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Abstract

“Baron Münchhausen’s omni-sequence”, B(n), first defined by Khova-
nova and Lewis (2011), is a sequence that gives for each n the minimum
number of weighings on balance scales that can verify the correct labeling
of n identically-looking coins with distinct integer weights between 1 gram
and n grams.

A trivial lower bound on B(n) is log3 n, and it has been shown that
B(n) is log3 n+O(log log n). In this paper we give a first nontrivial lower
bound to the Münchhausen problem, showing that there are infinitely
many n values for which B(n) > dlog3 ne.

Furthermore, we show that if N(k) is the number of n values for which
k = dlog3 ne and B(n) > k, then N(k) is an unbounded function of k.

1 Introduction

Coin-weighing puzzles have been abundantly discussed in the mathematical literature
over the past 60 years (see, e.g. [11, 6, 10, 5]). In coin-weighing problems one must
typically identify a counterfeit coin from a set of identically-looking coins by use
of balance scales, utilizing the knowledge that the counterfeit coin has distinctive
weight. This can be generalized to the problem of identifying a coin, or a subset of
the coins, based on distinctive weight characteristics, or, alternatively, to the problem
of establishing the weight of a given coin.

This paper relates to a different kind of coin-weighing puzzle, which we call the
Münchhausen coin-weighing problem (following, e.g., [2]). Consider the following
question: given n coins with distinct integer weights between 1 gram and n grams,
each labeled by a distinct integer label between 1 and n, what is the minimum number
of weighings of these n coins on balance scales that can prove unequivocally that all
coins are labeled by their correct weight?
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This question differs from classic coin-weighing problems in that we do not need
to discover the weights, but only to determine whether or not a given labeling of
weights is the correct one. To establish the weights one would require Ω(n log n)
weighings (as can be proved by reasoning similar to that which establishes lower
bounds for comparative sorting [9, 4]), whereas merely verifying an existing labeling
can be performed trivially in O(n) weighings.

This question, inspired by a riddle that appeared in the Moscow Mathematical
Olympiad [1], gives rise to an integer sequence, B(n), that was studied in [8] and
was dubbed there “Baron Münchhausen’s omni-sequence”. It appears as sequence
A186313 in the On-line Encyclopedia of Integer Sequences [7].

Though much progress has been made to tighten the known upper bounds on
B(n) [8, 3, 2], the trivial lower bound of log3 n has proved surprisingly resilient.
This lower bound stems from the straightforward observation that if the number of
weighings is less than log3 n, there must be at least two coins that participate in
all weighings in identical roles (that is, for each weighing, they are either both on
the left-hand side of the scales, both on the right-hand side or both held out from
the weighing). This being the case, the weights of the two coins can be exchanged
with no change to the outcome of any of the weighings, and therefore the weighings
cannot provide an unequivocal verification of the weights.

In this paper we present a first nontrivial lower bound for this problem. Namely,
we prove the following theorem.

Theorem 1. For any n,
3B(n) ≥ n+ Ω(log log n). (1)

Equivalently, there exists an l = l(k) ∈ Ω(log k), such that for any k,

n ∈ [3k − l, 3k]⇒ B(n) > k. (2)

In particular, it is true that

N(k) ∈ Ω(log k), (3)

where N(k) is the number of n values for which k = dlog3 ne and B(n) > k.

2 Proof of the main theorem

We begin by introducing some terminology. First, following [2], we describe sequences
of weighings by means of matrices. A k × n matrix M whose elements Mij belong
to the set {−1, 0, 1} describes a sequence of k weighings of n coins in the following
manner. The three possible values for Mij, namely 1, −1 and 0, indicate that on the
i’th weighing coin j is to be placed on the right hand side of the scales, to be placed
on the left hand side of the scales and to be held out, respectively.

In the case of the Münchhausen problem, it is known what weights the coins
to be weighed are: the first coin weighs 1 gram, the second weighs 2 grams, and
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so on. We describe these weights by the vector ~n = [1, . . . , n]T . The result of the
weighing sequence is therefore given by the element-wise signs of the vector M~n.
We describe the operation including both multiplication by ~n and sign-taking by the
single operator w(M).

A matrix is Münchhausen if the sequence of weighings it describes generates a
sequence of weigh results (signs) when weighing ~n that is unique among all possible
permutations of ~n. Equivalently, a matrix is Münchhausen if w(M) = w(Mπ) ⇒
π = I for an n× n permutation matrix π.

Baron Münchhausen’s omni-sequence, B(n), is the sequence that gives for each
n the minimum k for which there exists a k × n Münchhausen matrix. Theorem 1
gives a first nontrivial lower bound on B(n).

We now turn to define two sets, C and R, that will be used in the theorem’s
proof.

Let M be the set of all k × n Münchhausen matrices, where k = B(n).

Consider, first, the trivial lower bound for Baron Münchhausen’s omni-sequence.
In matrix terminology, we claim that if M ∈M, then n ≤ 3k. The reason for this is
that if n > 3k, at least two of M ’s columns are identical. A permutation π permuting
the columns of M by switching identical columns will have no effect on it: we have
M = Mπ, and therefore necessarily also w(M) = w(Mπ). The relevant observation
regarding this proof is that it demonstrates that the columns of M must be distinct.

Let cols(M) be the set of columns of matrix M (ignoring their order), and define

C = C(n)
def
= {cols(M) : M ∈M}.

Because all elements of cols(M) for any M ∈M belong to the set {−1, 0, 1}k of size

3k, we know that |C| ≤
(
3k

n

)
.

Another useful observation is that no M ∈ M can have two identical rows.
Had there been two identical rows in M these would have indicated two identical
weighings. One of these weighings could therefore have been removed, because it does
not add any further information regarding the coins being weighed. This contradicts
the assumption that k = B(n), because it explicitly generates a Münchhausen matrix
with fewer rows.

Consider, now, row permutations on M . For an M with a large k, there are many
row permutations of M that do not change w(M). For example, consider that each
row of M generates a sign that has only 3 possibilities. As such, there will be at least
dk/3e rows that share the same generated sign. Any σ1, σ2 of the dk/3e! possible
row permutations on M that keep all rows other than these dk/3e as fixed points
share the same w(σ1M) = w(σ2M) = w(M). We define R = R(M) to be the set of
all row permutations σ that satisfy w(σM) = w(M), and we note that |R| ≥ dk/3e!.

We establish Theorem 1 by means of the following lemma.

Lemma 1.1. For any M ∈M,
|C| ≥ |R|. (4)
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Proof. Define the relation f : R → C as follows: for σ ∈ R, let f(σ) be the set of
columns of σM . Because changing the order of the weighings clearly has no effect on
whether or not a set of weighings establishes unequivocally the weights of n coins,
σM is Münchhausen if and only if M is Münchhausen, so by definition the set of
columns of σM is necessarily a member of C. In order to establish Equation (4), we
make the stronger claim that f is one-to-one.

To prove this, let us assume to the contrary that f is not one-to-one. This
indicates the existence of two row permutations σ1, σ2 ∈ R for which f(σ1) = f(σ2).
Because M cannot have identical rows, we know that σ1M 6= σ2M . The two are
therefore related by a column permutation, π, which is not the identity, as follows:

σ1Mπ = σ2M.

Let σ
def
= σ−1

2 σ1, then
σMπ = M.

Recall that by definition of R, we have w(M) = w(σM), so

w(σMπ) = w(M) = w(σM),

so by definition σM cannot be a Münchhausen matrix. However, as argued earlier,
σM is Münchhausen if and only if M is Münchhausen, so the above implies that M ,
too, is not Münchhausen, contradicting the assumption.

Armed with Lemma 1.1, Theorem 1, our main claim, becomes a straightforward
corollary.

Proof of Theorem 1. Let us take l to be 3k − n. The inequality |C| ≤
(
3k

n

)
implies

in this case that |C| < 3kl. On the other hand, log3 |R| is Ω(k log k), so Lemma 1.1
implies that l is Ω(log k), proving Equation (2).

This, in turn, implies Equation (1), because k is Ω(log n). Equation (3) is a
special case of Equation (2), because, by definition, N(k) > l.

3 Conclusions

With the new Theorem 1, the best known bounds now place n between 3k−Ω(log k)
and 3k/O(polylog k), for n to satisfy B(n) = k. This still leaves a significant window
for further refinement. At the current time, it is not even known whether B(n) is a
monotone sequence.
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