
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 59(1) (2014), Pages 218–228

Permutation patterns in Latin squares

Michael J. Earnest

Department of Mathematics
University of Southern California

Los Angeles, CA
U.S.A.

Samuel C. Gutekunst

Department of Mathematics
Harvey Mudd College
Claremont, CA 91711

U.S.A.

Abstract

In this paper we study pattern avoidance in Latin squares, giving us a two
dimensional analogue of the well-studied notion of pattern avoidance in
permutations. Our main results include enumerating and characterizing
the Latin squares which avoid patterns of length three and a generaliza-
tion of the Erdős-Szekeres theorem. We also discuss equivalence classes
among longer patterns, and conclude by describing open questions of in-
terest both in light of pattern avoidance and their potential to reveal
information about the structure of Latin squares. Along the way, we
show that classical results need not generalize trivially, and we demon-
strate techniques that may help answer future questions.

1 Introduction

A permutation of length n is a rearrangement of the numbers {1, 2, . . . , n} and many
interesting questions have been asked and answered about the structure of permu-
tation classes. In particular, pattern containment and avoidance, which we will
formally define shortly, ask about the types of subsequences a permutation does and
does not have.

A natural generalization of a permutation is a Latin square, which we will also
introduce below. Each row and column of a Latin square is just a permutation, and
so questions about patterns in permutations readily generalize to questions about
patterns in Latin squares. Latin squares are exciting objects to study by themselves,
and we will begin this paper by formally defining pattern avoidance in Latin squares.
Little work seems to have been done in this area.
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Sections 3 through 5 extend classical results from pattern avoidance in permuta-
tions. We begin by enumerating and characterizing Latin squares that avoid patterns
of length three. In Section 4 we discuss avoidance of longer patterns, and in Section
5, discuss pattern containment.

Our final section, in our minds, is one of the most critical parts of this paper:
a discussion of several open questions. Answers to these questions will not only be
exciting additions to the current results in the field of pattern avoidance, but they
may also lay the foundation for answering several important questions about the
structure and number of Latin squares. Most of the contents of this paper were
presented at the 11th Annual Permutation Patterns conference, and after the talk,
many participants came up with additional questions. We have added these to our
list in Section 6.

2 Background

We previously described a Latin square as a set of permutations. More concretely,
an nth order Latin square is an n by n grid in which the numbers 1, 2, ..., n (often
called symbols) are each used exactly once in each row and column. We readily know
that there are n! permutations of n and so it comes as a surprise that the number of
Latin squares of order n is only known up to n = 11 [4]. If we let Ln be the number
of nth order Latin squares, then the best known bounds for Ln are very far apart.
For example, van Lint and Wilson [6, p. 187] give upper and lower bounds which
differ asymptotically by a factor of nn.

We can naturally extend the definition of pattern avoidance in permutations to
pattern avoidance in Latin squares. This definition first requires an understanding
of pattern containment in permutations: a permutation of size n is said to contain
a pattern (also a permutation) of size k ≤ n if a subsequence of the permutation
is order isomorphic to the pattern. If a permutation does not contain a pattern, it
is said to avoid it. For example, the permutation 13254 contains 123 because the
subsequence 135 is in the same relative order (that is, strictly increasing) as the
pattern 123. Conversely, 13254 avoids 321 because it does not contain a strictly
decreasing subsequence of length three.

To extend the preceding definition to the setting of Latin squares, note that each
row and each column of a Latin square can be viewed as a permutation by reading
the rows and the columns from left to right and top to bottom, respectively. We
define a Latin square’s row permutations to be the n permutations corresponding to
the rows in this manner and we define the column permutations similarly. Then:

Definition 1. A Latin square avoids a pattern π if all row and column permutations
avoid π. The number of nth order Latin squares avoiding π will be denoted Ln(π). 1

1While this definition is particularly natural, we note that there are other ways of defining
pattern avoidance in Latin squares. For example, each symbol k of a Latin square determines a
permutation π, where π(i) = j when the entry in row i, column j is k. One could also require these
symbol permutations to avoid a pattern in order to say that the full square does. This convention
could make sense, and there is a way to view and define Latin squares so that the distinction between
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The canonical question of pattern avoidance has been, given some pattern π, how
many permutations avoid (or equivalently, contain) π. One of the earliest results was
that the number of permutations of length n avoiding any pattern of length three
(e.g. any permutation of {1, 2, 3}) is just 1

n+1

(
2n
n

)
, the nth Catalan number. This

result is proved in chapter 4 of [2].
One might suspect that if π and π′ are patterns of the same length, then the same

number of permutations will avoid them; however, this is not true in general. When,
for any n, the number of permutations in Sn avoiding π and π′ are the same, these
patterns are said to be Wilf-equivalent. In addition to enumerating permutations
avoiding a pattern, characterizing these equivalence classes is a central question in
the study of permutation patterns.

3 Avoiding Patterns of Length Three

One of the first results in classical pattern avoidance was the enumeration of permu-
tations which avoid patterns of length three. In this section we ask the same question
for Latin squares and will find the following result:

Theorem 2. For any π ∈ S3, Ln(π) = n.

To prove this result, we begin by considering a less restrictive case: the number
of Latin squares avoiding a pattern in just the columns. We can count these Latin
squares using the following proposition:

Proposition 3. For any permutation σ ∈ Sn, there is exactly one Latin square
avoiding the pattern 123 in the columns with σ as its first row.

Proof. Suppose that the top row has been fixed as σ and consider the column begin-
ning with a 1. The rest of the entries must be in decreasing order: if there were any
two in increasing order, they would form a 123 pattern with the 1 in the top row.
Thus, the only possible permutation for this column is
1, n, (n − 1), . . . , 3, 2.

The column whose first entry is 2 must similarly be completed as
2, 1, n, (n − 1), . . . , 3 in a decreasing order. This claim follows because the numbers
3 through n must be in strictly decreasing order, and to avoid conflict with our 1st

column, n cannot be in the second row.
Now proceed iteratively. To fill out the column beginning with j, for j < n, all

elements greater than j must be in a decreasing order, and n cannot be placed in
the first j rows. The elements greater than j are then forced to be placed in the
bottom n − j rows. To complete the column, the remaining numbers 2, . . . , j − 1
must be in decreasing order to avoid forming a 123 pattern with n. Figure 1 shows
an illustration of this process when n = 4.

rows, columns and symbols is arbitrary (see Chapter 17 in [6]). Furthermore, since Latin squares
are two dimensional, it might also make sense to study Latin squares avoiding a “two dimensional
pattern.” In this paper will study pattern avoidance using Definition 1, though we will discuss
these alternative definitions of pattern avoidance in Section 6.
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2 1 3 4

→
2 1 3 4

4
3
2

→
2 1 3 4
1 4
4 3
3 2

→
2 1 3 4
1 4 2
4 3 1
3 2 4

Figure 1: Proof method of Proposition 2.

This leaves one unfilled column, which can only be completed one way to avoid
repeats in the rows. This method will construct a unique Latin square avoiding 123
in the columns with σ as its top row.

Our proof readily generalizes for any of the other five permutations of length
three. To avoid 132, first consider the 1 in the top row and place the remaining
elements in an increasing order. To avoid 312 or 321, act similarly but first consider
the n in the first row. To avoid 231 and 213, instead begin with the bottom row.

Because one row effectively determines a unique Latin squares avoiding a pattern
of length three in the columns, we obtain the following corollary.

Corollary 4. The number of nth order Latin squares avoiding a pattern of length
three in just the columns (or rows) is n!

The above work also reveals a very interesting structure for pattern avoidance in
the columns:

Remark 5. In a Latin square avoiding 123, 231 or 312, each entry is one less than
the one above it (mod n). Thus, all columns are of the form i, i−1, . . . , 1, n, . . . , i+1.
When avoiding 132, 213, or 321, all columns are instead increasing and of the form
i, i + 1, . . . , n, 1, . . . , i − 1.

Note that these results pertain, respectively, to the even and odd permutations
of S3. As above, this remark applies similarly to the rows.

We are now ready for the proof of Theorem 2.

Proof. Let π be a permutation in S3. To construct a Latin square avoiding π, we
have n choices for which number is placed in the top left box of our Latin square.
Using the above remark, there is exactly one way to complete this row (as i, i −
1, . . . , 1, n, . . . , i + 1 if π is even, or i, i + 1, . . . , n, 1, . . . , i − 1, if π is odd). We now
have one number in each column, which from Proposition 3 shows there is only one
way to complete each column.

Since each of the n choices for where this first element can go produces exactly
one Latin square avoiding π, this completes our proof.

Remark 6. The n nth order Latin squares which avoid any particular pattern of
length three have a structure that is worth noting. The Latin squares which avoid
123, 231, and 312 are of the form shown in Figure 2, and the Latin squares which
avoid 132, 213, and 321 are of the form shown in Figure 3.
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i i − 1 1 n i + 2 i + 1

i − 1
. . . 1 n i + 2 i + 1 i

1 n i + 2 i + 1 i

1 n
. . . i + 2 i + 1 i

1 n i + 2 i + 1 i
n i + 2 i + 1 i 1

i + 2 i + 1 i
. . . 1 n

i + 2 i + 1 i 1 n

i + 2 i + 1 i 1 n
. . .

i + 1 i 1 n i + 2

Figure 2: The general form of a 123, 231, or 312 avoiding Latin square.

i i + 1 n 1 i − 2 i − 1

i + 1
. . . n 1 i − 2 i − 1 i

n 1 i − 2 i − 1 i

n 1
. . . i − 2 i − 1 i

n 1 i − 2 i − 1 i
1 i − 2 i − 1 i n

i − 2 i − 1 i
. . . n 1

i − 2 i − 1 i n 1

i − 2 i − 1 i n 1
. . .

i − 1 i n 1 i − 2

Figure 3: The general form of a 132, 213, or 321 avoiding Latin square.

Every row and column is in a cyclic increasing or decreasing structure where
adjacent elements differ by one (mod n). In addition, we earlier saw that there
were n! Latin squares avoiding a pattern of length three in just the columns, and n!
avoiding it in just the rows. When we force both restrictions we find that only n
Latin squares satisfy both avoidance criteria.

By examining the above Latin squares, we can also see the following corollary:

Corollary 7. A Latin square contains either all of the patterns {123, 231, 312}, or
none of them. This also holds for {132, 213, 321}.

Given the previous result, the proof of this corollary is straightforward. If a
Latin square does not contain any of {123, 231, 312}, it must be in the decreasing
form shown above and it will not contain the others. However, out of context, it is
somewhat surprising that any Latin square with three terms in a row or column in
increasing order must have three terms in the relative order 231 and 312.

We have now seen that all patterns of length three are also Wilf-equivalent for
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Latin squares and that the growth rate of the number of these Latin squares is
polynomial as opposed to exponential (as is the case for permutations).

4 Avoidance of Larger Patterns

Computing Ln(π) for a general pattern π of length greater than three is considerably
more difficult. As of yet, we know of no simple algorithm for filling in a partially
completed Latin square so that it will avoid a permutation in S4. We begin this
section with a much more tractable question: counting Ln(π), for π ∈ Sn, in terms
of the total number of Latin squares.

Theorem 8. For any π ∈ Sn, Ln(π) =
(

n!−n
n!

)2
Ln.

Proof. Let π, ρ be permutations in Sn. Given a π-avoiding nth order Latin square,
apply the permutation ρ ◦ π−1 to each entry. Doing so will create a bijection from
Latin squares which avoid π to those which avoid ρ, so that Ln(π) for π ∈ Sn only
depends on n. We first count Latin squares avoiding any π ∈ Sn in the columns. Let
the number of these be �n(π).

Let two Latin squares be r-equivalent if they are related by a permutation of
rows. Each r-equivalence class will be of size n!. Let the ith column of a Latin
square, S, be σi. The n permutations π ◦ σ−1

i , for 1 ≤ i ≤ n, are the only ones
which, when applied to the rows of S, cause the result to contain π in a column.
Thus, each r-equivalence class will contain n!−n Latin squares which avoid π in the
columns, so that �n(π) = n!−n

n!
· Ln. By similar logic, if we partition Latin squares

which column-avoid π into c-equivalence classes up to permutation of columns, each
c-equivalence class of size n! will contain n! − n Latin squares which avoid π in the
rows and columns. Thus, we have

Ln(π) =
n! − n

n!
· �n(π) =

(
n! − n

n!

)2

Ln.

As noted earlier, it is not generally true that Ln(π) = Ln(π′) when π and π′

are patterns of the same length. We say that π and π′ are Wilf-equivalent in Latin
squares when Ln(π) = Ln(π′) for all n.

In classical pattern avoidance, Wilf-equivalence classes have rich structure. Let
the complement of a permutation, πc, be given by πc(i) = (n + 1) − π(i), and the
reverse, πrev, by πrev(i) = π(n + 1 − i). It is easy to show π is Wilf-equivalent to
its complement and reverse in permutations, and a quick proof shows π is similarly
equivalent to its inverse (which satisfies π−1(π(i)) = i).

There are many other Wilf-equivalences in permutations; for example, Sn(4132) =
Sn(3142), as shown in [5] (where Sn(π) denotes the number of permutations of length
n avoiding a pattern π). Nontrivial equivalences exist for arbitrarily large patterns.
For π1 ∈ Sn and π2 ∈ Sm, let π1 ⊕π2 be the permutation in Sn+m, given by applying
π1 to {1, . . . , n} and π2 to {n + 1, . . . , n + m}. Then [1] shows that for any pattern
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π, Sn(12 . . . k ⊕ π) = Sn(k . . . 21 ⊕ π). Combined, these results can be used to show
that there are only three Wilf classes in S4 [2].

For Latin squares, we still have equivalence under reverse and complement.

Theorem 9. Ln(π) = Ln(πrev) = Ln(πc) where πrev is the reverse of π and πc is the
complement of π.

Proof. Let Ln(π) denote the set of nth order Latin squares which avoid π. Given
a Latin square S ∈ Ln(π), let φ(S) be the new Latin square when each entry i
is replaced with n + 1 − i. Since an occurrence of π in S would cause φ(S) to
contain πc, we then have that φ is a bijection from Ln(π) to Ln(π

c). To prove that
Ln(π) = Ln(πrev), we define the mapping ρ by rotating the Latin square 180◦ around
its center. This has the effect of reversing all rows and columns, so this will be a
bijection from Ln(π) to Ln(πrev).

However, all of the other equivalences for patterns of length four do not carry
over to Latin squares. Dan Daly calculated L5(π) for every π ∈ S4 (personal com-
munication, July 12, 2012), using methods in [4], and the only equivalences that
existed were the ones proved in Theorem 9. These data show that, for avoidance in
Latin squares, there are eight Wilf classes in S4 as opposed to the three in the case
of permutations. This illustrates how pattern avoidance in Latin squares is more
nuanced and difficult than it is for permutations. Whether or not any nontrivial
Wilf-equivalences exist for Latin squares is an open question.

5 Monotone Subsequences

The celebrated theorem of Erdős and Szekeres states that every permutation of
length pq + 1 contains an increasing subsequence of length p + 1 or a decreasing
subsequence of length q + 1. In the special case where p = q, we have that length
n2+1 permutations contain a monotone (i.e. strictly increasing or strictly decreasing)
subsequence of length n + 1 [3]. In addition, this is the longest possible monotone
sequence whose existence is guaranteed, since for every m < n2 + 1, there exists
permutations of length m which have no monotone subsequence of length n + 1.
This result can be rephrased as follows:

Theorem 10 (Erdős and Szekeres). Let λn = �√n − 1	 + 1. Every permutation of
length n has a monotone subsequence of length λn, and there exist permutations of
length n without monotone subsequences of length λn + 1.

In the above theorem, we can think of λn as the length of the longest forced
monotone subsequence. We wish to generalize this theorem to Latin squares by
defining a corresponding variable, Λn.

Definition 11. Let Λn be the largest integer such that every nth order Latin square
has a row or column with a monotone subsequence of length Λn.



EARNEST AND GUTEKUNST/AUSTRALAS. J. COMBIN. 59 (1) (2014), 218–228 225

3 6 9 2 5 8 1 4 7
6 9 2 5 8 1 4 7 3
9 2 5 8 1 4 7 3 6
2 5 8 1 4 7 3 6 9
5 8 1 4 7 3 6 9 2
8 1 4 7 3 6 9 2 5
1 4 7 3 6 9 2 5 8
4 7 3 6 9 2 5 8 1
7 3 6 9 2 5 8 1 4

Figure 4: Order 9 Latin square whose longest monotone subsequence is 4.

It is trivially true that Λn ≥ λn, since there is guaranteed to be a monotone
subsequence of length λn in every row and column of a given nth order Latin square.
In the next theorem we present a slight improvement of this bound.

Theorem 12. If n ≥ (m − 1)(m − 2) + 2 for some integer m, then Λn ≥ m.

Proof. Given an nth order Latin square, consider the row whose leftmost entry is
n. The n − 1 entries to the right of this n form a permutation of length at least
(m−1)(m−2)+1. From the Erdös-Szekeres Result, we know that this permutation
either has an increasing subsequence of length m or a decreasing one of length m−1.
In the latter case, combining the leftmost n with this decreasing subsequence creates
a decreasing subsequence of length m, so either way, a monotone sequence of length
m exists. Thus, Λn ≥ m.

Note that this proof could have been analogously applied to the column beginning
with an n or to the row and column beginning with a 1, so that we are actually
guaranteed four occurrences of a monotone subsequence of length m.

By inverting the formula in the condition of the previous theorem, we can express
this result in terms of Λn.

Corollary 13. For all n > 1, Λn ≥
⌊

3
2

+
√

n − 7
4

⌋
.

We now show that this lower bound is tight for all perfect squares (except 1).
The lower bound in these cases is given by

Λn2 ≥
⌊

3

2
+

√
n2 − 7

4

⌋
≥

⌊
3

2
+

√
n2 − 4n − 1

4

⌋
= n + 1.

We also have equality for these numbers, which was proved by Sam Connolly,
a participant at the 2013 REU at East Tennessee State University. For i, j ∈
{1, 2, . . . , n2}, let kij be in {1, 2, . . . , n2} and satisfy kij ≡ i+j−1 (mod n2). Consider
the n2-order Latin square, where for i, j ∈ {1, 2, . . . , n2}, the i, j entry is kijn (mod
n2 + 1). For instance, when n2 = 9, this produces the square in Figure 4.
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The first row and column is a classic example of a permutation of length n2 whose
longest monotone subsequence is of length n. The other rows and columns are cyclic
permutations of the first, and this increases the length of this subsequence by only
one. This example proves that Λn2 ≤ n + 1. Combined with the lower bound, this
shows Λn2 = n + 1.

Since one can show that Λ3 = 3, our bound, that Λ3 ≥ 2, is not always tight. It
would be true that Λn was either equal to or one more than our lower bound if the
conjecture below were true:

Conjecture 14. Λn is nondecreasing.

The corresponding result is trivial for permutations, since a permutation of length
n + 1 naturally contains one of length n by removing the n + 1 entry. A similar
containment argument does not translate immediately to Latin squares.

6 Open Questions

We would like to end with a discussion of several open problems which we believe
may spur future investigations. Again, many of these problems were provided by
attendees of the 11th Permutation Patterns conference. We are unfortunately unable
to remember all their names. Answering some of these questions would lead to the
beginning of a rich theory of Pattern Avoidance in Latin squares.

Open Problems

• What is Ln(π) for patterns of length 4 or more? In particular, what can be
said when π = 1234?

• For a fixed pattern, say π = 123...m, can anything be said about the growth
rate of Ln(π)? For which value of m does the count first become exponential?

• Can anything be said about the growth rate of Ln(π) vs Ln(π′), where π and
π′ are respectively patterns of length i and i + 1 and n � i?

• Which patterns are the easiest to avoid in Latin squares? The hardest? If π
and π′ are of the same length, how different can Ln(π) and Ln(π′) be?

• Are there any Wilf-equivalences outside of those mentioned in Theorem 9?

• What happens when pattern avoidance is defined to require the permutations
induced by each symbol (see the footnote in Section 2) to avoid the target
pattern as well?

• Can anything be said about Latin squares avoiding a specific pattern (or set
of patterns) in the rows, and a different pattern (or set of patterns) in the
columns? For example, to avoid 123 in the columns and 321 in the rows, we
can take a 123 avoiding square and reflect it through the vertical axis. This
means that there are n Latin squares with this structure. Can something more
interesting be said using larger patterns?
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• Instead of avoidance or containment of specific patterns, can we build Latin
squares using a set of permutations in a (set of) avoidance classes? How many
can be built?

• Is there a closed form expression for Ln(πn)? Such an expression, or even
bounds, could, with Theorem 8, be used to find better bounds on Ln.

We end with a final unexplored generalization leading to additional open ques-
tions. In what follows, we define a Latin rectangle to be any rectangular array with
entries in 1, . . . , n and no repeats in any row or column. The usual definition of a
Latin rectangle requires the number of columns to be n; in what follows, we wish to
examine “sub-rectangles” induced by choosing any p rows and q columns of a Latin
square, and these subrectangles will not always fit the traditional definition. Call two
Latin rectangles order isomorphic if one can be obtained from the other by applying
an increasing function f to each entry. For a Latin rectangle, R, we say a Latin
square contains the pattern R if it has some sub-rectangle which is order isomorphic
to R. For example, consider the Latin square in Figure 4. The subrectangle at rows
2 and 7, and columns 1, 5 and 9, is shown below.

6 8 3
1 6 8

This is order isomorphic to the rectangle,

R =
3 4 2
1 3 4

so we say the original square contains the pattern R.
Every problem addressed in the paper can be expressed in terms of rectangular

patterns. For example, enumerating Ln(123) is equivalent to counting Latin squares
which avoid both R = 1 2 3 and the 90◦ clockwise rotation of R. Many questions
about permutation patterns generalize to rectangular patterns, so that there is a great
deal of research that can be done in this area.
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