Packing four copies of a tree into a complete graph

SEAN P. HALER HONG WANG

Department of Mathematics University of Idaho Moscow, ID 83844-1103 U.S.A.

seanhaler@gmail.com hwang@uidaho.edu

Abstract

A graph G of order n is k-placeable if there exist k edge-disjoint copies of G in the complete graph K_n . Previous work characterized all trees that are k-placeable for $k \leq 3$. This work extends those results by giving a complete characterization of all 4-placeable trees.

1 Introduction

Only finite simple graphs are considered here and standard terminology and notation from [1] is used unless otherwise indicated. For any graph G, let V(G) and E(G) denote the vertex and edge sets of G, respectively. The *degree* of a vertex $v \in V(G)$, denoted $d_G(v)$ (or d(v) when the context is clear) is the number of edges incident with v. Furthermore, a vertex of degree 1 is called an *end vertex* and the maximum (minimum) degree of G is denoted $\Delta(G)$ ($\delta(G)$). Denote by K_n the complete graph of order n and P_n the path of order n and length n - 1.

For graphs G and H, an embedding of G into H is an injective function $\phi: V(G) \to V(H)$ such that $\phi(a)\phi(b) \in E(H)$ whenever $ab \in E(G)$. It is notationally convenient to write $\phi: G \to H$ as opposed to $\phi: V(G) \to V(H)$ and to write $\phi(ab)$ for the edge $\phi(a)\phi(b)$. Furthermore, when $V' \subseteq V(G)$ or $E' \subseteq E(G)$ let $\phi(V') = \{\phi(v) : v \in V'\}$ and $\phi(E') = \{\phi(ab) : ab \in E'\}$. A packing of k graphs $G_1, G_2, ..., G_k$ into H is a k-tuple $\Phi = (\phi_1, \phi_2, ..., \phi_k)$ such that, for $i = 1, 2, ..., k, \phi_i$ is an embedding of G_i into H and the k sets $\phi_i(E(G_i))$ are mutually disjoint. If G is a graph of order n, a packing where $G = G_1 = G_2 = \cdots = G_k$ and $H = K_n$ is a k-placement of G.

A tree T is a connected acyclic graph. Besides the trees in Figure 1 and Figure 2 (which will be frequently referenced) several other trees of order $n \ge 8$ are important. A star S_n is a tree of order n where every edge is incident with a single vertex (e.g. $S_8 \cong T_1$). Denote by S_n^k the tree of order n obtained by replacing a single edge of S_{n-k+1} with a path of length k (e.g. $S_8^2 \cong T_2$, $S_8^3 \cong T_5$, and $S_8^4 \cong T_{12}$). Let $S_n^{2,2} \cong t_4$). Similarly let S_n^{2+} be the tree of order n obtained by replacing from S_{n-1}^2 with paths of length 2 (e.g. $S_8^{2,2} \cong T_4$). Similarly let $S_n^{2+} \cong t_3$). Finally, define the tree Y_n obtained from S_{n-2}^2 by joining two end vertices to the end vertex of the length 2 path (e.g. $Y_8 \cong T_{11}$).

Finally, let W be the set of trees consisting of T_9 , T_{13} , and all trees Y_n and S_n^4 where $n \ge 8$. The main result of this work is Theorem 1.1, which characterizes all trees that are 4-placeable.

Theorem 1.1. A tree T of order $n \ge 8$ has a 4-placement if and only if $\Delta(T) \le n-4$ and $T \notin W$.

It is generally accepted that H. J. Straight first observed that each non-star tree of order n has a 2-placement [4, 11]. This result was first generalized in [4] and led to a great amount of work on packings of two graphs [2, 3, 5, 7, 8, 13]. The main inspiration for this work comes from H. Wang and N. Sauer who proved an analogous result for k = 3 in [9]. A good deal of work on packings of

Figure 1: The 23 trees of order 8.

3 graphs has also been done [6, 10, 12, 13]. There have been some results for arbitrary k [14], but the amount of work is rare by comparison. We present the following conjecture for arbitrary k.

Conjecture 1.2. Let $k \ge 1$ be an integer and let T be a tree of order n with n > 2k. If $\Delta(T) < n-k$ then there is a k-placement of T.

The proof of Theorem 1.1 is based mainly on the induction argument of Lemma 2.5. Several other supporting lemmas are given in Section 2. A "base case" for Lemma 2.5 involving trees of order 8, 9, 10, and 11 is addressed separately in Section 3. A special case where Lemma 2.5 cannot be used is addressed in Section 4. Finally, the proof of Theorem 1.1 is given in Section 5.

2 Preliminaries

Let G be a graph, $V' \subset V(G)$, and $E' \subset E(G)$. A vertex adjacent to an end vertex is a node. Let G - E' be the graph with vertex set V(G) and edge set $E(G) \setminus E'$. Denote by G - V' the subgraph of G induced by $V(G) \setminus V'$ and if $V' = \{x\}$ then the notation of $G - \{x\}$ is relaxed to G - x. If V' consists entirely of end vertices of G then G - V' is called a *shrub* of G. For example, P_2 is a shrub of P_2 , P_3 , and P_4 but not P_5 . The *neighborhood* of a vertex x in G, denoted here as $N_G(x)$ is the set of vertices adjacent to x in G and $N_G(V') = \bigcup \{N_G(x) : x \in V'\}$ (N(x) or N(V') when G is clear).

Let Φ be a k-placement of G. A vertex v of G is k-placed by Φ if for each $i, j \in \{1, 2, ..., k\}$ with $i \neq j, \phi_i(v) \neq \phi_j(v)$. Moreover if every vertex of G is k-placed then Φ is dispersed. An edge ab is k-placed by Φ if the set of edges $\{\phi_i(ab) : i = 1, 2, ..., k\}$ are independent.

Lemma 2.1. Let V be a set of end vertices in a graph G of order n. If G - V has a 4-placement with each vertex in $N_G(V)$ 4-placed, then G has a 4-placement.

Proof: Suppose |V| = r and let $V = \{v_1, v_2, \ldots, v_r\}$. Let $H \cong K_n$ and let $X \subset V(H)$ where $X = \{x_1, x_2, \ldots, x_r\}$. Let $N_G(V) = \{u_1, u_2, \ldots, u_r\}$ where $u_i v_i \in E(G)$ for $i = 1, 2, \ldots, r$ and note

Figure 2: Special trees.

that the u_i 's may not be distinct. By assumption there is a 4-placement $\Phi = (\phi_1, \phi_2, \phi_3, \phi_4)$ of G-Vinto H-X such that each vertex in $N_G(V)$ is 4-placed. For j = 1, 2, 3, 4, define $\gamma_j : G \to H$ so that $\gamma_j|_{G-V} = \phi_j$ and $\gamma_j(v_i) = x_i$ for each $i \in \{1, 2, \ldots, r\}$. It is straightforward that $\Gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$ is a 4-placement of G. \Box

Lemma 2.2. Let G be a graph of order n with $ab \in E(G)$. Let G' be the graph with $V(G') = V(G) \cup \{w\}$ (for some $w \notin V(G)$) and E(G') = E(G) - ab + aw + bw. If Φ is 4-placement of G such that ab is 4-placed, then G' has a 4-placement.

Proof: Let $H' \cong K_{n+1}$ and let $x \in V(H')$. Let $\Phi = (\phi_1, \phi_2, \phi_3, \phi_4)$ be a 4-placement of G into H' - x that 4-places ab. For i = 1, 2, 3, 4, define $\gamma_i : G' \to H'$ by $\gamma_i|_G = \phi_i$ and $\gamma_i(w) = x$. Let $\Gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$.

Suppose to contradict that Γ is not a 4-placement of G'. Then there are two edges e and f of G'such that $\gamma_i(e) = \gamma_j(f)$ for some distinct $i, j \in \{1, 2, 3, 4\}$. Clearly $\gamma_i(e)$ and $\gamma_j(f)$ are not in H' - x, since then $\phi_i(e) = \phi_j(f)$. Thus $\gamma_i(e)$ and $\gamma_j(f)$ are incident with x. Thus e = rw and f = swwhere $r, s \in \{a, b\}$. Since $\gamma_i(e) = \gamma_j(f)$ then $\gamma_i(r) = \gamma_j(s)$. But then $\phi_i(r) = \phi_j(s)$ contradicting the assumption that ab is 4-placed by Φ . Thus Γ is 4-placement of G'. \Box

In Lemma 2.2 vertices and edges that are 4-placed by Φ are also 4-placed by Γ , with the exception of the *ab* edge. Thus Lemma 2.2 can be applied once to each 4-placed edge to produce new 4-placements of larger graphs. This is done in Section 4.

The following well-known observation is given here for completeness.

Lemma 2.3. There exists a dispersed 4-placement of P_n if $n \ge 8$.

Proof: Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ and let *a* be an end vertex of $T = P_n$. Suppose first that n = 2t for a positive integer *t*. For i = 1, 2, 3, 4, define the path $P^i = v_i v_{i+1} v_{i-1} \cdots v_{i-t+1} v_{i+t}$, where the subscripts of the v_j 's are taken modulo *n* in $\{1, 2, \ldots, n\}$. It is easy to see the set of P^1, P^2, P^3, P^4 are edge disjoint paths of order *n* in K_n . For i = 1, 2, 3, 4, define $\phi_i(T) = P^i$ with $\phi_i(a) = v_i$. Thus $\Phi = (\phi_1, \phi_2, \phi_3, \phi_4)$ is a dispersed 4-placement of *T* (see the 4-placement of T_{23} in Figure 3).

The case when n = 2t - 1 is similar and is therefore omitted. \Box

Before presenting the main induction lemma a technical result is needed. Define a subset V of V(G) as nondeficient if $|N(S)| \ge |S|$ for every subset S of V. The proof of Lemma 2.4 uses Hall's Theorem which states (paraphrased) that in a bipartite graph, one partite set B can be matched into the other partite set A if and only if B is nondeficient (see Theorems 1.2.3 and 2.1.1 of [1]).

Lemma 2.4. Let $H = K_{4,m}$ where $m \ge 4$ and let A and B be the partite sets of H with sizes 4 and m, respectively. If B_1, B_2, B_3, B_4 are arbitrary subsets of B each with order 4, then there exist disjoint matchings M_1, M_2, M_3, M_4 such that M_i matches B_i into A, for i = 1, 2, 3, 4.

Proof: Let $A = \{a_1, a_2, a_3, a_4\}$ and let $z = |B^*|$ where $B^* = \bigcap_{i=1}^4 B_i = \{b_1, b_2, \dots, b_z\}$. Suppose first that $z \ge 3$. For i = 1, 2, 3, 4, let $M'_i = \{a_i b_1, a_{i+1} b_2, a_{i+2} b_3\}$ where the subscripts are taken

modulo 4 in $\{1, 2, 3, 4\}$. In this case, each M'_i can easily be extended to satisfy the lemma. Suppose next that z = 2. For i = 1, 2, 3, 4, let $M''_i = \{a_i b_1, a_{i+1} b_2\}$ where the subscripts are taken modulo 4 in $\{1, 2, 3, 4\}$. Again, each M''_i can be extended, in turn, to satisfy the lemma.

Thus suppose $z \leq 1$ and assume to contradict that B_1, B_2, B_3, B_4 cannot be matched into A by disjoint matchings. Let c be the maximum number of the B_i 's that can be matched into A and note that trivially $1 \leq c < 4$. Assume without loss of generality that M_i is a matching of B_i into A for all $i = 1, 2, \ldots, c$ such that the M_i 's are disjoint. Let $C = \bigcup_{i=1}^c M_i$ and D = H - C. Since c is maximal by Hall's Theorem B_{c+1} is not nondeficient in D. That is, there exists $S \subset B_{c+1}$ such that $|N_D(S)| < |S|$. Let $R = N_D(S)$. Note all the edges from S to $A \setminus R$ are in C so $c \geq \min\{|S|, |A \setminus R|\}$. Thus $1 \leq |R| < |S| \leq 3$. If |R| = 1, then $|A \setminus R| = 3$ implying c = 3. But then $S \subset B^*$ and $|S| \geq 2$, contradicting $z \leq 1$. Therefore $|R| \neq 1$, implying |R| = 2, |S| = 3, and c = 3.

Let $B_4 = \{s_1, s_2, s_3, \overline{s}\}$ and $A = \{r_1, r_2, \overline{r_1}, \overline{r_2}\}$ where $S = \{s_1, s_2, s_3\}$ and $R = \{r_1, r_2\}$. Without loss of generality, $M_1 \supset \{s_2\overline{r_1}, s_3\overline{r_2}\}, M_2 \supset \{s_1\overline{r_2}, s_3\overline{r_1}\}$, and $M_3 \supset \{s_1\overline{r_1}, s_2\overline{r_2}\}$. If $s_i \in B_i$ for some i = 1, 2, 3, then $s_i \in B^*$. It may be assumed without loss of generality that $s_1 \notin B_1$ and $s_2 \notin B_2$. There exists $p \in B_2 \setminus S$ such that $pr_1 \in M_2$. Let $M'_2 = (M_2 \setminus \{pr_1, s_1\overline{r_2}\}) \cup \{p\overline{r_2}, s_1r_1\}$ and note that M_1, M'_2 , and M_3 are mutually disjoint. Since $s_2 \notin B_2$, then there exists a matching M^* of $\{s_2, s_3\}$ into $\{r_1, r_2\}$ in D. Let $M_4 = M^* \cup \{s_1\overline{r_2}, \overline{sr_1}\}$. Then M_1, M'_2, M_3 , and M_4 are mutually disjoint and c = 4. \Box

Lemma 2.5. Let T be a tree of order $n \ge 12$. Suppose that there are 4 end vertices v_1, v_2, v_3, v_4 of G adjacent to distinct nodes u_1, u_2, u_3, u_4 , respectively. If there is a 4-placement of $G' = G - \{v_1, v_2, v_3, v_4\}$ then there is a 4-placement of G.

Proof: Let $H \cong K_n$ and let $A \subset V(H)$ with $A = \{a_1, a_2, a_3, a_4\}$. By assumption there exists a 4-placement $\Phi = (\phi_1, \phi_2, \phi_3, \phi_4)$ of G' into H - A. For i = 1, 2, 3, 4, let $B_i = \{\phi_i(u_j) : 1 \leq j \leq 4\}$ and let $B = \bigcup_{i=1}^4 B_i$. Let D be the complete bipartite subgraph of H with partice sets A and B. By Lemma 2.4, there exist disjoint matchings M_1, M_2, M_3 , and M_4 such that M_i matches B_i into A within the subgraph D. It is straightforward that each ϕ_i can be extended to $\gamma_i : G \to H$ using M_i . Furthermore, since the M_i 's are disjoint $\Gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$ is a 4-placement of G. \Box

This section concludes with a lemma showing the necessity condition of Theorem 1.1. The phrase *degree considerations* will refer to the fact that in a k-placement Φ of a tree T with order n, the sum of the degrees of vertices placed by Φ on a single vertex cannot exceed n-1. Also, a k-placement of a tree is *tight* if all edges of K_n are required, i.e. when n = 2k.

Lemma 2.6. Let T be a tree of order $n \ge 8$. T has no 4-placement if $\Delta(T) > n - 4$ or if $T \in W$.

Proof: Any tree with $\Delta(T) > n - 4$ has no 4-placement by degree considerations. Similarly, any 4-placement of T_{13} must place two vertices of degree three on a single vertex which is not possible by degree considerations. Thus let $T \in W \setminus \{T_{13}\}$ and suppose to contradict that $\Phi = (\phi_1, \phi_2, \phi_3, \phi_4)$ is a 4-placement of T. Let a be the vertex of T with degree n - 4 and let $A = \{v_i : v_i = \phi_i(a), i = 1, 2, 3, 4\}$. By degree considerations the set of elements in A are distinct, and moreover, any vertex other than a that is placed on an element of A must be an end vertex.

Case 1: Let $T = T_9$. Let b be the end vertex adjacent to a. Note that $\{\phi_i(ab) : i = 1, 2, 3, 4\}$ are the only edges placed by Φ in the subgraph induced by A, a contradiction since Φ must be tight.

Case 2: Let $T = S_n^4$. Let c be the end vertex not adjacent to a and let $z_1, z_2, ..., z_{n-5}$ be the other end vertices of T. Note that, for each embedding, at least 2 of the z_i 's must be placed in A. This means that Φ must place at least 8 distinct edges in the subgraph induced by A, a contradiction.

Case 3: Let $T = Y_n$. Let x_1 and x_2 be the end vertices not adjacent to a and $y_1, y_2, \ldots, y_{n-5}$ be the other end vertices of T. Furthermore, for i = 1, 2, 3, 4, let $r_i = |A \cap \{\phi_i(y_j) : j = 1, 2, \ldots, n-5\}|$ and note that since each ϕ_i must place three end vertices in A so that $r_i \ge 1$. Assume without loss of generality that $r_1 \ge r_2 \ge r_3 \ge r_4$. Finally, let c be the node adjacent to x_1 and for i = 1, 2, 3, 4 let $\phi_i(c) = w_i$.

Case 3a: Suppose $r_1 = 1$. It may be assumed that $\phi_1(y_1) = v_2$ and $\phi_2(y_1) = v_3$. It must be the case that $\phi_1(\{x_1, x_2\}) = \{v_3, v_4\}$ and $\phi_2(\{x_1, x_2\}) = \{v_1, v_4\}$. Thus $w_1 \neq w_2$. But then $\phi_1(N_T(a)) \cap \{v_1, v_3, v_4, w_1, w_2\} = \emptyset$, a contradiction since d(a) = n - 4.

Case 3b: Suppose $r_1 = 3$. It may be assumed that $\phi_1(\{y_1, y_2, y_3\}) = \{v_2, v_3, v_4\}, \phi_2(y_1) = v_3, \phi_3(y_1) = v_4$, and $\phi_4(y_1) = v_2$. Thus $\phi_2(\{x_1, x_2\}) = \{v_1, v_4\}$ and $\phi_3(\{x_1, x_2\}) = \{v_1, v_2\}$. Thus $w_2 \neq w_3$ and so $\phi_2(N_T(a)) \cap \{v_1, v_2, v_4, w_2, w_3\} = \emptyset$, a contradiction since d(a) = n - 4.

Case 3c: Suppose r = 2. It may be assumed that $\phi_1(\{y_1, y_2\}) = \{v_2, v_3\}$. It may further be assumed that $\phi_2(x_1) = \phi_3(x_1) = v_1$ and in particular $w_2 \neq w_3$. If Φ places no edge on v_2v_3 , then $\phi_3(x_2) = v_2$, a contradiction since then $\phi_2(N_T(a)) \cap \{v_1, v_2, v_3, w_2, w_3\} = \emptyset$. Thus assume that $\phi_2(y_1) = v_3$. Note that $v_1v_4, v_1w_2, v_1w_3 \notin \phi_1(E(T))$. Thus $w_1 \in \{w_2, w_3\}$ and $\phi_1(\{x_1, x_2\}) \subset \{v_4, w_2, w_3\}$, so it must be the case that $w_2w_3 \in \phi_1(E(T))$. Similarly, $v_2v_1, v_2w_2, v_2w_3 \notin \phi_2(E(T))$, and thus $\phi_2(x_2) = w_3$, a contradiction since $w_2w_3 \in \phi_1(E(T))$. \Box

3 Small Order Trees

This section provides 4-placements for each tree that meets the criteria of Theorem 1.1 and has order 8, 9, 10, or 11 as well as F_4 and F_5 . It is convenient to label the vertices T_t as $a_t, b_t, c_t, d_t, e_t, f_t, g_t$, and h_t starting from the top (as pictured in Figure 1) and proceeding left to right, then top to bottom. Under this scheme, for example, $E(T_7) = \{a_7b_7, a_7c_7, a_7d_7, a_7e_7, b_7f_7, b_7g_7, c_7h_7\}$. Furthermore, let $\mathbb{T} = \{T_6, T_7, T_8, T_{10}, T_{14}, T_{15}, T_{16}, T_{17}, T_{18}, T_{20}, T_{21}, T_{23}\}$.

Lemma 3.1. The following statements are true:

- a) Each tree $T \in \mathbb{T}$ has a dispersed 4-placement.
- **b**) T_{19} has a 4-placement where each vertex is 4-placed except b_{19} .
- c) T_{22} has a 4-placement where each vertex is 4-placed except f_{22} .
- d) F_1 , F_2 , F_4 , and F_5 have dispersed 4-placements.
- e) F_3 has a 4-placement such that each vertex of degree 4 is 4-placed.

Proof: Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$. Four embeddings for each of the trees in **a** through **d** are shown in Figure 3. Each embedding assumes the v_i 's are placed on a circle with the subscripts strictly increasing as the angle increases from 0 to 2π . Occasionally, all the images of a particular vertex are colored to distinguish it from other vertices it may be mapped to in an automorphism. For example, the images of b_6 are colored red, the images of c_6 are colored green, etc. It is straightforward to verify that these embeddings produce the 4-placements required. The only vertices not 4-placed are b_{19} (the images of which are colored red) and f_{22} (the images of which are also colored red).

A 4-placement of F_3 satisfying **e** can be obtained from the 4-placement of T_6 and applying Lemma 2.2 to the a_6b_6 edge. \Box

Corollary 3.2. Let T be a tree of order $n \in \{9, 10, 11\}$ not in W and let U be a shrub of T with order 8. If $\Delta(U) \leq 4$ then there is a 4-placement of T.

Proof: First, it may be assumed by Lemmas 2.1 and 3.1 that $U \notin \mathbb{T}$ and furthermore that T contains no shrub in $\mathbb{T} \cup \{F_1, F_2\}$. This leaves six possibilities for U. Let $V = V(T) \setminus V(U)$ and let $N = N_T(V)$.

Case 1: Suppose $U = T_{19}$. By Lemmas 2.1 and 3.1 it may be assumed $b_{19} \in N$. If $d_{19} \in N$, then T_{17} is a shrub of T and if not T_{20} is a shrub of T, both contradictions.

Case 2: Suppose $U = T_{22}$. By Lemmas 2.1 and 3.1 it may be assumed that $f_{22} \in N$. If $N = \{c_{22}, d_{22}, f_{22}\}$ then T_{21} is a shrub of T and if not then T_{20} is a shrub of T. Again, these are both contradictions.

Case 3: Suppose $U = T_9$. If $a_9 \in N$ (or $e_9 \in N$) then F_1 (F_2) is a shrub of T, a contradiction. Thus suppose $N \cap \{a_9, e_9\} = \emptyset$. If $\{b_9, c_9, d_9\} \cap N \neq \emptyset$ then T_{14} is a shrub of T, a contradiction. However, if $\{f_9, g_9, h_9\} \cap N \neq \emptyset$ then T_{17} is a shrub of T, also a contradiction.

Figure 3: 4-placements for certain trees of small order. Similarly colored vertices in a packing are images of single vertex. These colors are used to make distinctions in trees with symmetry.

Case 4: Suppose $U = T_{12}$. If $h_{12} \in N$ then T_{22} is a shrub of T and this is handled by Case 2. Thus assume $h_{12} \notin N$. Note that $\{c_{12}, d_{12}, e_{12}\} \cap N = \emptyset$ since otherwise T_{10} is a shrub of T. Similarly, if b_{12}, f_{12} , or g_{12} are in N then T_8, T_{18} , or T_{21} are shrubs of T, respectively, all contradictions. But then $N = \{a\}$ and $T = S_n^4$, a contradiction. Thus T must have a 4-placement.

Case 5: Suppose $U = T_{11}$. Since T_{17} is not a shrub of T, then g_{11} and h_{11} cannot both be in N. If exactly one of g_{11} or h_{11} is in N, then T_{12} is a shrub of T and this reduces to Case 4. Thus it can be assumed that $\{g_{11}, h_{11}\} \cap N = \emptyset$. Similarly, $\{c_{11}, d_{11}, e_{11}\} \cap N = \emptyset$ since otherwise T_{10} is a shrub of T. Furthermore, $b_{11} \notin N$, since then T_8 would be a shrub of T. Thus $N \subset \{a_{11}, f_{11}\}$. Note that $f_{11} \in N$ since otherwise $N \subset \{a_{11}\}$ and then $T = Y_n$, a contradiction. Therefore F_3 is a shrub of T and Lemma 2.1 and Lemma 3.1 **e** provide a 4-placement of T.

Case 6: Suppose $U = T_{13}$. Note that a_{13} and d_{13} are not in N since then T_7 or T_{14} would be a shrub of T, respectively. If $\{e_{13}, f_{13}, g_{13}, h_{13}\} \cap N \neq \emptyset$ then T_{18} is a shrub of T, a contradiction. Thus $N \subset \{b_{13}, c_{13}\}$ and so T_8 is a shrub of T, a contradiction.

This completes the proof. \Box

Lemma 3.3. Let T be a tree of order $n \in \{9, 10, 11\}$. If $\Delta(T) \leq n-4$ and $T \notin W$, then there is a 4-placement of T.

Proof: Suppose the Lemma is false and let T be a counterexample. By Corollary 3.2 T does not contain a shrub U of order 8 with $\Delta(U) \leq 4$. Let u be a vertex of T with maximum degree. By Lemma 2.3 it may be assumed that $T \neq P_{11}$, and so T contains shrubs of order 8; therefore d(u) > 4. If n = 9, then there exists an end vertex in N(u) and deleting this end vertex creates a shrub of order 8 with maximum degree 4, a contradiction.

Suppose n = 10. If d(u) = 6, then there exists two end vertices in N(u) and removing them gives a shrub of order 8 and maximum degree 4, a contradiction. Thus d(u) = 5. There exists an end vertex $v_1 \in N(u)$. If $\Delta(T - v_1) = 4$ then removing any additional end vertex of T produces a shrub of order 8 and maximum degree at most 4, a contradiction. Thus $\Delta(T - v_1) = 5$ and T contains two vertices of degree 5 and is thus uniquely determined. But then T_6 is a shrub of T, a contradiction.

Therefore n = 11. If d(u) = 7, then there exists three end vertices in N(u) and removing them gives a shrub of maximum degree 4, a contradiction. If d(u) = 6, there are end vertices v_2 and v_3 in N(u). If $\Delta(T - \{v_2, v_3\}) \ge 5$ then T_6 is a shrub of T, a contradiction. Thus $T - \{v_2, v_3\}$ has maximum degree less than 4 and removing any other end vertex produces a shrub of order 8 and maximum degree at most 4, a contradiction. Thus d(u) = 5. If N(u) contains no end vertex then T is uniquely determined and contains F_1 as a shrub. But by Lemmas 3.1 and Lemma 2.1 there is a 4-placement of T, a contradiction. Thus N(u) contains an end vertex v_4 . Again, $\Delta(T - v_4) \ge 5$ otherwise removing any two additional end vertices produces a contradiction. But then T must contain either T_6 or T_{11} as a shrub, both contradictions.

Therefore no such T exists and the Lemma is true. \Box

4 Tri-path trees

If T is a tree with exactly three distinct nodes then Lemma 2.5 cannot be applied. Fortunately, trees with three distinct nodes have a common structure, that is they each have a shrub consisting of three paths meeting at a single vertex. Define $Q(n_1, n_2, n_3)$ as the tree of order $n = n_1 + n_2 + n_3 + 1$ consisting of a single vertex a that begins three disjoint (except for a) paths of length n_1, n_2 , and n_3 , respectively, (see Figure 5). This section will show that each of these *tri-path trees* has a 4-placement such that each of the end points is 4-placed. It will be assumed that $1 \le n_1 \le n_2 \le n_3$.

Lemma 4.1. Let T be the tree $Q(n_1, n_2, n_3)$ with order n. If $n \ge 10$ and $n_1 \le n - 9$, then there is 4-placement of T such that each end point of T is 4-placed.

Proof: Let z_1, z_2 , and z_3 be the end vertices of the n_1, n_2 , and n_3 length paths in T, respectively. Let G be the graph of order n obtained from T by adding the edge z_2z_3 . Finally, let $H \cong K_n$ and let $V(H) = \{v_1, v_2, ..., v_n\}$.

Here, a 4-placement of G is constructed by a method similar to one used in Lemma 2.3. First, suppose that n-1 = 2t for some positive integer t. For each i = 1, 2, 3, 4, define the path $P^i = v_i v_{i+1} v_{i-1} \cdots v_{i-t+1} v_{i+t}$, where the subscripts of the v_j 's are taken modulo n-1 in $\{1, 2, ..., n-1\}$. Again for i = 1, 2, 3, 4, let $b_i = v_i, c_i = v_{i+t}$, and a_i be such that the distance between a_i and b_i along path P^i is n_1 . It is straightforward to see that the elements of $\{a_i, c_i : i = 1, 2, 3, 4\}$ are distinct since $n_1 \leq n-9$. For i = 1, 2, 3, 4, let $E^i = E(P^i) \cup \{a_i v_n, c_i v_n\}$. Since the set of a_i 's and c_i 's are distinct, then $E^i \cap E^j = \emptyset$ when $i \neq j$ and the subgraph induced by each E^i is isomorphic to G (see Figure 4).

For i = 1, 2, 3, 4, let γ_i be an embedding of G into H such that $\gamma_i(E(G)) = E^i$ and let $\Gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$. Note that it can be assumed that all vertices of G are 4-placed by Γ except a single vertex x that is placed on v_n . Moreover, it may be assumed that $x \notin \{z_1, z_2, z_3\}$. Clearly, Γ is also a 4-placement of T with each end vertex 4-placed.

A similar argument can be used if n = 2t for some positive integer t. \Box

Lemma 4.2. Let T be the tree $Q(n_1, n_2, n_3)$ with order n. If $n \ge 8$ then there is a 4-placement of T such that each end vertex of T is 4-placed.

Proof: By Lemma 3.1, it may be assumed that $n \ge 9$. There are exactly nine tri-path trees with n > 8 that do not satisfy the conditions for Lemma 4.1: Q(1,1,6), Q(1,2,5), Q(1,3,4), Q(2,2,4), and Q(2,3,3) for n = 9; Q(2,2,5), Q(2,3,4), and Q(3,3,3) for n = 10; and Q(3,3,4) for n = 11.

In the 4-placement of $T_{17} \cong Q(2,2,3)$ given in Lemma 3.1 the edges $b_{17}c_{17}$, $a_{17}e_{17}$, and $a_{17}g_{17}$ are 4-placed (see Figure 3). Using this and Lemma 2.2 there are 4-placements of Q(2,3,3), Q(2,2,4), Q(3,3,3), Q(2,3,4), and Q(3,3,4) with each end vertex 4-placed. An embedding of each remaining tree is shown in Figure 5 and these embeddings can be used to generate a dispersed 4-placements by rotating each embedding clockwise by one, two, and three vertices. \Box

5 Proof of Theorem 1

The necessity of Theorem 1.1 is shown by Lemma 2.6. Assume to contradict the theorem is not true and let T be a counterexample of minimum order n. By Lemmas 3.1 and 3.3 it may be assumed that $n \geq 12$. Clearly, T has more than one distinct node and by Lemmas 2.1 and 3.1 T contains no shrub in $\mathbb{T} \cup \{F_1, F_2, F_4, F_5\}$.

Case 1: T has exactly 2 distinct nodes u_1 and u_2 . Let U be the shrub of T obtained by removing all end vertices. Clearly, $U \cong P_s$ for some $s \ge 2$ and by Lemmas 2.1 and 2.3 $s \le 5$. Note $s \ne 2$ since $\Delta(T) \le n-4$ and T_6 is not a shrub of T. Similarly $s \ne 4$ since T_{21} is not a shrub of T and $T \not\cong S_n^4$. Suppose that s = 5. Then T_{22} is a shrub of T and $\{u_1, u_2\} = \{a_{22}, g_{22}\}$ and there is 4-placement of

Figure 4: The 4-placement of G in Lemma 4.1 with n = 13 and $n_1 = 3$

Figure 5: Embeddings that produce dispersed 4-packings by rotation.

T using Lemmas 3.1 and 2.1. Now suppose that s = 3. Then F_3 is a shrub of T since $\Delta(T) \leq n-4$ and $T \not\cong Y_n$. Similarly, a 4-placement of T can be obtained from Lemmas 3.1 and 2.1.

Case 2: T has exactly 3 distinct nodes u_1, u_2 , and u_3 . Let U be the shrub of T obtained by removing all end-vertices of T and let s = |V(U)|. If $s \ge 8$, then by Lemmas 4.2 and 2.1 there is a 4-placement of T, so $s \le 7$. Since T_{14}, T_{17} , and T_{20} are not shrubs of T, then $U \cong P_s$. Furthermore, since T_{23} is not a shrub of T then $s \le 5$. Assume without loss of generality that u_2 is not an end vertex of U. Suppose first s = 5. Then T_{19} is a shrub of T since T_{20} is not. However, by Lemmas 3.1 and 2.1 there is a 4-placement of T, a contradiction. Similarly, if s = 4 then either T_{10}, T_{16} , or T_{18} is a shrub of T, all contradictions. Finally, suppose s = 3. Since T_7 is not a shrub of T and $\Delta(T) \le n - 4$, then $d_T(u_2) = 3$. Moreover, since $T \ncong T_{13}$, without loss of generality $d_T(u_1) \ge 4$. But then T_8 is a shrub of T, a contradiction.

Case 3: T has 4 distinct nodes u_1, u_2, u_3 , and u_4 . For i = 1, 2, 3, 4, let v_i be an end vertex adjacent to $u_i, V = \{v_1, v_2, v_3, v_4\}$, and let U = T - V. Suppose first that $\Delta(U) > (n - 4) - 4$, then U is one of five trees: $S_{n-4}, S_{n-4}^2, S_{n-4}^{2,2}, \text{ or } S_{n-4}^3$. However this isn't possible since then at least one of $T_6, T_7, T_8, T_{10}, F_1$, or F_4 is a shrub of T, a contradiction. Thus $\Delta(U) \le (n - 4) - 4$. Therefore $U \in W$ since otherwise U has a 4-placement and by Lemma 2.5 so does T.

Case 3a: Suppose to contradict that $U = T_9$. Since neither F_1 nor F_2 are shrubs of T, then $a_9, e_9 \notin N(V)$. But then $N(V) \cap \{f_9, g_9, h_9\} \neq \emptyset$ and T_{17} is a shrub of T, a contradiction.

Case 3b: Suppose to contradict that $U = T_{13}$. If $d_{13} \notin N(V)$ then T_{18} is a shrub of T. If $d_{13} \in N(V)$ then T_{14} is a shrub of T, both contradictions.

Case 3c: Suppose $U = S_{n-4}^4$. Label the P_5 path in U as $y_1y_2y_3y_4y_5$ with $d_U(y_1) = n - 9$ and let R_1 be the set of remaining (end) vertices and $r_1 = |N(V) \cap R_1|$. Suppose first $y_5 \notin N(V)$. Note that $r_1 \neq 0$ since T_{21} is not a shrub of T. Similarly $r_1 \notin \{1, 2, 3\}$ since T_{10} is not a shrub of T. Thus $r_1 = 4$. Let $U' = T - \{y_5, v_2, v_3, v_4\}$. Thus U' is a shrub of T not in W and so it has a 4-placement. But then T has a 4-placement by Lemma 2.5, a contradiction. Thus $y_5 \in N(V)$ and it may be assumed $v_1y_5 \in E(T)$. Again $r_1 \neq 0$ since otherwise $N(V) \cap \{y_2, y_4\} \neq \emptyset$ and T_{20} is a shrub of T. Similarly $r_1 \notin \{1, 2\}$ since T_{20} is not a shrub of T. Thus $r_1 = 3$ and F_5 is a shrub of T, another contradiction.

Case 3d: Suppose to contradict that $U = Y_{n-4}$. Label the shrub isomorphic to P_3 in Y_{n-4} as $x_1x_2x_3$ where $d_U(x_1) = n - 9$. Let $R_2(R_3)$ be the set of end vertices adjacent to $x_1(x_3)$ and let $r_2 = |N(V) \cap R_2|$ ($r_3 = |N(V) \cap R_3|$). Suppose to contradict $r_3 = 2$. If $r_2 > 0$ then T_{18} is a shrub of T and if $r_2 = 0$ then T_{17} is a shrub of T, both contradictions. Thus $r_3 < 2$. Note $r_2 \neq 0$ since then $x_2 \in N(V)$ and T_8 is a shrub of T. Similarly $r_2 \notin \{1, 2, 3\}$ since T_{10} is not a shrub of T. But then $r_2 = 4$ and F_1 is a shrub of T, a contradiction.

This completes the proof. \Box

References

- [1] B. Bollobás, *Extremal Graph Theory*, Academic Press, London, (1978).
- [2] B. Bollobás and S. E. Eldridge, Packings of Graphs and Applications to Computational Complexity, J. Combin. Theory Ser. B 25 (1978), 105–124.

- [3] N. Sauer and J. Spencer, Edge Disjoint Placement of Graphs, J. Combin. Theory Ser. B 25 (1978), 295–302.
- [4] D. Burns and S. Schuster, Embedding (p, p 1) graphs in their complements, *Israel J. Math.* **30** (1978), 313–320.
- [5] P. Slater, S. Teo and H. Yap, Packing a Tree with a Graph of the Same Size, J. Graph Theory 9 (1985), 213–216.
- [6] A. Hobbs, B. Bourgeois and J. Kasiraj, Packing Trees In Complete Graphs, *Discrete Math.* 67 (1987), 27–42.
- [7] S. Teo and H. Yap, Two Theorems on Packings of Graphs, Europ. J. Combin. 8 (1987), 199– 207.
- [8] H. P. Yap, Packing of Graphs—A Survey, Discrete Math. 72 (1988), 395–404.
- [9] H. Wang and N. Sauer, Packing Three Copies of a Tree into a Complete Graph, European J. Combin. 14 (1993), 137–142.
- [10] H. Wang and N. Sauer, Packing Three Copies of a Graph, J. Graph Theory 21 (1996), 71-80.
- [11] M. Maheo, J. Saclé and M. Woźniak, Edge-disjoint Placement of Three Trees, European J. Combin. 17 (1996), 543–563.
- [12] H. Kheddouci, S. Marshall, J. Saclé and M. Woźniak, On the Packing of Three Graphs, Discrete Math. 236 (2001), 197–225.
- [13] M. Woźniak, Packing of Graphs and Permutations—A Survey, Discrete Math. 276 (2004), 379–391.
- [14] A. Zak, A Note On k-placeable Graphs, Discrete Math. **311** (2011), 2634–2636.

(Received 28 Aug 2013; revised 2 Apr 2014)