Irregular total labeling of disjoint union of prisms and cycles

Ali Ahmad
College of Computer Science $\mathcal{E}^{\text {Information Systems }}$
Jazan University, Jazan
Saudi Arabia
ahmadsms@gmail.com
Martin Bača*
Department of Applied Mathematics and Informatics
Technical University, Košice
Slovakia
martin.baca@tuke.sk
Muhammad Kamran Siddiqui
Abdus Salam School of Mathematical Sciences
GC University, Lahore
Pakistan
kamransiddiqui75@gmail.com

Abstract

We investigate two modifications of the well-known irregularity strength of graphs, namely, a total edge irregularity strength and a total vertex irregularity strength. Recently the bounds and precise values for some families of graphs concerning these parameters have been determined. In this paper, we determine the exact value of the total edge (vertex) irregularity strength for the disjoint union of prisms and the total edge (vertex) irregularity strength for the disjoint union of cycles.

[^0]
1 Introduction

Let us consider a simple (without loops and multiple edges) undirected graph $G=(V, E)$ with vertex set V and edge set E. For a graph G we define a labeling $\phi: V \cup E \rightarrow\{1,2, \ldots, k\}$ to be a total k-labeling. A total k-labeling ϕ is defined to be an edge irregular total k-labeling of the graph G if for every two different edges $x y$ and $x^{\prime} y^{\prime}$ their weights $\phi(x)+\phi(x y)+\phi(y)$ and $\phi\left(x^{\prime}\right)+\phi\left(x^{\prime} y^{\prime}\right)+\phi\left(y^{\prime}\right)$ are distinct. Similarly, a total k-labeling ϕ is defined to be a vertex irregular total k-labeling of G if for every two distinct vertices x and y of G their weights $\mathrm{wt}(x)$ and $\mathrm{wt}(y)$ are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x.

The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of $G, \operatorname{tes}(G)$. Analogously, the minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of $G, \operatorname{tvs}(G)$.

The notion of total edge (and vertex) irregularity strength was defined by Bača, Jendrol', Miller and Ryan in [6]. They may be taken as an extension of the irregularity strength of a graph defined by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba in [9]; see also [7, 10, 11, 14, 16, 19].

Simple lower bounds for $\operatorname{tes}(G)$ and $\operatorname{tvs}(G)$ of a (p, q)-graph G in terms of maximum degree $\triangle(G)$ and minimum degree $\delta(G)$, determined in [6], are given by the following theorems.
Theorem 1. [6] Let G be a (p, q)-graph with maximum degree $\Delta=\Delta(G)$. Then

$$
\operatorname{tes}(G) \geq \max \left\{\left\lceil\frac{q+2}{3}\right\rceil,\left\lceil\frac{\Delta+1}{2}\right\rceil\right\} .
$$

Theorem 2. [6] Let G be a (p, q)-graph with minimum degree $\delta=\delta(G)$ and maximum degree $\Delta=\Delta(G)$. Then

$$
\begin{equation*}
\left\lceil\frac{p+\delta}{\Delta+1}\right\rceil \leq \operatorname{tvs}(G) \leq p+\Delta-2 \delta+1 \tag{1}
\end{equation*}
$$

Thus, for an r-regular (p, q)-graph, we obtain

$$
\begin{equation*}
\left\lceil\frac{p+r}{r+1}\right\rceil \leq \operatorname{tvs}(G) \leq p-r+1 \tag{2}
\end{equation*}
$$

For a (p, q)-graph with no component of order less than or equal to 2 , in [6] the following is proved:

$$
\operatorname{tvs}(G) \leq p-1-\left\lceil\frac{p-2}{\Delta+1}\right\rceil .
$$

These results were then improved by Przybylo in [18] for sparse graphs and for graphs with large minimum degree. In the latter case the bounds

$$
\operatorname{tvs}(G)<32 \frac{p}{\delta}+8
$$

in general and

$$
\operatorname{tvs}(G)<8 \frac{p}{r}+3
$$

for r-regular (p, q)-graphs were proved to hold.
The best upper bound on $\operatorname{tvs}(G)$ is given in [4] in the form

$$
\operatorname{tvs}(G) \leq 3\left\lceil\frac{p}{\delta}\right\rceil+1
$$

The exact values of $\operatorname{tes}(G)$ and $\operatorname{tvs}(G)$ are known only for a few families of graphs. For recent results we refer the reader to $[1,3,2,5,8,13,15,17,20,21]$.

In this paper, we deal with irregular total labeling for disjoint union of prisms and cycles.

2 Irregular total labelings for disjoint union of prisms

A prism $D_{n}, n \geq 3$, is obtained by the Cartesian product of C_{n} and K_{2}, i.e., $D_{n}=$ $C_{n} \square K_{2}$. Ivančo and Jendrol' in [12] proved that $\operatorname{tes}\left(G \square K_{2}\right)=q+1$ for every (p, q) graph, where $p-1 \leq q \leq p$.

In this section, we state the exact value of the total edge irregularity strength and total vertex irregularity strength of the disjoint union of prisms $\bigcup_{j=1}^{m} D_{n_{j}}$.

The vertex set and the edge set of $\bigcup_{j=1}^{m} D_{n_{j}}$ are defined as follows:

$$
\begin{gathered}
V\left(\bigcup_{j=1}^{m} D_{n_{j}}\right)=\bigcup_{j=1}^{m} \bigcup_{i=1}^{n_{j}}\left\{a_{i}^{j}, b_{i}^{j}\right\}, \\
E\left(\bigcup_{j=1}^{m} D_{n_{j}}\right)=\bigcup_{j=1}^{m} \bigcup_{i=1}^{n_{j}}\left\{a_{i}^{j} a_{i+1}^{j}, b_{i}^{j} b_{i+1}^{j}, a_{i}^{j} b_{i}^{j}\right\},
\end{gathered}
$$

where the subscript $n_{j}+1$ is replaced by 1 , for $1 \leq j \leq m$.
In the next theorem, we prove that the total edge irregularity strength of the disjoint union of prisms is equal to the lower bound from Theorem 1.

Theorem 3. Let $m \geq 2$ and $n_{j} \geq 3$ for every $1 \leq j \leq m$. Then

$$
\operatorname{tes}\left(\bigcup_{j=1}^{m} D_{n_{j}}\right)=\sum_{j=1}^{m} n_{j}+1
$$

Proof. Let $3 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{m}$ and $k=\sum_{j=1}^{m} n_{j}+1$. Since $\left|E\left(\bigcup_{j=1}^{m} D_{n_{j}}\right)\right|=3 \sum_{j=1}^{m} n_{j}$, by Theorem $1, \operatorname{tes}\left(\bigcup_{j=1}^{m} D_{n_{j}}\right) \geq \sum_{j=1}^{m} n_{j}+1$. To prove the equality, we describe an optimal
edge irregular total k-labeling $\phi_{1}: V\left(\bigcup_{j=1}^{m} D_{n_{j}}\right) \cup E\left(\bigcup_{j=1}^{m} D_{n_{j}}\right) \rightarrow\{1,2, \ldots, k\}$ as follows: for $1 \leq i \leq n_{j}, 1 \leq j \leq m$

$$
\begin{gathered}
\phi_{1}\left(a_{i}^{j}\right)=1, \quad \phi_{1}\left(b_{i}^{j}\right)=k, \\
\phi_{1}\left(a_{i}^{j} b_{i}^{j}\right)=\phi_{1}\left(a_{i}^{j} a_{i+1}^{j}\right)=\phi_{1}\left(b_{i}^{j} b_{i+1}^{j}\right)=\sum_{s=1}^{j-1} n_{s}+i .
\end{gathered}
$$

Since

$$
\begin{aligned}
\mathrm{wt}\left(a_{i}^{j} a_{i+1}^{j}\right) & =\sum_{s=1}^{j-1} n_{s}+i+2, \\
\mathrm{wt}\left(a_{i}^{j} b_{i}^{j}\right) & =\sum_{s=1}^{m} n_{s}+\sum_{s=1}^{j-1} n_{s}+i+2, \\
\mathrm{wt}\left(b_{i}^{j} b_{i+1}^{j}\right) & =2 \sum_{s=1}^{m} n_{s}+\sum_{s=1}^{j-1} n_{s}+i+2,
\end{aligned}
$$

for $1 \leq i \leq n_{j}, 1 \leq j \leq m$, the weights of the edges under the function ϕ_{1} successively attain values $3,4, \ldots, 3 \sum_{j=1}^{m} n_{j}+2$.

It is not difficult to see that all vertex and edge labels are at most k and the edge weights are distinct for all pairs of distinct edges. Therefore, the total labeling ϕ_{1} is an optimal edge irregular total k-labeling. This completes the proof.

Next we determine the exact value of the total vertex irregularity strength of the disjoint union of prisms.

Theorem 4. Let $m \geq 2$ and $n_{j} \geq 3$ for every $1 \leq j \leq m$. Then

$$
\operatorname{tvs}\left(\bigcup_{j=1}^{m} D_{n_{j}}\right)=\left\lceil\frac{2 \sum_{j=1}^{m} n_{j}+3}{4}\right\rceil .
$$

Proof. Suppose that $k=\left[\frac{2 \sum_{j=1}^{m} n_{j}+3}{4}\right]$ and $3 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{m}$. From (2) it follows that $\operatorname{tvs}\left(\bigcup_{j=1}^{m} D_{n_{j}}\right) \geq k$. To prove the equality, it is sufficient to show the existence of a vertex irregular total k-labeling for disjoint union of prisms.

We define a labeling $\phi_{2}: V\left(\bigcup_{j=1}^{m} D_{n_{j}}\right) \cup E\left(\bigcup_{j=1}^{m} D_{n_{j}}\right) \rightarrow\{1,2, \ldots, k\}$ in the following way: for $1 \leq i \leq n_{j}, 1 \leq j \leq m$

$$
\phi_{2}\left(a_{i}^{j}\right)=\phi_{2}\left(b_{i}^{j}\right)=\max \left\{1, i-k+1+\sum_{s=1}^{j-1} n_{s}\right\},
$$

$$
\phi_{2}\left(a_{i}^{j} a_{i+1}^{j}\right)=1, \phi_{2}\left(b_{i}^{j} b_{i+1}^{j}\right)=k, \phi_{2}\left(a_{i}^{j} b_{i}^{j}\right)=\min \left\{\sum_{s=1}^{j-1} n_{s}+i, k\right\} .
$$

For $1 \leq i \leq n_{j}$ and $1 \leq j \leq m$, the weights of vertices of the disjoint union of prisms are as follows:

$$
\begin{aligned}
\mathrm{wt}\left(a_{i}^{j}\right) & =\sum_{s=1}^{j-1} n_{s}+i+3 \\
\mathrm{wt}\left(b_{i}^{j}\right) & =\sum_{s=1}^{j-1} n_{s}+i+1+2 k .
\end{aligned}
$$

Thus, the weights of vertices $a_{i}^{j}, 1 \leq i \leq n_{j}, 1 \leq j \leq m$, successively attain values $4,5, \ldots, \sum_{j=1}^{m} n_{j}+3$ and the weights of vertices $b_{i}^{j}, 1 \leq i \leq n_{j}, 1 \leq j \leq m$, receive distinct values from $\sum_{j=1}^{m} n_{j}+4$ up to $\sum_{j=1}^{m} n_{j}+2 k+1$. Clearly, the labeling ϕ_{2} is an optimal vertex irregular total k-labeling and we have arrived at the desired result.

3 Irregular total labelings for disjoint union of cycles

For a cycle C_{n} with $n \geq 3$ edges, it was proved in $[6]$ that $\operatorname{tes}\left(C_{n}\right)=\operatorname{tvs}\left(C_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil$. In this section, we determine the exact value of the total edge (vertex) irregularity strength of the disjoint union of cycles denoted by $\bigcup_{j=1}^{m} C_{n_{j}}$.

The disconnected graph $\bigcup_{j=1}^{m} C_{n_{j}}$ consists of the vertex set and edge set as follows:

$$
\begin{gathered}
V\left(\bigcup_{j=1}^{m} C_{n_{j}}\right)=\bigcup_{j=1}^{m} \bigcup_{i=1}^{n_{j}}\left\{v_{i}^{j}\right\}, \\
E\left(\bigcup_{j=1}^{m} C_{n_{j}}\right)=\bigcup_{j=1}^{m} \bigcup_{i=1}^{n_{j}}\left\{v_{i}^{j} v_{i+1}^{j}\right\},
\end{gathered}
$$

where the subscript $n_{j}+1$ is replaced by 1 , for $1 \leq j \leq m$.
Theorem 5. Let $m \geq 2$ and $n_{j} \geq 5$ for every $1 \leq j \leq m$. Then

$$
\operatorname{tes}\left(\bigcup_{j=1}^{m} C_{n_{j}}\right)=\operatorname{tvs}\left(\bigcup_{j=1}^{m} C_{n_{j}}\right)=\left\lceil\frac{\sum_{j=1}^{m} n_{j}+2}{3}\right\rceil
$$

Proof. First, let us consider the total edge irregularity strength. Suppose that $m \geq 2,5 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{m}$ and $k=\left\lceil\frac{\sum_{j=1}^{m} n_{j}+2}{3}\right\rceil$. According to Theorem 1 it is sufficient to prove the existence of an edge irregular total k-labeling for the graph $\bigcup_{j=1}^{m} C_{n_{j}}$.

We define a labeling $\phi_{3}: V\left(\bigcup_{j=1}^{m} C_{n_{j}}\right) \cup E\left(\bigcup_{j=1}^{m} C_{n_{j}}\right) \rightarrow\{1,2, \ldots, k\}$ as follows: for $1 \leq j \leq m$

$$
\begin{gathered}
\phi_{3}\left(v_{i}^{j}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq\left\lceil\frac{n_{j}}{3}\right\rceil \\
\left\lfloor\frac{k}{2}\right\rfloor, & \text { if }\left\lceil\frac{n_{j}}{3}\right\rceil+1 \leq i \leq\left\lfloor\frac{2 n_{j}}{3}\right\rfloor \\
k, & \text { if }\left\lfloor\frac{2 n_{j}}{3}\right\rfloor+1 \leq i \leq n_{j}\end{cases} \\
\phi_{3}\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}\sum_{s=2}^{j}\left(\left\lceil\frac{n_{s-1}}{3}\right\rceil-1\right)+i, & \text { if } 1 \leq i \leq\left\lceil\frac{n_{j}}{3}\right\rceil-1 \\
\sum_{r=1}^{m}\left\lceil\frac{n_{r}}{3}\right\rceil-m-\left\lfloor\frac{k}{2}\right\rfloor+j+1, & \text { if } i=\left\lceil\frac{n_{j}}{3}\right\rceil \\
\sum_{r=1}^{m}\left\lceil\frac{n_{r}}{3}\right\rceil+2\left(1-\left\lfloor\frac{k}{2}\right\rfloor\right)-\left\lceil\frac{n_{j}}{3}\right\rceil+i+ & \text { if }\left\lceil\frac{n_{j}}{3}\right\rceil+1 \leq i \leq\left\lfloor\frac{2 n_{j}}{3}\right\rfloor-1 \\
\sum_{s=2}^{j}\left\lfloor n_{s-1}-2\left\lceil\frac{n_{s-1}}{3}\right\rceil-1\right), & \text { if } i=\left\lfloor\frac{2 n_{j}}{3}\right\rfloor \\
\sum_{r=1}^{m}\left\lfloor\frac{2 n_{r}}{3}\right\rfloor+2-\left\lfloor\frac{3 k}{2}\right\rfloor+j, & \text { if }\left\lfloor\frac{2 n_{j}}{3}\right\rfloor+1 \leq i \leq n_{j}-1 \\
\sum_{r=1}^{m}\left\lfloor\frac{2 n_{r}}{3}\right\rfloor+\sum_{s=2}^{j}\left(\left\lceil\frac{n_{s-1}}{3}\right\rceil-1\right)+2+ \\
m+i-\left\lfloor\frac{2 n_{j}}{3}\right\rfloor-2 k, & \text { if } i=n_{j} . \\
\sum_{r=1}^{m}\left\lfloor\frac{2 n_{r}}{3}\right\rfloor-m-k+j+1, & \end{cases}
\end{gathered}
$$

One can check that all vertex and edge labels are at most k. Moreover, under the labeling ϕ_{3} the weights of the edges are as follows.

$$
\operatorname{wt}\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}i+2+\sum_{s=2}^{j}\left(\left\lceil\frac{n_{s-1}}{3}\right\rceil-1\right), & \text { for } 1 \leq i \leq\left\lceil\frac{n_{j}}{3}\right\rceil-1 \\ \sum_{r=1}^{m}\left\lceil\frac{n_{r}}{3}\right\rceil-m+2+j, & \text { for } i=\left\lceil\frac{n_{j}}{3}\right\rceil \\ \sum_{r=1}^{m}\left\lceil\frac{n_{r}}{3}\right\rceil+i-\left\lceil\frac{n_{j}}{3}\right\rceil+2+ & \\ \sum_{s=2}^{j}\left(n_{s-1}-2\left\lceil\frac{n_{s-1}}{3}\right\rceil-1\right), & \text { for }\left\lceil\frac{n_{j}}{3}\right\rceil+1 \leq i \leq\left\lfloor\frac{2 n_{j}}{3}\right\rfloor-1 \\ \sum_{r=1}^{m}\left\lfloor\frac{2 n_{r}}{3}\right\rfloor+2+j, & \text { for } i=\left\lfloor\frac{2 n_{j}}{3}\right\rfloor \\ \sum_{r=1}^{m}\left\lfloor\frac{2 n_{r}}{3}\right\rfloor+\sum_{s=2}^{j}\left(\left\lceil\frac{n_{s-1}}{3}\right\rceil-1\right)+ & \\ m+2+i-\left\lfloor\frac{2 n_{j}}{3}\right\rfloor, & \text { for }\left\lfloor\frac{2 n_{j}}{3}\right\rfloor+1 \leq i \leq n_{j}-1 \\ \sum_{r=1}^{m}\left\lfloor\frac{2 n_{r}}{3}\right\rfloor-m+j+2, & \text { for } i=n_{j} .\end{cases}
$$

It is easy to verify that the edge-weights are distinct for all pairs of distinct edges and constitute the progression of consecutive integers $3,4, \ldots, \sum_{j=1}^{m} n_{j}+2$. Thus the labeling ϕ_{3} is the desired edge irregular total k-labeling.

Now we orient the cycles $C_{n_{j}}, 1 \leq j \leq m$, such that $\overrightarrow{v_{i}^{j} v_{i+1}^{j}}$ is the outgoing arc from the vertex v_{i}^{j}, for every $1 \leq i \leq n_{j}$ and $1 \leq j \leq m$.

Let us define a labeling $\phi_{4}: V\left(\bigcup_{j=1}^{m} C_{n_{j}}\right) \cup E\left(\bigcup_{j=1}^{m} C_{n_{j}}\right) \rightarrow\{1,2, \ldots, k\}$ in the following way: for $1 \leq j \leq m$

$$
\begin{aligned}
& \phi_{4}\left(\overrightarrow{v_{i}^{j} v_{i+1}^{j}}\right)=\phi_{3}\left(v_{i}^{j}\right) \text { for } 1 \leq i \leq n_{j}-1 \text {, } \\
& \phi_{4}\left(\overrightarrow{v_{n_{j}}^{j} v_{1}^{j}}\right)=\phi_{3}\left(v_{n_{j}}^{j}\right) \text {, } \\
& \phi_{4}\left(v_{i+1}^{j}\right)=\phi_{3}\left(\overrightarrow{v_{i}^{j} v_{i+1}^{j}}\right) \text { for } 1 \leq i \leq n_{j}-1 \text {, } \\
& \phi_{4}\left(v_{1}^{j}\right)=\phi_{3}\left(\overrightarrow{v_{n_{j}}^{j} v_{1}^{j}}\right) .
\end{aligned}
$$

One can easily see that the labeling ϕ_{4} is the desired vertex irregular total k-labeling. This concludes the proof.

4 Conclusion

In the foregoing sections we studied the existence of the edge (vertex) irregular total k-labeling for the disjoint union of prisms and disjoint union of cycles. We determined the exact value of the total edge (vertex) irregularity strength for the disjoint union of prisms $\bigcup_{j=1}^{m} D_{n_{j}}$ for $m \geq 2$ and arbitrary $n_{j} \geq 3$.

Also we determined the exact value of the total edge (vertex) irregularity strength for the disjoint union of cycles $\bigcup_{j=1}^{m} C_{n_{j}}$ for $m \geq 2$ and arbitrary $n_{j} \geq 5$. We are not able to describe any optimal edge (vertex) irregular total $\left\lceil\frac{\sum_{j=1}^{m} n_{j}+2}{3}\right\rceil$-labeling for the disjoint union of cycles for $m \geq 2$ and arbitrary $n_{j} \geq 3$. However, we suggest the following.

Conjecture 1. tes $\left(\bigcup_{j=1}^{m} C_{n_{j}}\right)=\operatorname{tvs}\left(\bigcup_{j=1}^{m} C_{n_{j}}\right)=\left\lceil\frac{\sum_{j=1}^{m} n_{j}+2}{3}\right\rceil$ for any $m \geq 2$ and $n_{j} \geq 3$.

Acknowledgements

The research for this article was supported by Slovak VEGA Grant 1/0130/12 and Higher Education Commission Pakistan Grant HEC(FD)/2007/555.

References

[1] A. Ahmad, M. Bača, Y. Bashir and M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Combin. 106 (2012), 449-459.
[2] A. Ahmad, E. T. Baskoro and M. Imran, Total vertex irregularity strength of disjoint union of Helm graphs, Discussiones Mathematicae Graph Theory 32(3) (2012), 427-434.
[3] O. Al-Mushayt, A. Ahmad, M.K. Siddiqui, On the total edge irregularity strength of hexagonal grid graphs, Australas. J. Combin. 53 (2012), 263-271.
[4] M. Anholcer, M. Kalkowski and J. Przybylo, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009), 6316-6317.
[5] M. Anholcer and C. Palmer, Irregular labelings of circulant graphs, Discrete Math. 312 (2012), 3461-3466.
[6] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378-1388.
[7] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004), 241-254.
[8] S. Brandt, J. Miškuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory 57 (2008), 333-343.
[9] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187-192.
[10] A. Frieze, R. J. Gould, M. Karonski and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002), 120-137.
[11] A. Gyárfás, The irregularity strength of $K_{m, m}$ is 4 for odd m, Discrete Math. 71 (1988), 273-274.
[12] J. Ivančo and S. Jendrol', Total edge irregularity strength of trees, Discussiones Math. Graph Theory 26 (2006), 449-456.
[13] S. Jendrol', J.Miškuf and R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. 310 (2010), 400-407.
[14] S. Jendrol', M. Tkáč and Z. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math. 150 (1996), 179-186.
[15] K. M. Mominul Haque, Irregular total labellings of generalized Petersen graphs, Theory Comput. Syst. 50 (2012), 537-544.
[16] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000), 313-323.
[17] Nurdin, E.T. Baskoro, A. N. M. Salman and N. N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010), 3043-3048.
[18] J. Przybylo, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009), 511-516.
[19] O. Togni, Irregularity strength of the toroidal grid, Discrete Math. 165/166 (1997), 609-620.
[20] K. Wijaya and Slamin, Total vertex irregular labeling of wheels, fans, suns and friendship graphs, J. Combin. Math. Combin. Comput. 65 (2008), 103-112.
[21] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comput. 55 (2005), 129-136.

[^0]: * Corresponding author. Second address: Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.

