematical
viewpoint, giving rise to a vast corpus of literature over the last decades. We refer
the reader to a comprehensive survey of results for trees by Dobrynin, Entringer and
Gutman as an illustration of that effort [5]. For some of the numerous results obtained
for the Wiener index, see for example [4, 6, 7, 8, 9, 12, 13, 14, 16, 21, 22, 23, 24].

The detour index, in contrast to the Wiener index that considers the length
of the shortest path between vertices, considers the length of the longest distance
between each pair of vertices. This topological index has recently received some
attention in the chemical literature; see [1, 2, 3, 15, 18, 19, 20]. The detour index
certainly carries some interesting structural information for cyclic compounds. For
acyclic structures the Wiener and the detour indices are equal, since there is only a
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single possible path connecting any pair of vertices. Many methods and algorithms
for computing the Wiener index of a graph have been proposed in the chemical
literature. In recent years some mathematicians considered the relationship between
Wiener index and other topological indices. For instance, Nadjafi-Arani et al. [17]
computed the difference between Szeged and Wiener indices. They also constructed
graphs whose difference between Szeged and Wiener indices is n, for a given integer n.
In other words, they determined which numbers can be considered as the difference
between these topological indices. We continue the mentioned work to compute
the difference between detour and Wiener indices. In the next section, we give the
necessary definitions and some preliminary results. Our last section contains the
main results explicit formulas for the difference between Wiener and detour indices
of connected graphs. Here, our notation is standard and mainly taken from standard
books of graph theory such as [10].

2 Definitions and preliminaries

All graphs considered in this paper are simple and connected. The vertex and edge
sets of a graph G are denoted by V (G) and E(G), respectively. The distance dG(x, y)
between two vertices x and y of V (G) is defined as the length of any shortest path in
G connecting x and y and the distance matrix D = [dij] can be defined with entries
dii = 0 and dij, i �= j, as the distance between vertices vi and vj . By this notation
the Wiener index is

W (G) =
1

2

∑
u,v∈V (G)

dG(u, v).

The detour matrix was introduced in graph theory some time ago by F. Harary
[6] for describing the connectivity in directed graphs. The detour matrix, in contrast
to the distance matrix that records the length of the shortest path between vertices,
records the length of the longest distance between each pair of vertices. The detour
distance ddG(x, y) between two vertices x and y is defined as the length of a longest
path in G connecting x and y. Then the detour index DD(G) of a graph G is defined
as

DD(G) =
1

2

∑
u,v∈V (G)

ddG(u, v).

3 Main Results

In this section, at first we compute the differences between detour and Wiener indices
of unicyclic graphs. The difference number of a graph G is denoted by µ(G) and it is
defined as µ(G) = DD(G)−W (G). It is clear that µ(G) = 0 if and only if G is a tree.
So, in the whole of this section by a graph we mean a connected graph with at least
one cycle. The detour and Wiener indices are integers and always detour index is
greater than or equal to the Wiener index. This implies that for a given non acyclic
connected graph G, µ(G) ≥ 0. We also prove that for every integer n �= 1, 2, 4, 6,
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there is a graph with µ(G) = n. Suppose Un is a unicyclic graph composed of a cycle
on n vertices where any vertex of its cycle is the root of a tree with ti vertices ti ≥ 1,
see Figure 1. In the following theorem let d

′
(x, y) = dd(x, x) − d(x, x), Ti be a tree

and kTi
− 1 be the number of pendant vertices of Ti, 1 ≤ i ≤ n.

Theorem 1 Let Un be a unicyclic graph. Then

µ(Un) = A + B + C + D,

where

A =
1

2

k∑
i=1

[
∑

xTi
�=x,y∈(Ti,C)

d
′
(x, y) +

∑
xTi

�=x,y∈(kTi
,C)

d
′
(x, y)],

B =
1

2

k∑
i,j=1,i�=j

∑
xTi

,xTj
�=x,y∈(Ti,kTj

)

d
′
(x, y),

C =
n2(n − 1)

2

{
n3

4
2|n

n(n2−1)
4

2 � n
,

D =
1

2

k∑
i,j=1,i�=j

[
∑

xTi
,xTj

�=x,y∈(Ti,Tj),i�=j

d
′
(x, y) +

∑
xTi

,xTj
�=x,y∈(kTi

,kTj
),i�=j

d
′
(x, y)].

Proof. It is clear that d′(x, y) = 0 if and only if dd(x, y) = d(x, y), if and only if x
and y belong to the same trees. Then

A =

k∑
i=1

[(|Ti| − 1)
∑

xTi
�=y∈C

(n − 2d(xTi
, y)) + (|KTi

| − 1)
∑

xTi
�=y∈C

(n − 2d(xTi
, y))],

B =
k∑

i=1

[(|Ti| − 1)(|kTj
| − 1)(n − 2d(xTi

, xTj
)),

D =
1

2

k∑
i,j=1,i�=j

[(|Ti| − 1)(|Tj| − 1) + (|kTi
| − 1)(|kTj

| − 1)](n − 2d(xTi
, xTj

)).

This completes the proof.

Theorem 2 Let G be a connected graph; then µ(G) �= 1, 2, 4, 6.

Proof. It is clear that the cycle graph C3 has the minimum non zero value of µ(G),
namely 3. This implies that µ(G) ≥ 3. Clearly, the second minimum value of µ(G)
holds in a unicyclic graph and this graph should have the shortest possible girth,
namely 3. On the other hand, this graph must have the minimum possible number
of vertices. Hence, if we add a new vertex in the middle of an edge, then the resulting
graph is a square and so µ(G) = 8. By adding a pendant edge to C3, one can see that
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Figure 1: The general form of a unicyclic graph.

Figure 2: Graph C3 + e.

µ(C3 + e) = 5 and this shows that for any graph G with G �∼= C3, we have µ(G) ≥ 5;
see Figure 2.

We can also add a new pendant edge to the graph C3 + e depicted in Figure 2
and thus we achieve three graphs depicted in Figure 3.

G H K

Figure 3: Three graphs obtained from C3 + e.

The computation of µ(G) for all these graphs shows that µ(G) = µ(H) = µ(K) =
7. By adding a new vertex to the middle of an edge of C3 + e, we also construct
a graph with µ(G) ≥ 7. Hence, for any unicyclic graph G �∼= C3, C3 + e, we have
µ(G) ≥ 7. Amongst all bicyclic graphs, it is sufficient to compute µ(G) for the
graphs depicted in Figure 4.

For all graphs in Figure 4, µ(G) is greater than or equal to 7. If a graph has more
than three cycles, clearly µ(G) ≥ 7 and this completes the proof.
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Figure 4: Three main bicyclic graphs in Theorem 2.

For r, s ≥ 0, we denote by U r,s
n a complete graph on n vertices with r and s

pendant vertices added to vertices u and v, respectively; see Figure 5.

r s

U
n

r,s

Figure 5: Graph U r,s
n .

The proof of the following theorem is straightforward:

Theorem 3 Let r, s ≥ 1; then

µ(U r,s
n ) = (n − 2)[n(n − 1))/2 + (n − 1)(r + s) + rs].

Corollary 1 Let s ≥ 1; then

µ(U r,s
3 ) = 2(r + s) + rs + 3.

The general form of the graph U r,s
3 in Corollary 1 is depicted in Figure 6. As a

result of Corollary 1, one can prove that µ(U0,s
3 ) = 2s + 3. This implies that for any

odd integer n = 2k + 1, µ(U0,k−1
3 ) = n.

r

s

Figure 6: Graph U r,s
3 .
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Theorem 4 For any integer n ≥ 7, there is a graph G where µ(G) = n.

Proof. Clearly, n mod 6 is one of the integers 0, 1, 2, 3, 4 and 5. If n ≡ 1, 3, 5 (mod
6), then n is an odd number and by the last discussion, the proof is complete. In
continuing, let n be an even integer; hence to complete the proof, we should consider
the three following cases:

• Case 1. n ≡ 0 (mod 6), n ≥ 8. In this case n = 6k for k = 2, 3, . . . and for the
graph G = U0,s

4 as depicted in Figure 8 with respect to Theorem 3, we have
µ(G) = n.

s

Figure 7: Graph U1,s
3 .

• Case 2. n ≡ 2 (mod 6), n ≥ 8. In this case n = 6k + 2 for k = 1, 2, . . . and by
using Corollary 1, for the graph U1,s

3 depicted in Figure 7, we have:

µ(U1,2k−1
3 ) = 6k + 2 = n

s

Figure 8: Graph U0,s
4 .

• Case 3. n ≡ 4 (mod 6), n ≥ 28. In this case n = 6k + 4 for k = 4, 5, . . . and
for the graph E depicted in Figure 9, we have µ(E) = n.

To complete the proof, it remains to obtain graphs G with µ(G) = 10, 16, 22.
One can see that µ(K4/e) = 10 and for graphs H and K depicted in Figure 10, we
have µ(H) = 16, µ(K) = 22. This completes the proof.

Theorem 4 implies that for a given integer n �= 1, 2, 4, 6, there is a graph G with
µ(G) = n. It should be noted that these graphs are not unique. In other words, there
are many graphs, except the graphs mentioned in Figures 1–10, with µ(G) = n. For
example, for n = 23, there are two non isomorphic graphs C5 + e, U0,10

3 such that
µ(C5 + e) = µ(U0,10

3 ) = 23.
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s

Figure 9: Graph E.

Figure 10: Graphs H and K in Theorem 4.

Lemma 1 Let G be a graph with k blocks, all of them being complete graphs and
intersecting in a common vertex, as depicted in Figure 11. Then

µ(G) =

k∑
i=1

(
ni

2

)
(ni − 2) +

k∑
i,j=1,i�=j

(nj − 1)(ni − 2),

where every block has ni vertices, i = 1, 2, . . . , k.

B
1

B
2

B
3

B
k

Figure 11: A graph with k blocks intersects in a common vertex.
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4 Conclusion

Let µ(G) be the difference between detour and Wiener indices. In this paper, we
have proved that for any integer n �∈ {1, 2, 4, 6} there is a graph with µ(G) = n. We
have also shown that for a given integer n, the graph G with µ(G) = n cannot be
determined uniquely.
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