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Abstract

A subset S ⊆ V in a graph G = (V, E) is a [1, k]-set for a positive integer
k if for every vertex v ∈ V \ S, 1 ≤ |N(v) ∩ S| ≤ k, that is, every vertex
v ∈ V \ S is adjacent to at least one but not more than k vertices in S.
We consider [1, k]-sets that are also independent, and note that not every
graph has an independent [1, k]-set. For graphs having an independent
[1, k]-set, we define the lower and upper [1, k]-independence numbers and
determine upper bounds for these values. In addition, the trees having an
independent [1, k]-set are characterized. Also, we show that the related
decision problem is NP-complete.

1 Introduction

Let G = (V, E) be a graph of order n = |V | and size m = |E|. The open neighborhood
of a vertex v ∈ V is the set N(v) = {u | uv ∈ E} of vertices adjacent to v. Each
vertex in u ∈ N(v) is called a neighbor of v. The degree of a vertex v is d(v) = |N(v)|.
The minimum and maximum degrees of a vertex in a graph G are denoted δ(G) and
Δ(G), respectively. For a set S and a vertex v, we denote the number of neighbors
of v in S as dS(v), that is, dS(v) = |N(v) ∩ S|. The closed neighborhood of a vertex
v ∈ V is the set N [v] = N(v) ∪ {v}. The open neighborhood of a set S ⊆ V of
vertices is N(S) =

⋃
v∈S N(v), while the closed neighborhood of a set S is the set

N [S] =
⋃

v∈S N [v].

A set S is independent if no two vertices in S are adjacent. The vertex independence
number α(G) equals the maximum cardinality of an independent set in G. A set
S is a dominating set of a graph G if N [S] = V , that is, for every v ∈ V , either
v ∈ S or v ∈ N(u) for some vertex u ∈ S. A dominating set that is independent
is an independent dominating set, and the minimum cardinality of an independent
dominating set of G is the independent domination number of G, denoted i(G).
Since any maximal independent set is a dominating set, the independent domination
number is also known as the lower independence number. For more on independent
domination, we refer the reader to the excellent survey by Goddard and Henning [8].
For additional details on domination and terminology not defined here, the reader is
referred to the book [11].

In [6], Chellali et al. define a subset S ⊆ V in a graph G = (V, E) to be a [j, k]-set
if for every vertex v ∈ V \ S, j ≤ |N(v) ∩ S| ≤ k, that is, every vertex in V \ S is
adjacent to at least j vertices, but not more than k vertices in S. For j = 1, a [1, k]-
set S is a dominating set, since every vertex in V \ S has at least one neighbor in S
(is dominated by S), but every vertex in V \ S has at most k neighbors in S. It was
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noted in [6] that [j, k]-sets are related to several other concepts in domination theory,
including perfect domination, efficient domination, nearly perfect sets, 2-packings,
and k-dependent sets. In [6], they determined bounds on the minimum cardinality
of a [1, 2]-set and investigated extremal graphs achieving these bounds. Using a
result for [1, 3]-sets, they also showed that grid graphs have equal domination and
restrained domination numbers.

In this paper, we continue the study of [j, k]-sets and add the additional require-
ment that the set be independent. A [j, k]-set that is also independent is called an
independent [j, k]-set. A dominating set S is an independent [1, k]-set of G if S is
independent and dS(v) ≤ k for all v ∈ V \S. We note that an independent [1, 1]-set S
is an efficient dominating set, that is, for every vertex v ∈ V , |N [v]∩S| = 1. Efficient
dominating sets were introduced by Biggs in [5] in the context of error correcting
codes, and later by Bange, Barkauskas and Slater in [1] in the context of graph theory.
Efficient domination in graphs has received much interest, see [2, 3, 4, 9, 10, 12, 14],
for example. The study of independent [1,1]-sets is closely related to the study of
single error-correcting codes. Our generalization to independent [1, k]-sets is related
as well. For example, an independent [1,2]-set would permit most words to be cor-
rected, while those that cannot be corrected come from one of only two possible code
words.

We make some useful observations.

Observation 1 Every independent [1, k]-set S of G is minimal since S \ S ′ is not
dominating for any non-empty subset S ′ ⊆ S, and maximal since S ∪ U is not
independent for any non-empty subset U ∈ V \ S.

Observation 2 Every independent [1, k]-set is an independent [1, k′]-set for each
k′ > k.

A graph G may not have an independent [1, k]-set for some positive integer k. It is
known, for example, that not every graph has an efficient dominating set. However,
every graph G with Δ(G) = Δ has an independent [1, Δ]-set, since any independent
dominating set is such a set. We define ϕ(G) as the minimum positive integer k such
that G admits an independent [1, k]-set. By Observation 2, G has an independent
[1, k]-set for every k ≥ ϕ(G). For all k ≥ ϕ(G), we define the lower and upper [1, k]-
independence numbers as follows. Let i[1,k](G) equal the minimum cardinality of an
independent [1, k]-set of G and α[1,k](G) the maximum cardinality of an independent
[1, k]-set of G. The following observation is immediate.

Observation 3 For any graph G, i(G) = i[1,Δ](G) ≤ i[1,Δ−1](G) ≤ ... ≤ i[1,ϕ](G) ≤
α[1,ϕ](G) ≤ ... ≤ α[1,Δ−1](G) ≤ α[1,Δ](G) = α(G).
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2 Independent [1, k]-sets

As previously mentioned, not all graphs have independent [1, k]-sets for a given
positive integer k. For example, the complete bipartite graph K3,3 does not have
an independent [1, 2]-set. A doublestar, denoted Sr,s, is a tree that has exactly two
nonleaf vertices, one of which is adjacent to r ≥ 1 leaves and the other is adjacent
to s ≥ 1 leaves. The doublestar S2,3 with order n = 7 is an example of a tree that
has no independent [1, 2]-set. It can be seen that each of the two graphs K3,3 and
S2,3 has an independent [1, 3]-set, but does not have an independent [1, 2]-set. This
raises the following general problem:

Problem Characterize the graphs G with independent [1, k]-sets for a given pos-
itive integer k.

Another problem is to determine the smallest order of graphs that do not have an
independent [1, k]-set. Our next result solves this problem and shows, in fact, that
our example K3,3 has the minimum order of a graph with no independent [1, 2]-set
and the doublestar S2,3 has the minimum for a tree with no independent [1, 2]-set.

Theorem 4 (i) For every k ≥ 1, every graph of order n ≤ 2k+1 has an independent
[1, k]-set, and there exists a connected graph of order n = 2k +2 with no independent
[1, k]-set.

(ii) For every k ≥ 1, every tree of order n = 2k + 2 has an independent [1, k]-set,
and there exists a tree of order n = 2k + 3 with no independent [1, k]-set.

Proof. Let x ∈ V be a vertex of degree Δ(G) = Δ, let A = V \N [x], and let I be an
independent dominating set of the subgraph G[A] induced by A. The set S = I∪{x}
is an independent dominating set of G of cardinality |S| = |I|+1 ≤ |A|+1 = n−Δ.
If n−Δ ≤ k, then S is an independent [1, k]-set of G. Now assume that n−Δ > k.

(i) If n ≤ 2k + 1, then k + 1 ≤ n − Δ ≤ 2k − Δ + 1, and thus, k ≥ Δ. Hence, G
has an independent [1, k]-set.

Let G = Kk+1,k+1 of order n = 2k + 2. The only independent dominating sets of
G are the two partite sets A and B. Since each vertex of G has k + 1 neighbors in
either A or B, A and B are not independent [1, k]-sets and G has no independent
[1, k]-set.

(ii) Now let G be a tree T of order n = 2k + 2. Then, as in (i), k + 1 ≤ n − Δ =
2k + 2 − Δ. Thus, k ≥ Δ − 1. If k ≥ Δ, then every maximal independent set in T
is an independent [1, k]-set. Assume k = Δ − 1, and thus, n = 2Δ, and |A| = k. If
A is not independent, then |I| < |A| , |S| ≤ |A|, and S is an independent [1, k]-set.
If A is independent, then each vertex of A is adjacent to exactly one vertex of N(x).
Since |A| = k < Δ = |N(x)| , the set B = N(x) \ N(A) is independent and satisfies
0 < |B| ≤ Δ − 1 = k. Therefore, A ∪ B is an independent [1, k]-set of T .
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Consider the doublestar Sk,k+1, where a and b are the non-leaf vertices. Let A
be the set of leaves adjacent to a and B be the set of leaves adjacent to B. The
independent dominating sets of Sk,k+1 are B ∪ {a}, A ∪ {b}, and A ∪ B. None of
these is a [1, k]-set. Hence, Sk,k+1 has order 2k + 3 and no independent [1, k]-set. �

Corollary 5 The smallest orders of a connected graph and of a tree having no in-
dependent [1, k]-sets are, respectively, 2k + 2 and 2k + 3.

The next result shows that there is no forbidden subgraph characterization of
graphs with independent [1, k]-sets.

Proposition 6 Every graph G is an induced subgraph of some graph having an in-
dependent [1, 1]-set, and thus an independent [1, k]-set for k ≥ 1.

Proof. Let G be an arbitrary graph, and let G′ be the graph obtained from G by
adding a new vertex, say y, and joining y to every vertex of G. Clearly, G is an
induced subgraph and {y} is an independent [1, 1]-set of G′. By Observation 2, {y}
is an independent [1, k]-set of G′ for all k ≥ 1. �

The corona of graphs G and H , denoted G◦H , is the graph formed from one copy
of G and |V (G)| copies of H , where the ith vertex in V (G) is adjacent to every vertex
in the ith copy of H . Next we characterize the coronas G ◦H having an independent
[1, k]-set.

Proposition 7 Let k be a positive integer and G ◦H be the corona of graphs G and
H. Then G ◦ H has an independent [1, k]-set if and only if each component of G is
an isolated vertex or i(H) ≤ k.

Proof. Assume that the corona of graphs G and H has an independent [1, k]-set
D. If G = Kn, then V (G) is an independent [1, 1]-set of G ◦ H . Thus, suppose that
some component of G, say G′, is non-trivial. It follows that there exists at least one
vertex of G′ that does not belong to D. Let x be any vertex of G′ such that x /∈ D.
Let Hx the copy of H for which every vertex is adjacent to x and Dx = D ∩ V (Hx).
Since D is an independent [1, k]-set and x /∈ D, every vertex of V (Hx) is either in
Dx or has at most k neighbors in Dx. Hence, Dx is a maximal independent set of
Hx. Moreover, since x /∈ D, |Dx| ≤ k, for otherwise, x would have more than k
neighbors in Dx, which contradicts the fact that D is an independent [1, k]-set of
G ◦ H . Consequently, i(H) ≤ k.

Conversely, if each component of G is trivial, then clearly, V (G) dominates H
and is an independent [1, k]-set of G ◦ H . Now if i(H) ≤ k, then by considering
any maximal independent set of size at most k from each copy of H , we form an
independent [1, k]-set for of G ◦ H . �
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Graphs that are K1,k+1-free provide another example of graphs with independent
[1, k]-sets.

Theorem 8 If G is a K1,k+1-free graph, then every independent dominating set is
an independent [1, k]-set.

Proof. Let S be any independent dominating set of G. Since G is K1,k+1-free, every
vertex in V \ S has at most k neighbors in S. Hence, S is an independent [1, k]-set.
�

Corollary 9 If G is a K1,k+1-free graph, then i[1,k](G) = i(G) and α[1,k](G) = α(G).

Even for K1,4-free graphs G, we note that the difference between i[1,k](G) and
α[1,k](G) can be arbitrarily large. To see this consider the tree T2t formed by a path
P2t on 2t vertices, where for each vertex v of P2t, two new vertices v′ and v′′ are
added with edges vv′ and v′v′′. It is easy to see that for any positive integer k ≥ 2,
i[1,k](G) = i[1,2](G) = 2t and α[1,k](G) = α[1,2](G) = 3t.

3 Trees with Independent [1, k]-sets

Bange et al. [1] constructively characterize the trees having an independent [1, 1]-set
(i.e., an efficient dominating set) and give a linear time algorithm to find such a set.
In [10], Grinstead and Slater present a recurrence template that gives linear time
algorithms to determine several domination related parameters, including efficient
dominating sets, for (generalized) series-parallel graphs.

In this section, we give a constructive characterization of the trees having an
independent [1, k]-set, for k ≥ 2. Since any non-trivial tree T is a bipartite graph,
it has a unique bipartition (X, Y, E). For k ≥ 2, we say that T is a pk-tree if every
vertex in one of the partite sets has degree at most k. We call such a partite set, a
pk-set. If T is a tree with unique bipartition (X, Y, E) and X is a pk-set of T , then
Y is an independent [1, k]-set of T . First we characterize the pk-trees.

A star is either the trivial graph or the complete bipartite graph K1,t for t ≥ 1.
For the purposes of our discussion, we abuse notation slightly to say that every star
has exactly one vertex as its center. In other words, although the star K1,1 is self-
centered, we designate exactly one of the two central vertices as its center. We define
the family of trees Tk to include all trees T that can be constructed from a forest F
of r ≥ 1 stars as follows: Let S be the set of centers of the stars of F (note that
each star contributes exactly one vertex to S, and if a star is the trivial graph, then
this vertex is in S). Add a set S ′ of q ≤ r − 1 new vertices and r + q − 1 new edges
(each between a vertex in S and a vertex in S ′), such that T is a tree and every
new vertex is adjacent to at least two, but no more than k, vertices in S. We note
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that T is a tree and the sum of the degrees of the new vertices satisfies the condition
k∑

i=2

iai = r + q − 1, where ai is the number of new vertices of degree i.

Lemma 10 For any integer k ≥ 2, a non-trivial tree T is a pk-tree if and only if
T ∈ Tk.

Proof. Let T ∈ Tk and F be the underlying forest of T in the construction of
T , where S is the center of the stars of F . Then each of S and V (T ) \ S is an
independent set, and so {S, V (T ) \ S} is the unique bipartition of T . Moreover, by
the construction, every vertex in V (T ) \ S has at most k neighbors in S, and so S is
an independent [1, k]-set. Thus, T is a pk-tree.

Assume that T is a pk-tree, and let {X, Y } be the unique bipartition of T . Then,
without loss of generality, X is a pk-set, that is, every vertex in X has at most k
neighbors in Y . Since T is a non-trivial tree, every vertex in X has at least one
neighbor in Y , implying that Y is an independent [1, k]-set. If T is a star, then
T ∈ Tk. Hence, we may assume that T is not a star. Since T is connected, every
vertex in Y is adjacent to at least one vertex of degree at least 2. Consider the
forest F formed from T by removing the vertices of X of degree at least 2. Since
the remaining vertices in X now have exactly one neighbor in Y , it follows that F
is a collection of stars with centers in Y . Since T is a tree, there are q (q ≤ |Y | − 1)
vertices of degree at least 2 and at most k in X, and there are q + |Y | − 1 edges
between these q vertices and the vertices of Y . Hence, T ∈ Tk. �

We next define a family Fk of trees T such that T is the trivial graph or T can be
constructed as follows. Begin with a forest of non-trivial pk-trees Ti, for 1 ≤ i ≤ t,
where the unique bipartition of Ti is {Xi, Yi} and Xi is a pk-set of Ti. Add t − 1
edges where each edge joins vertices in two different sets Xi and Xj such that T is
connected.

Theorem 11 For any integer k ≥ 2, a tree T has an independent [1, k]-set if and
only if T ∈ Fk.

Proof. Assume that T ∈ Fk. If T is a pk-tree, then Lemma 10 implies that T has an
independent [1, k]-set. Suppose that T is not a pk-tree. Then T is constructed from
a forest of pk-trees Ti, for 1 ≤ i ≤ t, where the unique bipartition of Ti is {Xi, Yi}
and Xi is a pk-set of Ti, by adding t − 1 edges where each edge joins vertices in two
different sets Xi and Xj such that T is connected. Let X =

⋃t
i Xi and Y =

⋃t
i Yi.

Then Y is an independent set, and for every vertex x ∈ X, 1 ≤ dY (x) ≤ k. Thus, Y
is an independent [1, k]-set of T , as desired.

Assume that T has an independent [1, k]-set, say S. If T is trivial, then T ∈ Fk.
Hence, assume that V (T )\S 
= ∅. If V (T )\S is independent, then T is a non-trivial
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pk-tree, and so T ∈ Fk. Thus, we may assume that V (T ) \ S contains at least one
edge, and let E ′ be the set of edges in the subgraph induced by V (T ) \ S. Then
removing E ′ from T produces a forest with |E ′|+1 non-trivial components. Consider
a component, say Ti, of F . Let Xi = V (Ti) ∩ (V (T ) \ S) and Yi = V (Ti) ∩ S. Now
Yi is an independent [1, k]-set of Ti. Moreover, Xi is independent, implying that
{Xi, Yi} is the unique bipartition of Ti. Hence, Ti is a non-trivial pk-tree. Since Ti

is an arbitrary component of F and all the edges removed from T to form F were
between vertices in V (T ) \ S, by construction, T ∈ Fk. �

4 Bounds

In this section, we determine upper bounds on the [1, k]-independence numbers for
graphs having independent [1, k]-sets.

We define families L′ and L as follows: The graphs G′ ∈ L′ are bipartite with
partite sets S and V \ S, where |S| = kq/δ and |V \ S| = q, q is any positive integer
such that δ divides kq. Moreover, dG′(v) = δ for all v ∈ S and dG′(v) = k for all
v ∈ V \ S.

A graph G belongs to L if it is obtained from a graph G′ of L′ by possibly adding
edges between vertices of V \ S in such a way that dG(v) ≥ δ for all v ∈ V \ S. A
graph G ∈ L has minimum degree δ(G) = δ, and S is an independent [1, k]-set of G

with cardinality k|V \S|
δ

= k(n−|S|)
δ

. Hence, α[1,k](G) ≥ |S| = kn
δ+k

.

Theorem 12 Let G be a graph of order n with no isolated vertices. If k ≥ ϕ(G),
then i[1,k](G) ≤ α[1,k](G) ≤ kn

δ+k
. Equality, α[1,k](G) = kn

δ+k
, is achieved if and only if

G ∈ L.

Proof. If k ≥ ϕ(G), then G has an independent [1, k]-set, say S. Let t denote the
number of edges joining the vertices of S to the vertices of V \ S. Since there are no
isolated vertices in G, every vertex of S has at least δ(G) ≥ 1 neighbors in V \ S,
and so t ≥ δ(G) |S|. Moreover, since every vertex of V \ S has at most k neighbors

in S, we have t ≤ k |V \ S|. Therefore, δ(G) |S| ≤ t ≤ k |V \ S|, and so, |S| ≤ k|V |
δ+k

.

Hence, every independent [1, k]-set of G has cardinality at most k|V |
δ+k

, and the bound
follows.

If α[1,k](G) = kn
δ+k

, then dG(v) = δ for all v ∈ S and dG(v) = k for all v ∈ V \ S.

Hence, G ∈ L. Conversely, if G ∈ L, then kn
δ+k

≤ α[1,k](G) ≤ kn
δ+k

. �

Figure 1 is an example of a graph of L, where V \ S is a clique. In this case, S =
{xi | 1 ≤ i ≤ 6} is the unique independent [1, k]-set of G and i[1,k](G) = α[1,k](G) =
kn

δ+k
= 6. In the special case of δ(G) = 1, more can be said about the graphs achieving

the equality in the upper bound of Theorem 12.
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Figure 1: A graph in L.

Theorem 13 Let G be a graph of order n with minimum degree δ(G) = 1. If G has
an independent [1, k]-set, then the following hold:

(a) α[1,k](G) = kn
k+1

if and only if G is the corona H ◦ Kk, where H is any graph.

(b) If α[1,k](G) = kn
k+1

and no component of G is a star K1,k, then i[1,k](G) =
α[1,k](G).

Proof. Part (a) follows from Theorem 12 and the definition of the family L.

(b) If an independent [1, k]-set X of G is different from the set S of leaves, let x be
a vertex of H in X and y ∈ NH(x). Then y 
∈ X and the k leaves of G attached at y
are in X. The vertex y of V \ X has at least k + 1 neighbors in X, a contradiction.
Hence, S is the unique independent [1, k]-set of G. �

Note that for the star K1,k, α[1,k](K1,k) = k and i[1,k](K1,k) = 1.

Theorem 14 Let G be a graph of order n and size m. If G has an independent

[1, k]-set, then i[1,k](G) ≤ α[1,k](G) ≤ 2n+2k−1−
√

8m+(2k−1)2

2
.

Proof. Let S be a α[1,k](G)-set and t the number of edges joining the vertices of
S to the vertices of V \ S. Clearly, t ≤ k(n − |S|). If m denotes the number

of edges of the complement graph of G, then m ≥ |S|(|S|−1)
2

+ (n − |S|) |S| − t ≥
|S|(|S|−1)

2
+ (n− |S|) |S| − k(n − |S|). Using the fact that m + m = n(n−1)

2
, we obtain

n(n − 1)

2
− m ≥ −|S|2

2
+

(
n +

2k − 1

2

)
|S| − kn

which can be written as |S|2 − (2n + 2k − 1)|S| + n2 + (2k − 1)n − 2m ≥ 0.

The equation |S|2 − (2n + 2k − 1)|S| + n2 + (2k − 1)n − 2m = 0 has two positive
roots and n is between them. Hence

|S| ≤ 1

2
(2n + 2k − 1 −

√
(2n + 2k − 1)2 − 4(n2 + (2k − 1)n − 2m))

≤ 1

2
(2n + 2k − 1 −

√
8m + (2k − 1)2).
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Equality is attained if and only if G is obtained from a split graph with S inde-
pendent, V \ S complete, and dS(v) = k for all v ∈ V \ S. �

We note that the bound in Theorem 14 is better than the bound of Theorem 12
for all graphs G with large size and small minimum degree.

5 Complexity

As previously noted, not all graphs have independent [1, k]-sets. This leads to the
following decision problem:

INDEPENDENT [1, k]-SET
INSTANCE: Graph G = (V, E), positive integers k and t ≤ |V |.
QUESTION: Does G have an independent [1, k]-set of cardinality at
most t?

We note that for k = 1, independent [1, k]-sets coincide with efficient dominating
sets for which the decision problem is NP-complete even for planar graphs with
maximum degree three (see [7]). We also note that for k ≥ Δ, we have i[1,k](G) =
i(G), and it is well-known that determining the number i(G) for an arbitrary graph
is NP-complete.

We will show that INDEPENDENT [1, k]-SET is NP-complete for k ≥ 2 by giv-
ing a transformation from the known NP-complete problem (see [13]), NOT-ALL-
EQUAL p-SAT (NEpSAT).

NEpSAT
INSTANCE: A set U = {u1, u2, . . . , un} of variables and a set C =
{C1, C2, . . . , Cm} of p-element subsets, p ≥ 3, called clauses, where each
clause Ci contains p distinct occurrences of either a variable ui or its
complement ūi.
QUESTION: Does C have a satisfying truth assignment, such that at
least one variable, but not all p, in each clause is assigned the value
True?

Theorem 15 INDEPENDENT [1, k]-SET is NP-complete for each k ≥ 1.

Proof. Clearly, INDEPENDENT [1, k]-SET is in the class P, since it is easy to
verify a ’yes’ instance of INDEPENDENT [1, k]-SET in polynomial time.

Given an instance C of NEpSAT, where p = k + 1 ≥ 3, we construct an instance
G(C) of INDEPENDENT [1, k]-SET as follows. For each variable ui, construct a
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triangle with vertices labelled ui, ūi, vi. For each clause Cj create a single vertex Cj,
and add the p edges uiCj for ui ∈ Cj.

We must show that C has a NEpSAT assignment if and only if the graph G(C)
has an independent [1, k]-set of cardinality t ≤ n.

If C has a NEpSAT assignment, then construct a set S of vertices in G(C) as
follows: if a variable ui is assigned the value True, then place ui ∈ S. It is easy to see
that the set S has cardinality n, and is a dominating set, since each triangle contains
at least one vertex in S, every triangle vertex is adjacent to a vertex in S, and since
every clause contains a vertex that is assigned the value True, each clause vertex is
also adjacent to a vertex in S. It remains to show that the set S is an independent
[1, k]-set. But each triangle vertex is adjacent to exactly one vertex in S, and each
clause vertex Cj is adjacent to at most p − 1 = k vertices in S, since the vertices in
S are determined by a NEpSAT assignment, which means that no clause vertex is
adjacent to p vertices in S.

Conversely, we must show that if G(C) has an independent [1, k]-set of cardinality
t ≤ n, then C has a NEpSAT assignment. Notice first that if S is an independent
[1, k]-set, then each triangle must contain exactly one vertex in S; it cannot contain
two vertices in S, else S is not an independent set, and it must contain at least one
vertex in S, since the vertices vi must be either in S or adjacent to a vertex in S. But
if t ≤ n, then it must be the case that, in fact, t = n. It only remains to construct
a NEpSAT assignment from S. For each vertex ui ∈ S, assign the value True to
variable ui, otherwise assign the value False to ui. Since every vertex Cj is adjacent
to at least one vertex in S, this produces a truth assignment for C. We must show
that this truth assignment is a NEpSAT assignment. This follows from the fact that
S is an independent [1, k]-set, which means that no vertex, and in particular, no
clause vertex is adjacent to k + 1 = p vertices in S. Therefore, at least one variable
in each clause corresponds to a vertex not in S. �

6 Open problems

Problem 1 Characterize the graphs G having independent [1, 2]-sets.

Problem 2 Determine necessary conditions for a graph to have an independent
[1, k]-set.

Problem 3 Determine lower bounds on i[1,k](G) and α[1,k](G) for graphs G.

Problem 4 Characterize the trees T with i[1,2](T ) = α[1,2](T ).

Problem 5 Which grids Pm�Pn have independent [1, 2]-sets?
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Problem 6 Which Cartesian products Pm�Cn and Cm�Cn have independent [1, 2]-
sets?

Problem 7 If a graph G has an independent [1, k]-set, does the Cartesian product
G�H have an independent [1, k]-set?

Problem 8 If a tree has an independent [1, 2]-set, can i[1,2](T ) and α[1,2](T ) be com-
puted in polynomial time?

Problem 9 Suppose a graph G does not have an independent [1, k]-set. Define
∂α[1,k](G) to equal the maximum cardinality of a set S such that S is an independent
[1, k]-set in the subgraph G[N [S]] induced by N [S]. This is a measure of how close the
graph G comes to having an independent [1, k]-set, and thus it is an approximation
to α[1,k](G). One could also define ∂i[1,k](G) to equal the minimum cardinality of a
maximal set S which is an independent [1, k]-set in G[N [S]].

Problem 10 From a coding theoretic perspective, it would be worthwhile to find an
independent [1, 2]-set having a minimum number of vertices dominated twice. What
can you say about such sets?
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