Packing four copies of a tree into a complete graph

Sean P. Haler Hong Wang
Department of Mathematics
University of Idaho
Moscow, ID 83844-1103
U.S.A.
seanhaler@gmail.com hwang@uidaho.edu

Abstract

A graph G of order n is k-placeable if there exist k edge-disjoint copies of G in the complete graph K_{n}. Previous work characterized all trees that are k-placeable for $k \leq 3$. This work extends those results by giving a complete characterization of all 4-placeable trees.

1 Introduction

Only finite simple graphs are considered here and standard terminology and notation from [1] is used unless otherwise indicated. For any graph G, let $V(G)$ and $E(G)$ denote the vertex and edge sets of G, respectively. The degree of a vertex $v \in V(G)$, denoted $\mathrm{d}_{G}(v)$ (or $\mathrm{d}(v)$ when the context is clear) is the number of edges incident with v. Furthermore, a vertex of degree 1 is called an end vertex and the maximum (minimum) degree of G is denoted $\Delta(G)(\delta(G))$. Denote by K_{n} the complete graph of order n and P_{n} the path of order n and length $n-1$.

For graphs G and H, an embedding of G into H is an injective function $\phi: V(G) \rightarrow V(H)$ such that $\phi(a) \phi(b) \in E(H)$ whenever $a b \in E(G)$. It is notationally convenient to write $\phi: G \rightarrow H$ as opposed to $\phi: V(G) \rightarrow V(H)$ and to write $\phi(a b)$ for the edge $\phi(a) \phi(b)$. Furthermore, when $V^{\prime} \subseteq V(G)$ or $E^{\prime} \subseteq E(G)$ let $\phi\left(V^{\prime}\right)=\left\{\phi(v): v \in V^{\prime}\right\}$ and $\phi\left(E^{\prime}\right)=\left\{\phi(a b): a b \in E^{\prime}\right\}$. A packing of k graphs $G_{1}, G_{2}, \ldots, G_{k}$ into H is a k-tuple $\Phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right)$ such that, for $i=1,2, \ldots, k, \phi_{i}$ is an embedding of G_{i} into H and the k sets $\phi_{i}\left(E\left(G_{i}\right)\right)$ are mutually disjoint. If G is a graph of order n, a packing where $G=G_{1}=G_{2}=\cdots=G_{k}$ and $H=K_{n}$ is a k-placement of G.

A tree T is a connected acyclic graph. Besides the trees in Figure 1 and Figure 2 (which will be frequently referenced) several other trees of order $n \geq 8$ are important. A star S_{n} is a tree of order n where every edge is incident with a single vertex (e.g. $S_{8} \cong T_{1}$). Denote by S_{n}^{k} the tree of order n obtained by replacing a single edge of S_{n-k+1} with a path of length k (e.g. $S_{8}^{2} \cong T_{2}, S_{8}^{3} \cong T_{5}$, and $S_{8}^{4} \cong T_{12}$). Let $S_{n}^{2,2}$ be the tree of order n obtained by replacing two edges of S_{n-2} with paths of length 2 (e.g. $S_{8}^{2,2} \cong T_{4}$). Similarly let S_{n}^{2+} be the tree of order n obtained from S_{n-1}^{2} by joining a new end vertex to the vertex of degree 2 (e.g. $S_{8}^{2+} \cong T_{3}$). Finally, define the tree Y_{n} obtained from S_{n-2}^{2} by joining two end vertices to the end vertex of the length 2 path (e.g. $Y_{8} \cong T_{11}$).

Finally, let W be the set of trees consisting of T_{9}, T_{13}, and all trees Y_{n} and S_{n}^{4} where $n \geq 8$. The main result of this work is Theorem 1.1, which characterizes all trees that are 4-placeable.

Theorem 1.1. A tree T of order $n \geq 8$ has a 4-placement if and only if $\Delta(T) \leq n-4$ and $T \notin W$.
It is generally accepted that H. J. Straight first observed that each non-star tree of order n has a 2-placement [4, 11]. This result was first generalized in [4] and led to a great amount of work on packings of two graphs [2, 3, 5, 7, 8, 13]. The main inspiration for this work comes from H. Wang and N. Sauer who proved an analogous result for $k=3$ in [9]. A good deal of work on packings of

T_{0}

Figure 1: The 23 trees of order 8.

3 graphs has also been done $[6,10,12,13]$. There have been some results for arbitrary k [14], but the amount of work is rare by comparison. We present the following conjecture for arbitrary k.

Conjecture 1.2. Let $k \geq 1$ be an integer and let T be a tree of order n with $n>2 k$. If $\Delta(T)<n-k$ then there is a k-placement of T.

The proof of Theorem 1.1 is based mainly on the induction argument of Lemma 2.5. Several other supporting lemmas are given in Section 2. A "base case" for Lemma 2.5 involving trees of order $8,9,10$, and 11 is addressed separately in Section 3. A special case where Lemma 2.5 cannot be used is addressed in Section 4. Finally, the proof of Theorem 1.1 is given in Section 5.

2 Preliminaries

Let G be a graph, $V^{\prime} \subset V(G)$, and $E^{\prime} \subset E(G)$. A vertex adjacent to an end vertex is a node. Let $G-E^{\prime}$ be the graph with vertex set $V(G)$ and edge set $E(G) \backslash E^{\prime}$. Denote by $G-V^{\prime}$ the subgraph of G induced by $V(G) \backslash V^{\prime}$ and if $V^{\prime}=\{x\}$ then the notation of $G-\{x\}$ is relaxed to $G-x$. If V^{\prime} consists entirely of end vertices of G then $G-V^{\prime}$ is called a shrub of G. For example, P_{2} is a shrub of P_{2}, P_{3}, and P_{4} but not P_{5}. The neighborhood of a vertex x in G, denoted here as $N_{G}(x)$ is the set of vertices adjacent to x in G and $N_{G}\left(V^{\prime}\right)=\bigcup\left\{N_{G}(x): x \in V^{\prime}\right\}\left(N(x)\right.$ or $N\left(V^{\prime}\right)$ when G is clear).

Let Φ be a k-placement of G. A vertex v of G is k-placed by Φ if for each $i, j \in\{1,2, \ldots k\}$ with $i \neq j, \phi_{i}(v) \neq \phi_{j}(v)$. Moreover if every vertex of G is k-placed then Φ is dispersed. An edge $a b$ is k-placed by Φ if the set of edges $\left\{\phi_{i}(a b): i=1,2, \ldots, k\right\}$ are independent.

Lemma 2.1. Let V be a set of end vertices in a graph G of order n. If $G-V$ has a 4-placement with each vertex in $N_{G}(V)$ 4-placed, then G has a 4-placement.

Proof: Suppose $|V|=r$ and let $V=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. Let $H \cong K_{n}$ and let $X \subset V(H)$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$. Let $N_{G}(V)=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ where $u_{i} v_{i} \in E(G)$ for $i=1,2, \ldots, r$ and note

Figure 2: Special trees.
that the u_{i} 's may not be distinct. By assumption there is a 4-placement $\Phi=\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ of $G-V$ into $H-X$ such that each vertex in $N_{G}(V)$ is 4 -placed. For $j=1,2,3,4$, define $\gamma_{j}: G \rightarrow H$ so that $\left.\gamma_{j}\right|_{G-V}=\phi_{j}$ and $\gamma_{j}\left(v_{i}\right)=x_{i}$ for each $i \in\{1,2, \ldots, r\}$. It is straightforward that $\Gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$ is a 4 -placement of G.

Lemma 2.2. Let G be a graph of order n with $a b \in E(G)$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=$ $V(G) \cup\{w\}$ (for some $w \notin V(G)$) and $E\left(G^{\prime}\right)=E(G)-a b+a w+b w$. If Φ is 4-placement of G such that ab is 4-placed, then G^{\prime} has a 4-placement.

Proof: Let $H^{\prime} \cong K_{n+1}$ and let $x \in V\left(H^{\prime}\right)$. Let $\Phi=\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ be a 4-placement of G into $H^{\prime}-x$ that 4-places $a b$. For $i=1,2,3,4$, define $\gamma_{i}: G^{\prime} \rightarrow H^{\prime}$ by $\left.\gamma_{i}\right|_{G}=\phi_{i}$ and $\gamma_{i}(w)=x$. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$.

Suppose to contradict that Γ is not a 4-placement of G^{\prime}. Then there are two edges e and f of G^{\prime} such that $\gamma_{i}(e)=\gamma_{j}(f)$ for some distinct $i, j \in\{1,2,3,4\}$. Clearly $\gamma_{i}(e)$ and $\gamma_{j}(f)$ are not in $H^{\prime}-x$, since then $\phi_{i}(e)=\phi_{j}(f)$. Thus $\gamma_{i}(e)$ and $\gamma_{j}(f)$ are incident with x. Thus $e=r w$ and $f=s w$ where $r, s \in\{a, b\}$. Since $\gamma_{i}(e)=\gamma_{j}(f)$ then $\gamma_{i}(r)=\gamma_{j}(s)$. But then $\phi_{i}(r)=\phi_{j}(s)$ contradicting the assumption that $a b$ is 4 -placed by Φ. Thus Γ is 4 -placement of G^{\prime}.

In Lemma 2.2 vertices and edges that are 4 -placed by Φ are also 4 -placed by Γ, with the exception of the $a b$ edge. Thus Lemma 2.2 can be applied once to each 4-placed edge to produce new 4-placements of larger graphs. This is done in Section 4.

The following well-known observation is given here for completeness.
Lemma 2.3. There exists a dispersed 4-placement of P_{n} if $n \geq 8$.
Proof: Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let a be an end vertex of $T=P_{n}$. Suppose first that $n=2 t$ for a positive integer t. For $i=1,2,3,4$, define the path $P^{i}=v_{i} v_{i+1} v_{i-1} \cdots v_{i-t+1} v_{i+t}$, where the subscripts of the v_{j} 's are taken modulo n in $\{1,2, \ldots, n\}$. It is easy to see the set of $P^{1}, P^{2}, P^{3}, P^{4}$ are edge disjoint paths of order n in K_{n}. For $i=1,2,3,4$, define $\phi_{i}(T)=P^{i}$ with $\phi_{i}(a)=v_{i}$. Thus $\Phi=\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ is a dispersed 4-placement of T (see the 4-placement of T_{23} in Figure 3).

The case when $n=2 t-1$ is similar and is therefore omitted.

Before presenting the main induction lemma a technical result is needed. Define a subset V of $V(G)$ as nondeficient if $|N(S)| \geq|S|$ for every subset S of V. The proof of Lemma 2.4 uses Hall's Theorem which states (paraphrased) that in a bipartite graph, one partite set B can be matched into the other partite set A if and only if B is nondeficient (see Theorems 1.2.3 and 2.1.1 of [1]).

Lemma 2.4. Let $H=K_{4, m}$ where $m \geq 4$ and let A and B be the partite sets of H with sizes 4 and m, respectively. If $B_{1}, B_{2}, B_{3}, B_{4}$ are arbitrary subsets of B each with order 4 , then there exist disjoint matchings $M_{1}, M_{2}, M_{3}, M_{4}$ such that M_{i} matches B_{i} into A, for $i=1,2,3,4$.

Proof: Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and let $z=\left|B^{*}\right|$ where $B^{*}=\bigcap_{i=1}^{4} B_{i}=\left\{b_{1}, b_{2}, \ldots, b_{z}\right\}$. Suppose first that $z \geq 3$. For $i=1,2,3,4$, let $M_{i}^{\prime}=\left\{a_{i} b_{1}, a_{i+1} b_{2}, a_{i+2} b_{3}\right\}$ where the subscripts are taken
modulo 4 in $\{1,2,3,4\}$. In this case, each M_{i}^{\prime} can easily be extended to satisfy the lemma. Suppose next that $z=2$. For $i=1,2,3,4$, let $M_{i}^{\prime \prime}=\left\{a_{i} b_{1}, a_{i+1} b_{2}\right\}$ where the subscripts are taken modulo 4 in $\{1,2,3,4\}$. Again, each $M_{i}^{\prime \prime}$ can be extended, in turn, to satisfy the lemma.

Thus suppose $z \leq 1$ and assume to contradict that $B_{1}, B_{2}, B_{3}, B_{4}$ cannot be matched into A by disjoint matchings. Let c be the maximum number of the B_{i} 's that can be matched into A and note that trivially $1 \leq c<4$. Assume without loss of generality that M_{i} is a matching of B_{i} into A for all $i=1,2, \ldots, c$ such that the M_{i} 's are disjoint. Let $C=\bigcup_{i=1}^{c} M_{i}$ and $D=H-C$. Since c is maximal by Hall's Theorem B_{c+1} is not nondeficient in D. That is, there exists $S \subset B_{c+1}$ such that $\left|N_{D}(S)\right|<|S|$. Let $R=N_{D}(S)$. Note all the edges from S to $A \backslash R$ are in C so $c \geq \min \{|S|,|A \backslash R|\}$. Thus $1 \leq|R|<|S| \leq 3$. If $|R|=1$, then $|A \backslash R|=3$ implying $c=3$. But then $S \subset B^{*}$ and $|S| \geq 2$, contradicting $z \leq 1$. Therefore $|R| \neq 1$, implying $|R|=2,|S|=3$, and $c=3$.

Let $B_{4}=\left\{s_{1}, s_{2}, s_{3}, \bar{s}\right\}$ and $A=\left\{r_{1}, r_{2}, \overline{r_{1}}, \overline{r_{2}}\right\}$ where $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $R=\left\{r_{1}, r_{2}\right\}$. Without loss of generality, $M_{1} \supset\left\{s_{2} \overline{r_{1}}, s_{3} \overline{r_{2}}\right\}, M_{2} \supset\left\{s_{1} \overline{r_{2}}, s_{3} \overline{r_{1}}\right\}$, and $M_{3} \supset\left\{s_{1} \overline{r_{1}}, s_{2} \overline{r_{2}}\right\}$. If $s_{i} \in B_{i}$ for some $i=1,2,3$, then $s_{i} \in B^{*}$. It may be assumed without loss of generality that $s_{1} \notin B_{1}$ and $s_{2} \notin B_{2}$. There exists $p \in B_{2} \backslash S$ such that $p r_{1} \in M_{2}$. Let $M_{2}^{\prime}=\left(M_{2} \backslash\left\{p r_{1}, s_{1} \overline{r_{2}}\right\}\right) \cup\left\{p \overline{r_{2}}, s_{1} r_{1}\right\}$ and note that M_{1}, M_{2}^{\prime}, and M_{3} are mutually disjoint. Since $s_{2} \notin B_{2}$, then there exists a matching M^{*} of $\left\{s_{2}, s_{3}\right\}$ into $\left\{r_{1}, r_{2}\right\}$ in D. Let $M_{4}=M^{*} \cup\left\{s_{1} \overline{r_{2}}, \overline{s r_{1}}\right\}$. Then $M_{1}, M_{2}^{\prime}, M_{3}$, and M_{4} are mutually disjoint and $c=4$.

Lemma 2.5. Let T be a tree of order $n \geq 12$. Suppose that there are 4 end vertices $v_{1}, v_{2}, v_{3}, v_{4}$ of G adjacent to distinct nodes $u_{1}, u_{2}, u_{3}, u_{4}$, respectively. If there is a 4-placement of $G^{\prime}=G-$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then there is a 4-placement of G.

Proof: Let $H \cong K_{n}$ and let $A \subset V(H)$ with $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By assumption there exists a 4-placement $\Phi=\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ of G^{\prime} into $H-A$. For $i=1,2,3,4$, let $B_{i}=\left\{\phi_{i}\left(u_{j}\right): 1 \leq j \leq 4\right\}$ and let $B=\bigcup_{i=1}^{4} B_{i}$. Let D be the complete bipartite subgraph of H with partite sets A and B. By Lemma 2.4, there exist disjoint matchings M_{1}, M_{2}, M_{3}, and M_{4} such that M_{i} matches B_{i} into A within the subgraph D. It is straightforward that each ϕ_{i} can be extended to $\gamma_{i}: G \rightarrow H$ using M_{i}. Furthermore, since the M_{i} 's are disjoint $\Gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$ is a 4-placement of G.

This section concludes with a lemma showing the necessity condition of Theorem 1.1. The phrase degree considerations will refer to the fact that in a k-placement Φ of a tree T with order n, the sum of the degrees of vertices placed by Φ on a single vertex cannot exceed $n-1$. Also, a k-placement of a tree is tight if all edges of K_{n} are required, i.e. when $n=2 k$.

Lemma 2.6. Let T be a tree of order $n \geq 8$. Thas no 4-placement if $\Delta(T)>n-4$ or if $T \in W$.
Proof: Any tree with $\Delta(T)>n-4$ has no 4 -placement by degree considerations. Similarly, any 4-placement of T_{13} must place two vertices of degree three on a single vertex which is not possible by degree considerations. Thus let $T \in W \backslash\left\{T_{13}\right\}$ and suppose to contradict that $\Phi=\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ is a 4-placement of T. Let a be the vertex of T with degree $n-4$ and let $A=\left\{v_{i}: v_{i}=\phi_{i}(a), i=\right.$ $1,2,3,4\}$. By degree considerations the set of elements in A are distinct, and moreover, any vertex other than a that is placed on an element of A must be an end vertex.
Case 1: Let $T=T_{9}$. Let b be the end vertex adjacent to a. Note that $\left\{\phi_{i}(a b): i=1,2,3,4\right\}$ are the only edges placed by Φ in the subgraph induced by A, a contradiction since Φ must be tight.

Case 2: Let $T=S_{n}^{4}$. Let c be the end vertex not adjacent to a and let $z_{1}, z_{2}, \ldots, z_{n-5}$ be the other end vertices of T. Note that, for each embedding, at least 2 of the z_{i} 's must be placed in A. This means that Φ must place at least 8 distinct edges in the subgraph induced by A, a contradiction.

Case 3: Let $T=Y_{n}$. Let x_{1} and x_{2} be the end vertices not adjacent to a and $y_{1}, y_{2}, \ldots, y_{n-5}$ be the other end vertices of T. Furthermore, for $i=1,2,3,4$, let $r_{i}=\left|A \cap\left\{\phi_{i}\left(y_{j}\right): j=1,2, \ldots, n-5\right\}\right|$ and note that since each ϕ_{i} must place three end vertices in A so that $r_{i} \geq 1$. Assume without loss of generality that $r_{1} \geq r_{2} \geq r_{3} \geq r_{4}$. Finally, let c be the node adjacent to x_{1} and for $i=1,2,3,4$ let $\phi_{i}(c)=w_{i}$.

Case 3a: Suppose $r_{1}=1$. It may be assumed that $\phi_{1}\left(y_{1}\right)=v_{2}$ and $\phi_{2}\left(y_{1}\right)=v_{3}$. It must be the case that $\phi_{1}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{v_{3}, v_{4}\right\}$ and $\phi_{2}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{v_{1}, v_{4}\right\}$. Thus $w_{1} \neq w_{2}$. But then $\phi_{1}\left(N_{T}(a)\right) \cap\left\{v_{1}, v_{3}, v_{4}, w_{1}, w_{2}\right\}=\emptyset$, a contradiction since $d(a)=n-4$.

Case 3b: Suppose $r_{1}=3$. It may be assumed that $\phi_{1}\left(\left\{y_{1}, y_{2}, y_{3}\right\}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}, \phi_{2}\left(y_{1}\right)=v_{3}$, $\phi_{3}\left(y_{1}\right)=v_{4}$, and $\phi_{4}\left(y_{1}\right)=v_{2}$. Thus $\phi_{2}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{v_{1}, v_{4}\right\}$ and $\phi_{3}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{v_{1}, v_{2}\right\}$. Thus $w_{2} \neq w_{3}$ and so $\phi_{2}\left(N_{T}(a)\right) \cap\left\{v_{1}, v_{2}, v_{4}, w_{2}, w_{3}\right\}=\emptyset$, a contradiction since $d(a)=n-4$.
Case 3c: Suppose $r=2$. It may be assumed that $\phi_{1}\left(\left\{y_{1}, y_{2}\right\}\right)=\left\{v_{2}, v_{3}\right\}$. It may further be assumed that $\phi_{2}\left(x_{1}\right)=\phi_{3}\left(x_{1}\right)=v_{1}$ and in particular $w_{2} \neq w_{3}$. If Φ places no edge on $v_{2} v_{3}$, then $\phi_{3}\left(x_{2}\right)=v_{2}$, a contradiction since then $\phi_{2}\left(N_{T}(a)\right) \cap\left\{v_{1}, v_{2}, v_{3}, w_{2}, w_{3}\right\}=\emptyset$. Thus assume that $\phi_{2}\left(y_{1}\right)=v_{3}$. Note that $v_{1} v_{4}, v_{1} w_{2}, v_{1} w_{3} \notin \phi_{1}(E(T))$. Thus $w_{1} \in\left\{w_{2}, w_{3}\right\}$ and $\phi_{1}\left(\left\{x_{1}, x_{2}\right\}\right) \subset\left\{v_{4}, w_{2}, w_{3}\right\}$, so it must be the case that $w_{2} w_{3} \in \phi_{1}(E(T))$. Similarly, $v_{2} v_{1}, v_{2} w_{2}, v_{2} w_{3} \notin \phi_{2}(E(T))$, and thus $\phi_{2}\left(x_{2}\right)=w_{3}$, a contradiction since $w_{2} w_{3} \in \phi_{1}(E(T))$.

3 Small Order Trees

This section provides 4-placements for each tree that meets the criteria of Theorem 1.1 and has order $8,9,10$, or 11 as well as F_{4} and F_{5}. It is convenient to label the vertices T_{t} as $a_{t}, b_{t}, c_{t}, d_{t}, e_{t}, f_{t}, g_{t}$, and h_{t} starting from the top (as pictured in Figure 1) and proceeding left to right, then top to bottom. Under this scheme, for example, $E\left(T_{7}\right)=\left\{a_{7} b_{7}, a_{7} c_{7}, a_{7} d_{7}, a_{7} e_{7}, b_{7} f_{7}, b_{7} g_{7}, c_{7} h_{7}\right\}$. Furthermore, let $\mathbb{T}=\left\{T_{6}, T_{7}, T_{8}, T_{10}, T_{14}, T_{15}, T_{16}, T_{17}, T_{18}, T_{20}, T_{21}, T_{23}\right\}$.
Lemma 3.1. The following statements are true:
a) Each tree $T \in \mathbb{T}$ has a dispersed 4-placement.
b) T_{19} has a 4-placement where each vertex is 4-placed except b_{19}.
c) T_{22} has a 4-placement where each vertex is 4-placed except f_{22}.
d) F_{1}, F_{2}, F_{4}, and F_{5} have dispersed 4-placements.
e) F_{3} has a 4-placement such that each vertex of degree 4 is 4-placed.

Proof: Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Four embeddings for each of the trees in a through \mathbf{d} are shown in Figure 3. Each embedding assumes the v_{i} 's are placed on a circle with the subscripts strictly increasing as the angle increases from 0 to 2π. Occasionally, all the images of a particular vertex are colored to distinguish it from other vertices it may be mapped to in an automorphism. For example, the images of b_{6} are colored red, the images of c_{6} are colored green, etc. It is straightforward to verify that these embeddings produce the 4 -placements required. The only vertices not 4-placed are b_{19} (the images of which are colored red) and f_{22} (the images of which are also colored red).

A 4-placement of F_{3} satisfying e can be obtained from the 4-placement of T_{6} and applying Lemma 2.2 to the $a_{6} b_{6}$ edge.
Corollary 3.2. Let T be a tree of order $n \in\{9,10,11\}$ not in W and let U be a shrub of T with order 8 . If $\Delta(U) \leq 4$ then there is a 4-placement of T.

Proof: First, it may be assumed by Lemmas 2.1 and 3.1 that $U \notin \mathbb{T}$ and furthermore that T contains no shrub in $\mathbb{T} \cup\left\{F_{1}, F_{2}\right\}$. This leaves six possibilities for U. Let $V=V(T) \backslash V(U)$ and let $N=N_{T}(V)$.
Case 1: Suppose $U=T_{19}$. By Lemmas 2.1 and 3.1 it may be assumed $b_{19} \in N$. If $d_{19} \in N$, then T_{17} is a shrub of T and if not T_{20} is a shrub of T, both contradictions.
Case 2: Suppose $U=T_{22}$. By Lemmas 2.1 and 3.1 it may be assumed that $f_{22} \in N$. If $N=$ $\left\{c_{22}, d_{22}, f_{22}\right\}$ then T_{21} is a shrub of T and if not then T_{20} is a shrub of T. Again, these are both contradictions.

Case 3: Suppose $U=T_{9}$. If $a_{9} \in N$ (or $e_{9} \in N$) then $F_{1}\left(F_{2}\right)$ is a shrub of T, a contradiction. Thus suppose $N \cap\left\{a_{9}, e_{9}\right\}=\emptyset$. If $\left\{b_{9}, c_{9}, d_{9}\right\} \cap N \neq \emptyset$ then T_{14} is a shrub of T, a contradiction. However, if $\left\{f_{9}, g_{9}, h_{9}\right\} \cap N \neq \emptyset$ then T_{17} is a shrub of T, also a contradiction.

Figure 3: 4-placements for certain trees of small order. Similarly colored vertices in a packing are images of single vertex. These colors are used to make distinctions in trees with symmetry.

Case 4: Suppose $U=T_{12}$. If $h_{12} \in N$ then T_{22} is a shrub of T and this is handled by Case 2. Thus assume $h_{12} \notin N$. Note that $\left\{c_{12}, d_{12}, e_{12}\right\} \cap N=\emptyset$ since otherwise T_{10} is a shrub of T. Similarly, if b_{12}, f_{12}, or g_{12} are in N then T_{8}, T_{18}, or T_{21} are shrubs of T, respectively, all contradictions. But then $N=\{a\}$ and $T=S_{n}^{4}$, a contradiction. Thus T must have a 4-placement.

Case 5: Suppose $U=T_{11}$. Since T_{17} is not a shrub of T, then g_{11} and h_{11} cannot both be in N. If exactly one of g_{11} or h_{11} is in N, then T_{12} is a shrub of T and this reduces to Case 4. Thus it can be assumed that $\left\{g_{11}, h_{11}\right\} \cap N=\emptyset$. Similarly, $\left\{c_{11}, d_{11}, e_{11}\right\} \cap N=\emptyset$ since otherwise T_{10} is a shrub of T. Furthermore, $b_{11} \notin N$, since then T_{8} would be a shrub of T. Thus $N \subset\left\{a_{11}, f_{11}\right\}$. Note that $f_{11} \in N$ since otherwise $N \subset\left\{a_{11}\right\}$ and then $T=Y_{n}$, a contradiction. Therefore F_{3} is a shrub of T and Lemma 2.1 and Lemma 3.1 e provide a 4-placement of T.

Case 6: Suppose $U=T_{13}$. Note that a_{13} and d_{13} are not in N since then T_{7} or T_{14} would be a shrub of T, respectively. If $\left\{e_{13}, f_{13}, g_{13}, h_{13}\right\} \cap N \neq \emptyset$ then T_{18} is a shrub of T, a contradiction. Thus $N \subset\left\{b_{13}, c_{13}\right\}$ and so T_{8} is a shrub of T, a contradiction.

This completes the proof.
Lemma 3.3. Let T be a tree of order $n \in\{9,10,11\}$. If $\Delta(T) \leq n-4$ and $T \notin W$, then there is a 4 -placement of T.

Proof: Suppose the Lemma is false and let T be a counterexample. By Corollary $3.2 T$ does not contain a shrub U of order 8 with $\Delta(U) \leq 4$. Let u be a vertex of T with maximum degree. By Lemma 2.3 it may be assumed that $T \neq P_{11}$, and so T contains shrubs of order 8 ; therefore $d(u)>4$. If $n=9$, then there exists an end vertex in $N(u)$ and deleting this end vertex creates a shrub of order 8 with maximum degree 4 , a contradiction.

Suppose $n=10$. If $d(u)=6$, then there exists two end vertices in $N(u)$ and removing them gives a shrub of order 8 and maximum degree 4 , a contradiction. Thus $d(u)=5$. There exists an end vertex $v_{1} \in N(u)$. If $\Delta\left(T-v_{1}\right)=4$ then removing any additional end vertex of T produces a shrub of order 8 and maximum degree at most 4 , a contradiction. Thus $\Delta\left(T-v_{1}\right)=5$ and T contains two vertices of degree 5 and is thus uniquely determined. But then T_{6} is a shrub of T, a contradiction.

Therefore $n=11$. If $d(u)=7$, then there exists three end vertices in $N(u)$ and removing them gives a shrub of maximum degree 4 , a contradiction. If $d(u)=6$, there are end vertices v_{2} and v_{3} in $N(u)$. If $\Delta\left(T-\left\{v_{2}, v_{3}\right\}\right) \geq 5$ then T_{6} is a shrub of T, a contradiction. Thus $T-\left\{v_{2}, v_{3}\right\}$ has maximum degree less than 4 and removing any other end vertex produces a shrub of order 8 and maximum degree at most 4 , a contradiction. Thus $d(u)=5$. If $N(u)$ contains no end vertex then T is uniquely determined and contains F_{1} as a shrub. But by Lemmas 3.1 and Lemma 2.1 there is a 4-placement of T, a contradiction. Thus $N(u)$ contains an end vertex v_{4}. Again, $\Delta\left(T-v_{4}\right) \geq 5$ otherwise removing any two additional end vertices produces a contradiction. But then T must contain either T_{6} or T_{11} as a shrub, both contradictions.

Therefore no such T exists and the Lemma is true.

4 Tri-path trees

If T is a tree with exactly three distinct nodes then Lemma 2.5 cannot be applied. Fortunately, trees with three distinct nodes have a common structure, that is they each have a shrub consisting of three paths meeting at a single vertex. Define $Q\left(n_{1}, n_{2}, n_{3}\right)$ as the tree of order $n=n_{1}+n_{2}+n_{3}+1$ consisting of a single vertex a that begins three disjoint (except for a) paths of length n_{1}, n_{2}, and n_{3}, respectively, (see Figure 5). This section will show that each of these tri-path trees has a 4 -placement such that each of the end points is 4 -placed. It will be assumed that $1 \leq n_{1} \leq n_{2} \leq n_{3}$.

Lemma 4.1. Let T be the tree $Q\left(n_{1}, n_{2}, n_{3}\right)$ with order n. If $n \geq 10$ and $n_{1} \leq n-9$, then there is 4-placement of T such that each end point of T is 4-placed.

Proof: Let z_{1}, z_{2}, and z_{3} be the end vertices of the n_{1}, n_{2}, and n_{3} length paths in T, respectively. Let G be the graph of order n obtained from T by adding the edge $z_{2} z_{3}$. Finally, let $H \cong K_{n}$ and let $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Here, a 4-placement of G is constructed by a method similar to one used in Lemma 2.3. First, suppose that $n-1=2 t$ for some positive integer t. For each $i=1,2,3,4$, define the path $P^{i}=v_{i} v_{i+1} v_{i-1} \cdots v_{i-t+1} v_{i+t}$, where the subscripts of the v_{j} 's are taken modulo $n-1$ in $\{1,2, \ldots, n-$ 1\}. Again for $i=1,2,3,4$, let $b_{i}=v_{i}, c_{i}=v_{i+t}$, and a_{i} be such that the distance between a_{i} and b_{i} along path P^{i} is n_{1}. It is straightforward to see that the elements of $\left\{a_{i}, c_{i}: i=1,2,3,4\right\}$ are distinct since $n_{1} \leq n-9$. For $i=1,2,3,4$, let $E^{i}=E\left(P^{i}\right) \cup\left\{a_{i} v_{n}, c_{i} v_{n}\right\}$. Since the set of a_{i} 's and c_{i} 's are distinct, then $E^{i} \cap E^{j}=\emptyset$ when $i \neq j$ and the subgraph induced by each E^{i} is isomorphic to G (see Figure 4).

For $i=1,2,3,4$, let γ_{i} be an embedding of G into H such that $\gamma_{i}(E(G))=E^{i}$ and let $\Gamma=$ $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$. Note that it can be assumed that all vertices of G are 4 -placed by Γ except a single vertex x that is placed on v_{n}. Moreover, it may be assumed that $x \notin\left\{z_{1}, z_{2}, z_{3}\right\}$. Clearly, Γ is also a 4 -placement of T with each end vertex 4 -placed.

A similar argument can be used if $n=2 t$ for some positive integer t.
Lemma 4.2. Let T be the tree $Q\left(n_{1}, n_{2}, n_{3}\right)$ with order n. If $n \geq 8$ then there is a 4-placement of T such that each end vertex of T is 4-placed.

Proof: By Lemma 3.1, it may be assumed that $n \geq 9$. There are exactly nine tri-path trees with $n>8$ that do not satisfy the conditions for Lemma 4.1: $Q(1,1,6), Q(1,2,5), Q(1,3,4), Q(2,2,4)$, and $Q(2,3,3)$ for $n=9 ; Q(2,2,5), Q(2,3,4)$, and $Q(3,3,3)$ for $n=10$; and $Q(3,3,4)$ for $n=11$.

In the 4 -placement of $T_{17} \cong Q(2,2,3)$ given in Lemma 3.1 the edges $b_{17} c_{17}, a_{17} e_{17}$, and $a_{17} g_{17}$ are 4 -placed (see Figure 3). Using this and Lemma 2.2 there are 4 -placements of $Q(2,3,3), Q(2,2,4)$, $Q(3,3,3), Q(2,3,4)$, and $Q(3,3,4)$ with each end vertex 4-placed. An embedding of each remaining tree is shown in Figure 5 and these embeddings can be used to generate a dispersed 4-placements by rotating each embedding clockwise by one, two, and three vertices.

5 Proof of Theorem 1

The necessity of Theorem 1.1 is shown by Lemma 2.6. Assume to contradict the theorem is not true and let T be a counterexample of minimum order n. By Lemmas 3.1 and 3.3 it may be assumed that $n \geq 12$. Clearly, T has more than one distinct node and by Lemmas 2.1 and $3.1 T$ contains no shrub in $\mathbb{T} \cup\left\{F_{1}, F_{2}, F_{4}, F_{5}\right\}$.

Case 1: T has exactly 2 distinct nodes u_{1} and u_{2}. Let U be the shrub of T obtained by removing all end vertices. Clearly, $U \cong P_{s}$ for some $s \geq 2$ and by Lemmas 2.1 and $2.3 s \leq 5$. Note $s \neq 2$ since $\Delta(T) \leq n-4$ and T_{6} is not a shrub of T. Similarly $s \neq 4$ since T_{21} is not a shrub of T and $T \neq S_{n}^{4}$. Suppose that $s=5$. Then T_{22} is a shrub of T and $\left\{u_{1}, u_{2}\right\}=\left\{a_{22}, g_{22}\right\}$ and there is 4-placement of

Figure 4: The 4-placement of G in Lemma 4.1 with $n=13$ and $n_{1}=3$

Figure 5: Embeddings that produce dispersed 4-packings by rotation.
T using Lemmas 3.1 and 2.1. Now suppose that $s=3$. Then F_{3} is a shrub of T since $\Delta(T) \leq n-4$ and $T \not \approx Y_{n}$. Similarly, a 4-placement of T can be obtained from Lemmas 3.1 and 2.1.
Case 2: T has exactly 3 distinct nodes u_{1}, u_{2}, and u_{3}. Let U be the shrub of T obtained by removing all end-vertices of T and let $s=|V(U)|$. If $s \geq 8$, then by Lemmas 4.2 and 2.1 there is a 4-placement of T, so $s \leq 7$. Since T_{14}, T_{17}, and T_{20} are not shrubs of T, then $U \cong P_{s}$. Furthermore, since T_{23} is not a shrub of T then $s \leq 5$. Assume without loss of generality that u_{2} is not an end vertex of U. Suppose first $s=5$. Then T_{19} is a shrub of T since T_{20} is not. However, by Lemmas 3.1 and 2.1 there is a 4-placement of T, a contradiction. Similarly, if $s=4$ then either T_{10}, T_{16}, or T_{18} is a shrub of T, all contradictions. Finally, suppose $s=3$. Since T_{7} is not a shrub of T and $\Delta(T) \leq n-4$, then $d_{T}\left(u_{2}\right)=3$. Moreover, since $T \not \approx T_{13}$, without loss of generality $d_{T}\left(u_{1}\right) \geq 4$. But then T_{8} is a shrub of T, a contradiction.

Case 3: T has 4 distinct nodes u_{1}, u_{2}, u_{3}, and u_{4}. For $i=1,2,3,4$, let v_{i} be an end vertex adjacent to $u_{i}, V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and let $U=T-V$. Suppose first that $\Delta(U)>(n-4)-4$, then U is one of five trees: $S_{n-4}, S_{n-4}^{2}, S_{n-4}^{2+}, S_{n-4}^{2,2}$, or S_{n-4}^{3}. However this isn't possible since then at least one of $T_{6}, T_{7}, T_{8}, T_{10}, F_{1}$, or F_{4} is a shrub of T, a contradiction. Thus $\Delta(U) \leq(n-4)-4$. Therefore $U \in W$ since otherwise U has a 4-placement and by Lemma 2.5 so does T.

Case 3a: Suppose to contradict that $U=T_{9}$. Since neither F_{1} nor F_{2} are shrubs of T, then $a_{9}, e_{9} \notin N(V)$. But then $N(V) \cap\left\{f_{9}, g_{9}, h_{9}\right\} \neq \emptyset$ and T_{17} is a shrub of T, a contradiction.
Case 3b: Suppose to contradict that $U=T_{13}$. If $d_{13} \notin N(V)$ then T_{18} is a shrub of T. If $d_{13} \in N(V)$ then T_{14} is a shrub of T, both contradictions.

Case 3c: Suppose $U=S_{n-4}^{4}$. Label the P_{5} path in U as $y_{1} y_{2} y_{3} y_{4} y_{5}$ with $d_{U}\left(y_{1}\right)=n-9$ and let R_{1} be the set of remaining (end) vertices and $r_{1}=\left|N(V) \cap R_{1}\right|$. Suppose first $y_{5} \notin N(V)$. Note that $r_{1} \neq 0$ since T_{21} is not a shrub of T. Similarly $r_{1} \notin\{1,2,3\}$ since T_{10} is not a shrub of T. Thus $r_{1}=4$. Let $U^{\prime}=T-\left\{y_{5}, v_{2}, v_{3}, v_{4}\right\}$. Thus U^{\prime} is a shrub of T not in W and so it has a 4-placement. But then T has a 4-placement by Lemma 2.5, a contradiction. Thus $y_{5} \in N(V)$ and it may be assumed $v_{1} y_{5} \in E(T)$. Again $r_{1} \neq 0$ since otherwise $N(V) \cap\left\{y_{2}, y_{4}\right\} \neq \emptyset$ and T_{20} is a shrub of T. Similarly $r_{1} \notin\{1,2\}$ since T_{20} is not a shrub of T. Thus $r_{1}=3$ and F_{5} is a shrub of T, another contradiction.
Case 3d: Suppose to contradict that $U=Y_{n-4}$. Label the shrub isomorphic to P_{3} in Y_{n-4} as $x_{1} x_{2} x_{3}$ where $\mathrm{d}_{U}\left(x_{1}\right)=n-9$. Let $R_{2}\left(R_{3}\right)$ be the set of end vertices adjacent to $x_{1}\left(x_{3}\right)$ and let $r_{2}=\left|N(V) \cap R_{2}\right|\left(r_{3}=\left|N(V) \cap R_{3}\right|\right)$. Suppose to contradict $r_{3}=2$. If $r_{2}>0$ then T_{18} is a shrub of T and if $r_{2}=0$ then T_{17} is a shrub of T, both contradictions. Thus $r_{3}<2$. Note $r_{2} \neq 0$ since then $x_{2} \in N(V)$ and T_{8} is a shrub of T. Similarly $r_{2} \notin\{1,2,3\}$ since T_{10} is not a shrub of T. But then $r_{2}=4$ and F_{1} is a shrub of T, a contradiction.

This completes the proof.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London, (1978).
[2] B. Bollobás and S.E. Eldridge, Packings of Graphs and Applications to Computational Complexity, J. Combin. Theory Ser. B 25 (1978), 105-124.
[3] N. Sauer and J. Spencer, Edge Disjoint Placement of Graphs, J. Combin. Theory Ser. B 25 (1978), 295-302.
[4] D. Burns and S. Schuster, Embedding ($p, p-1$) graphs in their complements, Israel J. Math. 30 (1978), 313-320.
[5] P. Slater, S. Teo and H. Yap, Packing a Tree with a Graph of the Same Size, J. Graph Theory 9 (1985), 213-216.
[6] A. Hobbs, B. Bourgeois and J. Kasiraj, Packing Trees In Complete Graphs, Discrete Math. 67 (1987), 27-42.
[7] S. Teo and H. Yap, Two Theorems on Packings of Graphs, Europ. J. Combin. 8 (1987), 199207.
[8] H. P. Yap, Packing of Graphs-A Survey, Discrete Math. 72 (1988), 395-404.
[9] H. Wang and N. Sauer, Packing Three Copies of a Tree into a Complete Graph, European J. Combin. 14 (1993), 137-142.
[10] H. Wang and N. Sauer, Packing Three Copies of a Graph, J. Graph Theory 21 (1996), 71-80.
[11] M. Maheo, J. Saclé and M. Woźniak, Edge-disjoint Placement of Three Trees, European J. Combin. 17 (1996), 543-563.
[12] H. Kheddouci, S. Marshall, J. Saclé and M. Woźniak, On the Packing of Three Graphs, Discrete Math. 236 (2001), 197-225.
[13] M. Woźniak, Packing of Graphs and Permutations-A Survey, Discrete Math. 276 (2004), 379-391.
[14] A. Żak, A Note On k-placeable Graphs, Discrete Math. 311 (2011), 2634-2636.

