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Abstract

A bicolorable STS(v) is a Steiner triple system whose vertices are colored
in such way that every block receives precisely two colors. A k-bicoloring
of a STS is a vertex coloring using each of k colors, and the feasible set
Ω is a set of integers k for which k-bicolorings exist. In this paper, we
study feasible sets of STS(v)s of all orders v < 50.

1 Introduction

A Steiner triple system STS(v) of order v is a pair (X,B), where X is a finite set
called vertices, |X| = v, and B is a family of subsets of X, called blocks, such that
each block contains three vertices, and any two distinct vertices of X appear together
in precisely one block. It is well-known that v ≡ 1 or 3(mod 6) for every STS(v).

A coloring of (X,B) is a surjective mapping φ from X onto a finite set C whose
elements are called colors. If |C| = k we say that φ defines a k-coloring. For each
c ∈ C, the set φ−1(c) = {x : φ(x) = c} is a color class. A coloring φ of (X,B)
is a bicoloring if |φ(B)| = 2 for all B ∈ B; i.e., B can not be a monochromatic or
polychromatic block.

A STS(v) is k-bicolorable if it admits at least one k-bicoloring, and it is unbicol-
orable if no k-bicoloring exists for any k ≥ 1. The first results on bicolorings of STSs
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and SQSs were obtained in [15] where it was also proved that there exist classes of
unbicolorable STSs. More results can be found in [1, 6, 12, 13, 14, 17, 18].

Historically, the concept and terminology of bicoloring is originated from the
coloring theory introduced by V. Voloshin in [19, 20, 21].

Let S = STS(v) = (X,B). An independent set of S is a subset of X which does
not contain any block of B. The cardinality of the largest independent set of S is
denoted by β(S). We refer to [4] the reader interested in more results of maximum
size of an independent set in an STS(v). Since in any bicoloring of S no block is
monochromatic, each color class is an independent set. It is well-known that there
are no 2-bicolorable STS(v) for v > 3, since these systems do not have blocking
sets [5].

Given a k-bicoloring C, if the cardinalities of color classes are n1, n2, . . . , nk, then
for brevity we write C = C(n1, n2, . . . , nk). In [11], we can find important necessary
conditions for the existence of possible k-bicolorings for general STSs. One of them
is given by the equation

v(v + 2) = 3
k∑

j=1

n2
j . (1)

For a system S = STS(v), the set of integer numbers

Ω(S) = {k | ∃ a k-bicoloring of S}

is called the feasible set of S. It contains all possible integers k for which k-bicolorings
of S exist. We assume that the feasible set of an unbicolorable system S is the empty
set. The maximum and minimum elements of Ω(S) are called the upper and lower
chromatic numbers of S, denoted by χ(S) and χ(S), respectively. In general, it is
difficult to determine the lower and upper chromatic numbers of STSs; and, even if
they are known, it is not always true that all the i with χ(S) ≤ i ≤ χ(S) are in
Ω(S). For mixed hypergraph it was discovered in [10] that such particular gaps are
possible. The problem to find a bicolorable STS with a gap in its feasible set still
remains an open problem.

Given any integer v, such that v ≡ 1 or 3 (mod 6), the set

Ω(v) = {k | ∃ a STS(v) which is k-bicolorable }
contains all integers k for which there exists a STS(v) of a particular order v which
has a k-bicoloring. We call it a feasible set for v. It can also be defined as Ω(v) =⋃

S Ω(S), where the union is taken over all bicolorable STS(v)s. The maximum and
minimum elements of Ω(v) are, respectively, the upper and lower chromatic numbers
for the order v, i.e. χ(v) and χ(v).

Important results on bicolorings of STS(v)s can be found in [16, 18] where the
authors determine the best upper bound for the upper chromatic number and a lower
bound for the color class cardinalities in an arbitrary k-bicoloring.
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The following theorem summarizes some key results from [15] which are important
in the proofs in subsequent sections.

Theorem 1.1 If S is a STS(v) with v ≤ 2k − 1, then χ̄(S) ≤ k, and for any
h-bicoloring C = C(n1, n2, . . . , nh) of S the following inequalities hold: n1 ≥ 20,
n2 ≥ 21, n3 ≥ 22, . . . , nh ≥ 2h−1. In particular, if χ̄ = k, then:

1. v = 2k − 1;

2. in any k-bicoloring of S the color classes have cardinalities

20, 21, 22, . . . , 2k−1.

3. S is obtained from the STS(3) by repeated application of a doubling plus one
construction.

In the second section of this paper we find technical results useful for determining
the feasible sets of STSs. The third section is devoted to the study of feasible sets for
STS(v) with v < 50. In particular, for these systems, we determine all the possible
feasible sets Ω(v) and Ω(S), and whether there are unbicolorable systems.

2 Technical results

We will use the well-known recursive construction called the doubling construction
(other names: v → 2v + 1 rule, doubling plus one construction, etc.) which starts
with an STS(v) and ends up with an STS(2v + 1).

To obtain such a construction, all that is needed, apart from the subsystem
STS(v), is a 1-factorization of the complete graph Kv+1. Indeed, let (X,F) be
a 1-factorization of Kv+1 where F = {F1, . . . , Fv}, and |X| = v + 1 is even. If
(V,B), V = {a1, . . . , av}, is an STS(v), form the set of triples C = {{ai, x, y} : ai ∈
V, {x, y} ∈ Fi}; then (V ∪ X,B ∪ C) is an STS(2v + 1).

In [15], the authors show that the unique STS(v)s with χ̄ = k and v ≤ 2k − 1 are
obtained from the STS(3) by repeated application of doubling constructions.

Let S = (X,B) = STS(2v + 1) be obtained by a doubling construction from S ′ =
(X ′,B′) = STS(v), which is k-bicolorable with the bicoloring C′= C′(n′

1, n
′
2, . . . , n

′
k).

We say that the system S = STS(2v + 1) has a k-extended bicoloring of C′ if there
exists a k-bicoloring C = C(n1, n2, . . . , nk) of S such that the subsystem S ′ is colored
by C′. This is equivalent to saying that in the k-bicoloring C of S the vertices of
X ′′ = X − X ′ are colored by the colors used in C′.

The values ci = ni − n′
i, with 1 ≤ i ≤ k, are the numbers of vertices in X ′′ which

are colored with the color i ∈ C′. Notice that cj = 0 is possible for some 1 ≤ j ≤ k.

It was proved in [2] that extended k-bicolorings do not exist if v = 2k − 1 and
k < 10. The case k ≥ 10 was left as an open problem.
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We will use notation and results on extended bicoloring found in [7]. For this
reason, in the sequel we refer the reader to this cited paper.

In [11] it was proved that every bicoloring has one and only one color class with
odd cardinality.

Proposition 2.1 If S = (X,B) is a bicolorable STS(v), then there exists no bicol-
oring with two color classes each of cardinality two.

Proof. Let C be a bicoloring of an STS(v) with two color classes containing two
vertices; i.e. Xi = {l1, l2} and Xj = {m1, m2}. If we assume that block {l1, l2, m1} ∈
B, then the pair (l1, m2) cannot be contained in any block of B. Similarly, if at least
one of the two blocks {l1, l2, x} and {m1, m2, y} is in B, then at least one of the pair
(l1, m1) or (l1, m2) cannot be in a bicolored block, and the proposition is proved.

The following proposition gives a necessary condition for the existence of an
extended bicoloring.

Proposition 2.2 Let S = (X,B) = STS(2v+1) be a system obtained by a doubling
construction from S ′ = (X ′,B′) = STS(v) which is h-bicolorable with the bicoloring
C′ = C′(n′

1, n
′
2, . . . , n

′
h). If C = C(n1, n2, . . . , nh) is an extended h-bicoloring of C′ on

S where ni = n′
i + ci, then the following two equalities hold:

⎧⎨
⎩

∑h
i=1 c2

i + 2
∑h

i=1 n′
ici = (v + 1)2

∑h
i=1 ci = v + 1.

(2)

Proof. It is evident that
∑h

i=1 ci = v + 1, and ni = n′
i + ci and for 1 ≤ i ≤ h. The

equation (1) for the systems S ′ and S can be written as it follows:

3
h∑

i=1

n′2
i = v(v + 2);

3

h∑
i=1

(n′
i + ci)

2 = (2v + 1)(2v + 3).

Subtracting the first equation from the second one, we obtain:

h∑
i=1

c2
i + 2

h∑
i=1

n′
ici = (v + 1)2.

The following proposition permits one to characterize solutions of system (2) which
do not give extended bicolorings.
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Proposition 2.3 Let C be an extended bicoloring of C′ = C′(n′
1, n

′
2, . . . , n

′
h) for the

system S = (X,B) = STS(2v + 1), obtained by doubling construction from S ′ =
(X ′,B′) = STS(v). If in a solution (c1, c2, . . . , ch) with respect to C′ there are two ci

and cj, such that ci > 0 and cj > 0, 1 ≤ i, j ≤ h and i 	= j, then ci ≤ n′
i + n′

j and
cj ≤ n′

i + n′
j.

Proof. Let us consider x′ ∈ X ′′ colored with i. It is contained in cj non monochro-
matic pairs colored with i and j, all contained in different factors. These factors
correspond to vertices xl ∈ X ′ colored only with either i or j, and there are at most
n′

i + n′
j of them, so cj ≤ n′

i + n′
j . Analogously, we obtain that ci ≤ n′

i + n′
j .

The proposition above is most useful when in C′ there exists one n′
i = 1 and ci > 0,

because in this case cj ≤ n′
j + 1 for every cj > 0 with 1 ≤ j ≤ h and i 	= j. In

the general case, if we want to obtain the best evaluation of a solution to system (2)
with respect to the conditions of Proposition 2.3, we have to find in C′ the value n′

i

with ci > 0, n′
i ≤ n′

j for every 1 ≤ j ≤ h, such that cj > 0 and i 	= j. This particular
choice of n′

i permits us to optimize the inequalities cj ≤ n′
j + n′

i with i 	= j.

Proposition 2.4 Let S = (X,B) = STS(2v+1), be a system obtained by a doubling
construction from the system S ′ = (X ′,B′) = STS(v), which admits the bicoloring
C′ = C′(n′

1, n
′
2, . . . , n

′
h). If (c1, c2, . . . , ch) is a solution to system (2) with respect to

C′, with cl > 0 for 1 ≤ l ≤ h, and ci = (v + 1)/2, and with cj > 0 such that
(
∑

k n′
k) · 
cj/2� < cj(cj − 1)/2, with k 	= i and j, then the solution (c1, c2, . . . , ch)

does not determine an extended h-bicoloring C′.

Proof. In X ′′, the solution (c1, c2, . . . , ch) defines cj(cj − 1)/2 monochromatic pairs
of color j which are not in the factors corresponding to the vertices xl ∈ X ′ colored
with i and j. These pairs have to be in

∑
k n′

k factors, with k 	= i, j and corresponding
to the vertices xl ∈ X ′ of color k. In each of these factors there are at most 
cj/2�
monochromatic pairs of color j therefore (

∑
k n′

k) · 
cj/2� ≥ cj(cj − 1)/2.

The following theorem gives a sufficient condition for the existence of extended h-
bicolorings of STS(2v + 1) when there is an h-bicoloring C′ of system STS(v), and it
allows us to find extended bicolorings without solving the system (2).

Theorem 2.1 Let S ′ = (X ′,B′) = STS(v), be a system h-bicolorable with C′ =
C′(n′

1, n
′
2, . . . , n

′
h). If there exist p integers n′

ki
, with 1 ≤ i ≤ p and p < h, where

n′
k1

+ n′
k2

= (v + 1)/2p−1 is an even integer, and n′
ki

= (v + 1)/2p−i+1, for 3 ≤ i ≤ p,
are all even, then S = (X,B) = STS(2v + 1), obtained by doubling construction
from S ′, has an extended h-bicoloring of C′.

Proof. Set ck1 = (v+1)/2p−1, ck2 = (v+1)/2p−1, cki
= (v+1)/2p−i+1 for 3 ≤ i ≤ p,

and cj = 0 for all j 	= ki with 1 ≤ i ≤ p. It is necessary that these assignments give
correct numbers of monochromatic and non monochromatic pairs in a factorization
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F of X ′′ which defines a bicoloring of STS(2v + 1), i.e., it is necessary to check
whether (c1, c2, . . . , ch) is a solution with respect to C′ of the system

⎧⎨
⎩

∑p
i=1 c2

ki
+ 2

∑p
i=1 n′

ki
cki

= (v + 1)2

∑p
i=1 cki

= (v + 1).

Replacing the values of cki
and n′

ki
, for 1 ≤ i ≤ p, the first equality becomes

2p−2∑
i=1

(v + 1)2

2i
+

(v + 1)2

22p−2
= (v + 1)2,

and it is trivially true.

Setting s =
∑p

i=2(v + 1)/2p−i+1 + (v + 1)/2p−1, it is simple to verify that s = v + 1,
so the second equality is also true.

In this second part of the proof we construct a factorization F specifying how we
distribute both the vertices in X ′′ and the colors ki, with 1 ≤ i ≤ p, in such a way
that the rules of an extended bicoloring of C′ are respected.

Let us color exactly (v +1)/2 vertices by color kp and the other (v +1)/2 vertices by
colors ki for 1 ≤ i ≤ p − 1. Easily, it is possible to build (v + 1)/2 factors with non
monochromatic pairs using for each one of them colors kp and ki, with 1 ≤ i ≤ p−1.
These factors are connected with the (v +1)/2 vertices xl ∈ X ′ colored with kp. The
set of (v+1)/2 vertices in X ′′ colored with kp defines a factorization F (1) of (v−1)/2
factors all containing (v+1)/22 monochromatic pairs of color kp. The factors in F (1)

are placed on the bottom of the (v − 1)/2 factors in F corresponding to the vertices
xl ∈ X ′ colored with all the colors distinct from kp. Now, let us consider (v + 1)/22

vertices of X ′′ colored with the color kp−1; all the non monochromatic pairs that use
the colors kp−1 and ki, with 1 ≤ i ≤ p − 2, define (v + 1)/22 factors all containing
(v + 1)/22 pairs. These last factors cover completely (v + 1)/22 factors of F which
contain (v + 1)/22 monochromatic pairs of color kp of F (1), and they are connected
with the vertices xl ∈ X ′ colored with kp−1. The (v+1)/22 vertices of X ′′ colored with
kp−1 define a factorization F (2) of (v+1)/22−1 factors. The pairs of these factors are
added to the other incomplete factors of F which contain (v + 1)/22 monochromatic
pairs colored with kp and contained in the factors of F (1). Therefore in these last
factors there are (v + 1)/22 pairs of color kp and (v + 1)/23 pairs of colorkp−1. We
repeat this procedure until the (v + 1)/2p−2 vertices in X ′′ colored with k3 define
(v + 1)/2p−2 factors of non monochromatic pair colored with the colors k3 and ki,
with i = 1 or 2. They completely cover (v + 1)/2p−2 factors of F corresponding to
the vertices xl ∈ X ′ colored with k3. Also the vertices of X ′′ colored with k3 define a
factorization F (p−2) of (v + 1)/2p−2 − 1 factors of (v + 1)/2p−1 monochromatic pairs
colored with k3. The factors in F (p−2) are posed on the remaining (v + 1)/2p−2 − 1
factors of F which are not complete and containing monochromatic pairs of colors
ki for 3 ≤ i ≤ p. Finally the (v + 1)/2p−1 vertices of color k1 and the (v + 1)/2p−1

vertices of colors k2 define (v + 1)/2p−1 factors containing non monochromatic pairs
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and colored with k1 and k2. These factors completely cover all the (v+1)/2p−1 factors
of F corresponding to the vertices xl ∈ X ′ colored with k1 and k2. The vertices of
X ′′ colored with k1 and k2 define respectively two factorizations F (p−1) and F (p) of
(v + 1)/2p−1 − 1 factors all containing (v + 1)/2p monochromatic pairs of colors k1

and k2. These factors cover completely all the remaining (v + 1)/2p−1 − 1 factors of
F corresponding to the vertices xl ∈ X ′ colored with j 	= ki with 1 ≤ i ≤ p.

We obtain a factorization F of
∑p−1

i=1 (v + 1)/2i + (v + 1)/2p−1 − 1 = v factors which
gives a correct bicoloring for STS(2v + 1) obtained by a doubling construction, and
the theorem follows.

In the previous theorem, the factorization F is possible to obtain since all the quan-
tities (v + 1)/2i with 1 ≤ i ≤ p − 1 are even. Therefore, it is always possible to
construct the factorizations F (i), for 1 ≤ i ≤ p − 1. Notice that the solution with
respect to C′ has at least one cl = 0 with 1 ≤ l ≤ h, since in F there are factors with
only monochromatic pairs.

It is necessary to emphasize that the theorem above permits us to find a consid-
erable number of STSs with extended bicolorings. For example, for 50 ≤ v ≤ 200,
from tables on pages 10, 14 and 15 of [3], we immediately see that it is applicable to
48 bicolorings related to STSs of orders v = 55, 77, 79, 87, 103, 111, 127, 135, 151,
159, 175, and 199. For all these systems, we obtain feasible sets with χ 	= χ.

3 Feasible sets for STS(v) with v < 50

In this section we determine all the possible feasible sets Ω(v) and Ω(S), and if there
are unbicolorable systems for v < 50 as shown in the Table at the end of this section.
We refer to [3] the reader interested in all the possible bicolorings for v < 100.

The following theorem summaries all the results when v = 2k − 1 and k = 3, 4
and 5.

Theorem 3.1 If S is a STS(v) with v = 7, 15 and 31, then Ω(7) = {3}, Ω(15) = {4}
and Ω(31) = {3, 5}. There is no S = STS(31) with the feasible set Ω(S) = {3, 5}.
There are unbicolorable STS(15)s and STS(31)s.

Proof. The unique STS(7) can be colored only with a 3-bicoloring, so Ω(7) = {3}.
In [11], it was proved that the unique bicolorable BSTS(15)s are obtained by a
sequence of doubling constructions and they are only 4-bicolorable, so Ω(15) = {4}.
All the other STS(15)s are unbicolorable.

In [3], it is shown that all 3-bicolorable STS(31)s have type C(∀, ∃,∞�), and that
there are no solutions to equation (1) for 4-bicoloring. The 3-bicolorable STS(31)s
cannot be 5-bicolorable, since, by Theorem 1.1, any 5-bicoloring has to be of type
C(1, 2, 4, 8, 16); i.e., these systems are obtained by a sequence of doubling construc-
tions, so they are only 5-bicolorable.
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According to [4], there are STS(31)s with β = 12. All these systems are unbi-
colorable because 5 and 3-bicolorings have a color class of cardinalities 16 and 14,
respectively.

Theorem 3.2 If S is a STS(v), then:

1. for v = 9, 13 and 21, the feasible set for v is Ω(v) = {3}, and there are
unbicolorable systems for v = 21 only;

2. for v = 19, there are three possible feasible sets: Ω(S) = {3}, Ω(S) = {4} and
Ω(S) = {3, 4}. There exist unbicolorable systems.

Proof. There is a unique STS(9) up to isomorphism. The only solutions of the
equation (1) are (1, 4, 4) and (2, 2, 5). The solution (2, 2, 5) is not a bicoloring by
proposition 2.1, while (1, 4, 4) is a 3-bicoloring, so Ω(9) = {3}.

For v = 13, we have two distinct STS(v)s up to isomorphism, and (2, 5, 6) is the
unique solution of (1). It is easy to prove that the two systems are 3-bicolorable.

The cases v = 19, 21 are discussed in [11]. As it is shown in [4], there are STS(19)s
and STS(21)s with β ≤ 8.

From now on, all the table references refer to tables in [8].

Theorem 3.3 For order v = 25, the feasible set Ω(25) = {3, 4}, and there are
unbicolorable systems.

Proof. By Theorem 1.1 for an S = STS(25), we have χ ≤ 4. The only solutions to
(1) are (2, 4, 6, 13), (1, 4, 8, 12) and (5, 10, 10). The solution (2, 4, 6, 13) cannot be a
bicoloring because an independent set of order 13 does not exist in a STS(25). The
system S1 in Table 1 in [8] is bicolorable with bicoloring C′(1, 4, 8, 12). The system
S2 in Table 2 of [8] is bicolorable with bicoloring C′′(5, 10, 10).

There are unbicolorable STS(25)s, since in [4] it was proved that some of them
have β < 10.

The system S1 in Table 1 is only 4-bicolorable; in fact numerical analysis shows
that this system does not contain two disjoint independent sets of order 10, so
Ω(S1) = {4}. The system S2 in Table 2 is only 3-bicolorable because it does not
have independent sets of order 12, and therefore Ω(S2) = {3}. To find out if there
exists a system S with Ω(S) = {3, 4} is still an open problem.

Theorem 3.4 For order v = 27, the feasible set Ω(27) = {3, 4}. In particular, there
are S = STS(27)s with Ω(S) = {3}, Ω(S) = {4} and Ω(S) = {3, 4}. There are
unbicolorable systems.
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Proof. There are no 5-bicolorable STS(27)s since by Theorem 1.1, for a 5-bicoloring,∑5
i=1 ni ≥ ∑5

i=1 2i−1 > 27. The only solutions to (1) are (6, 9, 12), (1, 4, 10, 12),
and (2, 5, 6, 14). The systems S3 and S4 in [8] are, respectively, bicolorable with
C1(6, 9, 12) and C2(1, 4, 10, 12) as it is shown in Tables 3 and 4. The system S3, by
numerical analysis, does not have two disjoint independent sets of order 12 and 10,
and it does contain a subsystem STS(13), so it is only 3-bicolorable. The system
S4 has a unique independent set of order 12 which defines for it color class X4. All
independent sets of cardinality 9 disjoint from X4 are contained in color classes X3,
and since there is a unique vertex in color class X1, this system is not 3-bicolorable.

The two distinct non isomorphic STS(13)s are only bicolorable with 3-bicoloring
C(2, 5, 6); Table 5 shows an extended bicoloring C3(6, 9, 12) of the system S5 obtained
by doubling construction from an STS(13). This system is also 4-bicolorable with
C4(2, 5, 6, 14). Consequently, Ω(S5) = {3, 4}.

In [4], it is shown that there are STS(27)s with β < 12; all such systems are
unbicolorable.

Theorem 3.5 For order v = 33, we have the feasible set i Ω(33) = {4}. There are
unbicolorable systems.

Proof. The solutions of (1) are: (1, 8, 8, 16), (2, 4, 13, 14, ), (2, 5, 10, 16) and
(8, 4, 4, 17). The first three solutions are bicolorings for STS(33)s [3], while (8, 4, 4, 17)
does not define a bicoloring because there are no STS(33)s with β > 16.

As shown in [4], there are STS(33) with β < 14; all are unbicolorable.

Theorem 3.6 For order v = 37, the feasible set is Ω(37) = {3, 4}. There are
unbicolorable systems.

Proof. The only solutions of the equation (1) are (9, 12, 16) and (2, 5, 14, 16). The
system S6 in Table 6 of [8] is 3-bicolorable with the bicoloring C(9, 12, 16), while the
system S7 in Table 7 is 4-bicolorable with the bicoloring C(2, 5, 14, 16).

In [4] unbicolorable systems were described with β < 15.

Numerical analysis shows that the system S6 is only 3-bicolorable because it does
not contain two disjoint independent sets of cardinalities 16 and 14. The system S7

has a unique independent set of order 16 corresponding to the color class X4. All
independent sets of order 12 are contained in X3, therefore, because X1 ∪ X2 is not
an independent set, S7 cannot be 3-bicolorable.

The existence of a system S with Ω(S) = {3, 4} remains an open problem.

Theorem 3.7 For order v = 39, the feasible set is Ω(39) = {3, 4, 5}. In particular,
there are S = STS(39)s with Ω(S) = {3}, Ω(S) = {4}, Ω(S) = {5}, Ω(S) = {3, 4},
and Ω(S) = {3, 4, 5}. There are unbicolorable systems.
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Proof. In [11], it is shown that there are STS(19)s which are either only 3-
bicolorable by C1(4, 6, 9) or only 4-bicolorable by C2(1, 2, 8, 8); there are also STS(19)s
admitting both the bicoloring C1(4, 6, 9) and C2(1, 2, 8, 8). By Theorem 2.1, there are
STS(39)s with the extended bicolorings of C1 and C2. Starting with these three kinds
of STS(19)s by doubling construction we obtain STS(19)s of the respective kind as
claimed.

In [8], the systems in Tables 8 and 10 are only 3 and 5-colorable, respectively. In
fact, by numerical analysis, it is possible to verify that they have no independent sets
of cardinality 18 (all the possible 4-bicolorings have a coloring class of cardinality
18). Then, the system S8 does not have two disjoint independent sets of cardinality
16 (the unique possible 5-bicoloring has two bicoloring classes of cardinality 16), and
the system S10 does not admit two distinct disjoint independent sets of cardinalities
9, 14, 16 and 10, 12, 17, i.e., it is not 3-bicolorable. The STS(39) of Table 9 is only
4-colorable, since, by numerical analysis, it has neither two disjoint independent
sets of cardinality 16 nor two disjoint independent sets of cardinalities 9, 14, 16 and
10, 12, 17.

It follows from [4] that there are unbicolorable systems with β < 14.

Theorem 3.8 For order v = 43, the feasible set is Ω(43) = {3, 4}. There are
STS(43)s with Ω(S) = {3}, Ω(S) = {4}, and Ω(S) = {3, 4}. There are unbicolorable
systems.

Proof. Since
∑6

i=1 ni ≥ ∑6
i=1 2i−1 > 43, by Theorem 1.1, for every STS(43)

we obtain χ ≤ 5. However, further analysis shows that there are no 5-bicolorable
STS(43). Indeed, the only solutions of the equation (1) are (10, 16, 17), (1, 8, 16, 18),
(2, 10, 10, 21), (4, 4, 17, 18), (1, 10, 12, 20), (5, 6, 10, 22), and (4, 8, 9, 22). In [3, 11] it
was found that an STS(21) can only be 3-bicolorable with the bicolorings C1(5, 6, 10)
or C2(4, 8, 9). So the last two solutions are obtained by doubling construction while
all the other solutions are bicolorings found in [3].

In Table 11 of [8], we can see that C1 of STS(21) is extendable to a 3-bicoloring
C = C(10, 16, 17) of a S = STS(43), for which we have χ = 3 and χ̄ = 4; i.e.
Ω(S) = {3, 4}.

In the Appendix [8], by numerical analysis we can see that the system S11 in Table
11 has independent set of order β < 18, hence this system is only 3-bicolorable.

In the system S12, admitting the bicoloring C(1, 8, 16, 18), all the independent
sets of cardinality 17 are inside the color class X4 and X3 is the unique independent
set of order 16 disjoint from the independent sets of cardinalities 17. Since X1 ∪ X2

is not an independent set, S12 is not 3-bicolorable.

In [4], the authors found unbicolorable systems with β < 17.

It was found in [3] that an STS(45) can be bicolorable only with the 4-bicolorings
C(2, 8, 14, 21) and C(4, 6, 13, 22). In [4], we can find STSs with β < 21. Consequently,
we can formulate the following result.
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Theorem 3.9 For order v = 45, the feasible set is Ω(45) = {4}. There are unbicol-
orable systems.

Theorem 3.10 For order v = 49, the feasible set is Ω(49) = {3, 4, 5}. There are
unbicolorable systems.

Proof. The unique solutions of the equation (1) are (12, 17, 20), (14, 14, 21),
(2, 8, 18, 21), (5, 6, 14, 24) (1, 4, 4, 20, 20). In [3] it was found that all these solutions
are 3 and 4-bicolorings.

In Appendix [8], the system S13 in Table 13 is an STS(49) colored by a 3-bicoloring
(14, 14, 21). Numerical analysis shows that it has only one independent set of cardi-
nality 21 and none of cardinality 24. It does not have two disjoint independent sets
of cardinalities 21 and 18. All independent sets of cardinality 20 are inside the color
class of order 21. This means that the feasible set is given by Ω(S13) = {3}. The
system S14 is an STS(49) colored with a 4-bicoloring C(5, 6, 14, 24). This system has
all independent sets of cardinality 20 contained in the color class X4, and no indepen-
dent set of cardinality 17 with at least four vertices of the color class X4. Moreover,
it does not have three disjoint independent sets of cardinalities 20, 14 and 14. This
implies that there is no way to color S14 with 3 and 5-bicolorings, i.e., Ω(S11) = {4}.
The system S15 is an STS(49) colored with a 5-bicoloring C(1, 4, 4, 20, 20). This sys-
tem contains a subsystem STS(9) and β = 20. The only two independent sets of
cardinality 20 correspond to the coloring classes X3 and X4. All the independent sets
of cardinality 17 are contained inside X3 and X4. This means that Ω(S15) = {5}.

It is still an open problem to determine whether there exists a system of order
49 with distinct upper and lower chromatic numbers.

The following table shows all the feasible sets Ω(v) and Ω(S).

BSTS(v) Ω(v) Ω(S) Open problem Ω(S) Unbicolorable S

BSTS(7) {3} {3} – no
BSTS(9) {3} {3} – no
BSTS(13) {3} {3} – no
BSTS(15) {4} {4} – yes
BSTS(19) {3, 4} {3} {4} {3, 4} – yes
BSTS(21) {3} {3} yes
BSTS(25) {3, 4} {3} {4} {3, 4} yes
BSTS(27) {3, 4} {3} {4} {3, 4} – yes
BSTS(31) {3, 5} {3} {5} – yes
BSTS(33) {4} {4} – yes
BSTS(37) {3, 4} {3} {4} {3, 4} yes
BSTS(39) {3, 4, 5} {3} {4} {5} {3, 4, 5} {3, 5} yes
BSTS(43) {3, 4} {3} {4} {3, 4} – yes
BSTS(45) {4} {4} – yes
BSTS(49) {3, 4, 5} {3} {4} {5} {3, 4} {3, 5} {4, 5} {3, 4, 5} yes

Table
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4 Conclusion

In this article, we have studied feasible sets of all STS(v) for v ≤ 50. It was shown
that such methods as doubling construction, extension of bicolorings and numerical
analysis with scientific computations are successful in finding new information about
feasible sets. For all admissible values of v ≤ 50, the feasible sets are determined.
The following partial problems remain open:

1. Determine whether there exist systems STS(25) and STS(37) with the feasible
set Ω(S) = {3, 4}.

2. Determine whether there exists STS(49) with distinct upper and lower chro-
matic numbers.

3. Determine whether extended k-bicolorings exist for v = 2k − 1 and k ≥ 10.

4. Determine whether there exist systems S with a gap in their Ω(S).
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