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Abstract

We introduce a procedure, called the Degree Sequence Index Strategy
(DSI), by which to bound graph invariants by certain indices in the
ordered degree sequence. As an illustration of the DSI strategy, we
show how it can be used to give new upper and lower bounds on the
k-independence and the k-domination numbers. These include, among
other things, a double generalization of the annihilation number, a re-
cently introduced upper bound on the independence number. Next, we
use the DSI strategy in conjunction with planarity, to generalize some re-
sults of Caro and Roddity about independence number in planar graphs.
Lastly, for claw-free and K1,r-free graphs, we use DSI to generalize some
results of Faudree, Gould, Jacobson, Lesniak and Lindquester.

1 Introduction

All graphs considered are simple and finite. For a graph G = (V, E), we will use n =
n(G) to denote the order, or |V |, and m = m(G) to denote the size, or |E|. Moreover,
we will use the notation Δ(G) and δ(G) to denote, respectively, the maximum and
minimum degrees of a graph G. A complete graph with r vertices is denoted Kr

and an empty graph with r vertices is denoted Er. If S is a subset of V , then
we use the notation [S] to denote the subgraph induced by S. For two graphs G
and H , we use the notation G ∪ H to denote their union and the notation G +
H to denote their join (the graph obtained by joining all possible edges between
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G and H). A j-independent set is a set I ⊆ V such that Δ([I]) < j. The j-
independence number, denoted αj(G), is the cardinality of a largest j-independent
set. This generalizes the traditional independence number since α1(G) = α(G). A
j-dominating set is a set D ⊆ V such that each vertex in V − D has at least j
neighbors in D. The j-domination number, denoted γj(G), is the cardinality of a
smallest j-dominating set. This generalizes the traditional domination number since
γ1(G) = γ(G). These concepts were introduced in [18, 19] and both invariants have
become popular research topics. For example, j-independence number is studied in
[2, 3, 4, 6, 9, 11], j-domination is studied in [8, 12, 13, 24], while relationships between
these invariants is studied in [10, 16, 22, 27]. In fact, the literature is so extensive
that in order to see the many more articles on these topics, it would be better
to consult the textbook [24] and the survey article [10] which collectively capture
much of what is known. Herein, we offer some new contributions to the study of
independence and domination with Theorems 3.4 and 5.2, and especially with the
tractable approximations of those in Theorems 4.2 and 5.3. The degree sequence D
of a graph G, unless stated otherwise, is assumed to be in non-decreasing order and
denoted: D = D(G) = {(δ =)d1 ≤ d2 ≤ · · · ≤ dn(= Δ)}.

The goal of this paper is to introduce a general method by which to constrain
NP-hard graph invariants, such as the independence and domination numbers, by
use of the degree sequence. In particular, we will show how certain indices of the
ordered degree sequence can be used as upper and lower bounds for various other
graph invariants. In some instances, these will be improvements or generalizations
on known bounds, while in other instances, they will lead to new bounds entirely.

2 The General Strategy

Given a graph G with degree sequence D = {d1 ≤ d2 ≤ . . . ≤ dn}, our goal is to find
both upper and lower bounds, connected to indices from D, for the size of a largest
(smallest) induced subgraph having a given property P . Let c(G) be a given graph
invariant of G. Now, for any subset S ⊆ V , let h(S) be a function of the degrees of
the vertices in S such that for any two subsets of V , say X and Y , with the same
cardinality, if

∑
v∈X deg(v) ≥ ∑

v∈Y deg(v), then h(X) ≥ h(Y ). We will use the
notation h(S) = h({deg(v) | v ∈ S}).

The strategy we introduce, which we call the Degree Sequence Index Strat-
egy, (DSI strategy) can now be described in the following steps.

1. Let A(P ) be an optimal induced subgraph of G with property P . Find functions
fU(G, A(P )) and fL(G, A(P )), such that one of the following is true:

h({deg(v) | v ∈ A(P )}) + fU(G, A(P )) ≤ c(G),

if an upper bound on |A(P )| was intended, and

h({deg(v) | v ∈ A(P )}) + fL(G, A(P )) ≥ c(G),

if a lower bound on |A(P )| was intended.
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2. Define the indices DSIU(G, h, fU , k) and DSIL(G, h, fL, k) as follows:

DSIU(G, h, fU , c) = max{k ∈ Z | h({di | i ∈ {1, 2, . . . , k}}) + fU(G, A(P ))

≤ c(G)},
DSIL(G, h, fL, c) = min{k ∈ Z | h({dn−i+1 | i ∈{1, 2, . . . , k}})+fL(G, A(P ))

≥ c(G)}.

3. Next, make the following observations:

h({di | i ∈ {1, 2, . . . , |A(P )|}}) + fU(G, A(P ))

≤ h({deg(v) | v ∈ A(P )}) +fU(G, A(P ))

≤ c(G),

h({dn−i+1 | i ∈ {1, 2, . . . , |A(P )|}}) + fL(G, A(P ))

≥ h({deg(v) | v ∈ A(P )}) + fL(G, A(P ))

≥ c(G).

4. Finally, since |A(P )| is an integer satisfying the definitions above, we conclude:
DSIL(G, h, fL, c) ≤ |A(P )| ≤ DSIU(G, h, fU , c), as was intended.

5. After this, the optional step would be to find more easily computable approxi-
mations to the functions fU and fL (and possibly to c(G)), so that, for example,
the DSIU and DSIL can be found in polynomial time.

As is evident, the most difficulty lies in the identification of the functions from
the first step, and then in finding approximations to those functions for practicality.
In the next section, we give an example of this process, which we will elaborate on
for much of the remainder of the paper. In a later section, we will give an example
using a different graph property, giving some feeling for the generality of the DSI
strategy.

3 Application to Independence

The monotonicity condition imposed on the function h is suggestive, and leads to our
first concrete example. Namely, we identify h({deg(v)|v ∈ S}) =

∑
v∈S deg(v). Also,

we will use the number of edges, or size, of G as our graph invariant c(G) = m(G).
Our property P is that of being a j-independent set, so that A(P ) is a maximum j-
independent set and we want to constrain |A(P )| = αj(G). Thus, in this section, we
will apply the DSI strategy to find upper and lower bounds for the j-independence
number. This problem is well motivated since calculating the j-independence number
exactly is a computationally difficult problem [1, 20, 25]. In some cases, we will show
how these inequalities give improvements or generalizations on known results, or
new results entirely. Finally, we will consider the extreme cases where these newly
discovered upper and lower bounds are sharp, as well as where they can be very poor
approximations.
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The annihilation number of a graph was introduced by Pepper in [28, 29]— where
it was shown to be an upper bound on the independence number. The characteriza-
tion of equality for this upper bound was addressed in [26]. While reading the proof of
this upper bound, Fajtlowicz formulated the definition presented below, recognizing
that it also led to an upper bound on the independence number. In [14, 29], Pepper
shows that the original definition is equivalent to the one presented below— which
for simplicity, and relevance to this paper, is the only one we give.

Definition 3.1. Let D = {d1 ≤ d2 ≤ · · · ≤ dn} be the degree sequence of a graph G.
The annihilation number of G, denoted a = a(G), can be defined by the equation:

a(G) = max{k ∈ Z |
k∑

i=1

di ≤ m(G)}.

Since the sum of the first �n
2
� terms in D is clearly at most m(G), it is apparent

from the definition above that a(G) ≥ �n
2
�.

Theorem 3.2. [28, 29, 14] For any graph G, α(G) ≤ a(G).

To see that the definition and theorem above are a special case of the DSI
strategy, notice that we would just make the identifications, fU(G, A(P )) = 0 and
DSIU(G, h, fU , c) = a(G), while letting P be the property of being an independent
set.

Our first new application of the DSI strategy is a generalization and improvement
of Theorem 3.2, as well as a new and analogous lower bound.

Definition 3.3. Let D = {d1 ≤ d2 ≤ · · · ≤ dn} be the degree sequence of a graph
G = (V, E) and let Fj denote the family of all maximum j-independent sets in G.
The upper j-annihilation number of G, denoted aj = aj(G), can be defined by the
equation:

aj(G) = max{k ∈ Z |
k∑

i=1

di + max
S∈Fj

{m([V − S]) − m([S])} ≤ m(G)}.

The lower j-annihilation number of G, denoted cj = cj(G), can be defined by the
equation:

cj(G) = min{k ∈ Z |
k∑

i=1

dn−i+1 + min
S∈Fj

{m([V − S]) − m([S])} ≥ m(G)}.

The main result of this section now follows.

Theorem 3.4. For any positive integer j and for any graph G = (V, E):

cj(G) ≤ αj(G) ≤ aj(G).
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Proof. First we prove the upper bound. Let I be a maximum j-independent set such
that for all S ∈ Fj , m([V − I]) − m([I]) ≥ m([V − S]) − m([S]). Denote by m1 the
number of edges in [I], by m2 the number of edges in [V − I], and by m3 the number
of edges between I and V − I. Observe the following chain of inequalities:

αj∑
i=1

di + (m[V − I] − m[I]) ≤
∑
v∈I

deg(v) + m2 − m1 = 2m1 + m3 + m2 − m1 = m.

Since αj is an integer satisfying the condition in the definition of the upper j-
annihilation number, and aj is the largest such integer, the upper bound is proven.

Next we prove the lower bound. Let I be a maximum j-independent set such
that for all S ∈ Fj , m[V − I] − m[I] ≤ m([V − S]) − m([S]). Denote m1, m2, and
m3 as above. Observe the following chain of inequalities:

αj∑
i=1

dn−i+1 +(m[V − I]−m[I]) ≥
∑
v∈I

deg(v)+m2 −m1 = 2m1 +m3 +m2 −m1 = m.

Since αj is an integer satisfying the condition in the definition of the lower j-
annihilation number, and cj is the smallest such integer, the lower bound is proven.

To see that these results fit into the DSI strategy, note that our property P is
that of being a j-independent set and A(P ) is a maximum j-independent set (so
that |A(P )| = αj(G)). Moreover, our functions fU(G, A(P )) and fL(G, A(P )) are
max{m([V −S])−m([S])|S ∈ Fj} and min{m([V −S])−m([S])|S ∈ Fj} respectively.
Finally, DSIU(G, h, fU , c) and DSIL(G, h, fL, c) are simply the upper and lower j-
annihilation numbers.

The quality of Theorem 3.4 will now be discussed. First, let us consider a few ex-
amples where the upper j-annihilation number is an improvement on the annihilation
number from Definition 3.1.

Example 3.5. (Showing α(G) = a1(G) < a(G).) For positive integers p and n
satisfying 2p + 3 < n, the families of graphs Ep ∪ Kn−p and Ep + Kn−p are both
examples where α(G) = a1(G) < a(G). In fact, we have:

α(Ep ∪ Kn−p) = a1(Ep ∪ Kn−p) = p + 1 <
n − 1

2
≤ �n

2
� ≤ a(Ep ∪ Kn−p)

and

α(Ep + Kn−p) = a1(Ep + Kn−p) = p <
n − 3

2
< �n

2
� ≤ a(Ep + Kn−p).

Example 3.6. (Showing α(G) = 2 = a1(G) < a(G).) Let G be the graph obtained
by adding a matching between two complete graphs with p vertices. Then, if p ≥ 3,
we have:

α(G) = a1(G) = 2 < p = a(G).
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Remark 3.7. It should be mentioned here that, while the upper j-annihilation number
is sharp for every p ≥ 3 in the graphs described in Example 3.6, none of the known
upper bounds on the independence number presented in the recent survey [31] are
satisfied with equality for these examples. This includes some of the more famous
bounds such as α(G) ≤ n(G) − μ(G), as well as the bound of Cvetkovic of the
minimum of the non-negative and non-positive eigenvalues of the adjacency matrix.
Thus there are examples where this new bound, the upper 1-annihilation number is a
better approximation of α1(G) = α(G) than all known upper bounds. Additionally,
if G is the graph of the regular dodecahedron, which has α(G) = 8, we have c1(G) =
8 (since all maximum independent sets I leave precisely 6 edges in the subgraph
induced by V − I, the sum of the first eight terms in the degree sequence is 24, and
there are 30 edges in the graph, the equation follows from the definition of cj(G)),
while all of the 12 lower bounds on the independence number presented in [31] return
values less than that. Hence there are also examples where the lower 1-annihilation
number is a better approximation of α1(G) = α(G) than all known lower bounds.
Admittedly, in both instances, focus was on efficiently computable approximations
and neither aj(G) nor cj(G) have this property.

Next we present a theorem that shows the strengths and weaknesses of Theorem
3.4 in its most general form. In particular, it will show that there are graphs where
equality holds throughout the theorem, while also graphs where both upper and
lower bounds can be very far from the actual value of αj(G). The fact that both
upper and lower bounds can, for some graphs, be very poor approximations to the
independence number (the j = 1 case) is not surprising when one considers that
determining α(G) is a well known NP-hard problem [1, 20, 25]. In this context, the
following theorem gives more evidence that, in spite of the apparent improvement
over known upper and lower bounds, the situation is still far from ideal.

Theorem 3.8. Let j and p be positive integers such that j < p2. Then, all of the
following are true:

1. There exist graphs G where cj(G) = αj(G) = aj(G).

2. There exist graphs Gp where cj(Gp) = αj(Gp) while
aj(Gp)

αj(Gp)
→ ∞, as p → ∞.

3. There exist graphs Gp where aj(Gp) = αj(Gp) while
αj(Gp)

cj(Gp)
→ ∞, as p → ∞.

4. There exist graphs Gp where αj(Gp)−cj(Gp) → ∞ and
aj(Gp)

αj(Gp)
→ ∞, as p → ∞.

Proof. We will give constructive existence proofs of each of the four propositions.
To prove (1), let G be a regular graph whose vertices can be partitioned into two
maximum j-independent sets. As evidence that these kind of graphs exist in general,
let

G = (∪j
i=1Kj) + (∪j

i=1Kj).

Notice that this family of graphs is regular of degree j2 + j − 1, has αj(G) = j2,
and its vertices can be partitioned into two maximum j-independent sets. First,
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note that aj(G) ≤ n
2

since the sum of the smallest n
2

terms of the degree sequence is
already equal to m(G), and max{m([V − S]) − m([S])|S ∈ Fj} ≥ 0 since one of the
two parts has at least as many edges in its induced subgraph as the other. Next, note
that cj(G) ≥ n

2
since the sum of the largest n

2
terms of the degree sequence is already

equal to m(G), and min{m([V −S])−m([S])|S ∈ Fj} ≤ 0 since one of the two parts
has at most as many edges in its induced subgraph as the other. Combining this
with Theorem 3.4,

n(G)

2
≤ cj(G) ≤ αj(G) ≤ aj(G) ≤ n(G)

2
.

Thus they are all equal and the first proposition is established.
To prove (2), we denote the disjoint union of b isomorphic copies of H with the

notation ∪b
i=1H . Now, we will establish the truth of the following two claims:

cj(∪p
i=1Kp2 + ∪p+1

i=1 Kj) = αj(∪p
i=1Kp2 + ∪p+1

i=1 Kj),

while simultaneously, as p → ∞:

aj(∪p
i=1Kp2 + ∪p+1

i=1 Kj)

αj(∪p
i=1Kp2 + ∪p+1

i=1 Kj)
→ ∞.

For ease of notation, set Gp = ∪p
i=1Kp2 +∪p+1

i=1 Kj. First, we can see that αj(Gp) =
j(p+1). Observe that Gp has p3 vertices of degree p2 +pj +j−1 while it has j(p+1)
vertices of degree p3 + j − 1. When combined with the fact that Gp has a unique
maximum j-independent set— the (p+1) copies of Kj — this allows us to deduce all
of the following:

min
S∈Fj

{m([V − S]) − m([S])} =
p3(p2 − 1)

2
− j(j − 1)(p + 1)

2
,

m(Gp) =
p3(p2 − 1)

2
+

j(j − 1)(p + 1)

2
+ p3(p + 1)j,

(p+1)j∑
i=1

dn−i+1 + min
S∈Fj

{m([V − S]) − m([S])}

= (p3 + j − 1)(p + 1)j +
p3(p2 − 1)

2
− j(j − 1)(p + 1)

2
= m(Gp).

Therefore, we conclude from the definition, cj(Gp) = αj(Gp), which settles the first
claim.

As for the second claim, since αj(Gp) = j(p + 1), it only remains to calculate
aj(Gp) and compare them. To this end, we observe the validity of the following chain
of inequalities, as p → ∞:

p2∑
i=1

di + max
S∈Fj

{m([V − S]) − m([S])}

= (p2 + pj + j − 1)p2 +
p3(p2 − 1)

2
− j(j − 1)(p + 1)

2
≤ m(Gp).
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This shows that p2 is an integer satisfying the condition in the definition of upper j-
annihilation number. Hence, because aj(Gp) is the largest such integer, aj(Gp) ≥ p2.
Finally,

aj(Gp)

αj(Gp)
≥ p2

j(p + 1)
,

and the right hand side of this inequality grows arbitrarily large with p for any fixed
integer j. This completes the proof of the second proposition.

Next, to prove (3), consider complete split graphs, which are joins of complete
graphs and empty graphs. Note that these graphs are the same as those from Ex-
ample 3.5. Then, we make the following two claims. As p → ∞, we have:

αj(Ep2 + Kp) = aj(Ep2 + Kp),

while simultaneously,
αj(Ep2 + Kp)

cj(Ep2 + Kp)
→ ∞.

For ease of notation, set Gp = Ep2 + Kp. It is clear now that αj(Gp) = p2, since
j < p2. Observe that Gp has p2 vertices of degree p while it has p vertices of degree
p2 + p − 1. Now, since the difference m([V − S])−m([S]) is maximized over the set
Fj , of all maximum j-independent sets, when S is the vertex set of Ep2, we see that:

max
S∈Fj

{m([V − S]) − m([S])} =
p(p − 1)

2
,

while

m(Gp) =
p(p − 1)

2
+ p3.

Therefore,

p2∑
i=1

di + max
S∈Fj

{m([V − S]) − m([S])} = p3 +
p(p − 1)

2
= m(Gp),

from which we conclude from the definition that aj(G) = p2, which settles the first
claim.

As for second claim, since we still have αj(Gp) = p2, it only remains to calculate
cj(Gp) and compare them. To this end, we choose p large enough so that for the
given positive integer j, Gp has a unique maximum j-independent set consisting of
the vertex set of Ep2 . Then we see that:

min
S∈Fj

{m([V − S]) − m([S])} =
p(p − 1)

2
.

Therefore,

p∑
i=1

dn−i+1 + min
S∈Fj

{m([V − S]) − m([S])} = p3 + p2 − p +
p(p − 1)

2
≥ m(Gp).
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We now conclude from the definition that cj(Gp) ≤ p. Hence
αj(Gp)

cj(Gp)
≥ p → ∞,

concluding the proof of the third proposition.
Finally, to prove (4), define the graph Gp as follows. Starting with the disjoint

union of a Kp2 and p2 disjoint copies of the graph ∪p
i=1Kp2 + ∪p+1

i=1 Kj, associate a
unique vertex of Kp2 to each of the p2 copies and join all vertices of each copy to this
associated vertex. Now, as p → ∞, we must show that:

αj(Gp) − cj(Gp) → ∞,

while simultaneously,
aj(Gp)

αj(Gp)
→ ∞.

First, since Gp has a unique maximum j-independent set, whose vertex set we
denote by I, we can calculate

min
S∈Fj

{m([V − S]) − m([S])} = m([V − I]) − m([I]),

where again Fj denotes the set of all maximum j-independent sets, and record the
following invariants;

αj(Gp) = |I| = p3j + p2j, (1)

m(Gp) = (
p3(p2 − 1)

2
+

j(j − 1)(p + 1)

2
+p3(p+1)j)p2+

p2(p2 − 1)

2
+p2(p3+j(p+1)),

(2)

m([V − I]) − m([I]) =
p5(p2 − 1)

2
+

p2(p2 − 1)

2
+ p5 − p2(p + 1)j(j − 1)

2
. (3)

Subtracting Equation 3 from Equation 2 and simplifying, we have;

m(Gp) − (m([V − I]) − m([I])) = p6j + p5j + p3j2 + p2j2. (4)

Now, the degree sequence of Gp contains the following: p5 copies of the term
p2 + pj + j, (p + 1)p2j copies of the term p3 + j and p2 copies of the term p3 + p2 +
pj + j − 1. More succinctly, counting exponents as multiplicities,

D = {(p2 + pj + j)p5

, (p3 + j)(p+1)p2j , (p3 + p2 + pj + j − 1)p2}.
From this we observe that the sum of the largest p2 degrees is less than the value
given in Equation 4, while the sum of the largest (p2 + (p + 1)p2j) degrees is greater
than the value given in Equation 4. This enables us to deduce that p2 < cj(Gp) ≤
p2 + (p + 1)p2j. Using this information, we derive the following:

p3j+p2j−p∑
i=1

dn−i+1 = p2(p3 + p2 + pj + j − 1) + (p3j + p2j − p − p2)(p3 + j)

≥ m(Gp) − min
S∈Fj

{m([V − S]) − m([S])}.

This shows that (p3j +p2j−p) is an integer satisfying the condition in the definition
of lower j-annihilation number. Since cj(Gp) is defined as the smallest such integer,



CARO & PEPPER /AUSTRALAS. J. COMBIN. 59 (1) (2014), 1–23 10

cj(Gp) ≤ p3j + p2j − p. Hence we can compare the difference between αj(Gp) and
cj(Gp) as follows;

αj(Gp) − cj(Gp) ≥ (p3j + p2j) − (p3j + p2j − p) = p,

which can be made arbitrarily large. This completes the proof of the first claim.
Next, we observe that the p5 smallest degrees of Gp are all (p2 + pj + j). Of

course, the same thing is true for the p4 − p2 smallest degrees, from which we get:

p4−p2∑
i=1

di = (p4 − p2)(p2 + pj + j) ≤ m(Gp) − max
S∈Fj

{m([V − S]) − m([S])}.

This shows that p4 − p2 is an integer satisfying the condition in the definition of
upper j-annihilation number. Since aj(Gp) is defined as the largest such integer,
aj(Gp) ≥ p4 − p2. Hence, we can compare the ratio of αj(Gp) and aj(Gp) as follows:

aj(Gp)

αj(Gp)
≥ p4 − p2

p3j + p2j
,

which can be made arbitrarily large. This establishes the second claim, completes
the proof of the fourth proposition, and therefore proves the theorem.

To conclude this section, we give a couple more definitions and a lemma that will
be used later on in the paper. Recall the definitions of upper and lower j-annihilation
number, where Fj is the family of all maximum j-independent sets,

aj(G) = max{k ∈ Z|
k∑

i=1

di + max
S∈Fj

{m([V − S]) − m([S])} ≤ m(G)},

cj(G) = min{k ∈ Z|
k∑

i=1

dn−i+1 + min
S∈Fj

{m([V − S]) − m([S])} ≥ m(G)}.

In [26], the authors define an annihilating set to be a set whose degree sum is at
most the size. We will borrow this language to define an upper j-annihilating set to
be a set A with the property that,

∑
v∈A

deg(v) + max
S∈Fj

{m([V − S]) − m([S])} ≤ m(G).

Analogously, we say that A is a lower j-annihilating set when,

∑
v∈A

deg(v) + min
S∈Fj

{m([V − S]) − m([S])} ≥ m(G).

We then define a maximum upper j-annihilating set to be an upper j-annihilating set
of the largest order and a minimum lower j-annihilating set is a lower j-annihilating
set of the smallest order.
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Lemma 3.9. For any graph G, if A is a maximum upper j-annihilating set, then
|A| = aj(G). That is, the order of a maximum upper j-annihilating set is exactly
the upper j-annihilation number. Moreover, if A is a minimum lower j-annihilating
set, then |A| = cj(G). That is, the order of a minimum lower j-annihilating set is
exactly the lower j-annihilation number.

Proof. Let G be a graph with degree sequence D = {d1 ≤ d2 ≤ . . . ≤ dn} and let A
be a maximum upper j-annihilating set of G. Now,

|A|∑
i=1

di ≤
∑
v∈A

deg(v),

which implies

|A|∑
i=1

di+max
S∈Fj

{m([V −S])−m([S])} ≤
∑
v∈A

deg(v)+max
S∈Fj

{m([V −S])−m([S])} ≤ m(G).

Hence, |A| is an integer satisfying the definition of upper j-annihilation while aj(G)
is the largest such integer. Consequently, |A| ≤ aj(G).

On the other hand, let B be a set of aj(G) vertices of G whose degrees are
{d1, . . . , daj

}. Clearly we have,

aj∑
i=1

di =
∑
v∈B

deg(v).

Hence, from the definition of aj(G),

∑
v∈B

deg(v)+max
S∈Fj

{m([V −S])−m([S])} =

aj∑
i=1

di+max
S∈Fj

{m([V −S])−m([S])} ≤ m(G).

From this we conclude that B is an upper j-annihilating set and as such, the order of
B is less than or equal to the order of a maximum upper j-annihilating set – namely,
|B| ≤ |A|. Therefore, since aj(G) = |B| and together with the first paragraph, this
shows they are equal and proves the first part of the theorem. The second part of
the theorem can be proven in a similar fashion.

Of course, there could be more than one maximum upper j-annihilating set, but
the proof shows that they all have the same order and additionally that any set of
the smallest aj(G) degrees suffices to find one.

It is clear that calculating aj(G) and cj(G) is still an intractable problem, since
it uses information about all maximum j-independent sets. Thus, as was alluded to
in the description of the DSI strategy, the next step is to find approximations to the
functions fU(G, A(P )) and fL(G, A(P )), so that the weaker bounds can at least be
computed more easily. This is done to some extent in the next section, where we
also give applications of the DSI strategy when certain other features of the graph
are known.
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4 Approximations and Applications

In this section, we first give easily computable approximations to Theorem 3.4. These
are presented in Definition 4.1 and Theorem 4.2. After that, we illustrate what can
be gained by assuming the graph is planar. Next, we give an application using
chromatic number. Finally, we apply the DSI strategy to claw-free graphs.

Let us recall once again Definition 3.3, the upper and lower j-annihilation num-
bers of G;

αj(G) ≤ aj(G) = max{k ∈ Z|
k∑

i=1

di + max
S∈Fj

{m([V − S]) − m([S])} ≤ m(G)},

αj(G) ≥ cj(G) = min{k ∈ Z|
k∑

i=1

dn−i+1 + min
S∈Fj

{m([V − S]) − m([S])} ≥ m(G)}.

Our next step in the DSI strategy is to find approximations to maxS∈Fj
{m([V −

S]) − m([S])} and minS∈Fj
{m([V − S]) − m([S])} that are simpler or at least more

easily computed. In particular, we need a simpler function f(S) ≤ maxS∈Fj
{m([V −

S]) − m([S])}, such that when substituted into the definition, we get an index at
least as large as aj(G). For the lower bound, we need to find a simpler function
g(S) ≥ minS∈Fj

{m([V −S])−m([S])}, such that when substituted into the definition,
we get an index at most as large as cj(G). To illustrate this idea with an example,
consider the following definitions, which give easy to calculate approximations for
the invariants introduced in Theorem 3.4.

Definition 4.1. Let D = {d1 ≤ d2 ≤ . . . ≤ dn} be the degree sequence of a graph
G = (V, E). The weak upper j-annihilation number of G, denoted a′

j = a′
j(G), can

be defined by the equation:

a′
j(G) = max{k ∈ Z|

k∑
i=1

di − k(j − 1)

2
≤ m(G)}.

The weak lower j-annihilation number of G, denoted c′j = c′j(G), can be defined by
the equation:

c′j(G) = min{k ∈ Z|
k∑

i=1

dn−i+1 +
1

2

n−k∑
i=1

(dn−i+1 − 1) ≥ m(G)}.

Theorem 4.2. For any positive integer j and for any graph G = (V, E);

c′j(G) ≤ cj(G) ≤ αj(G) ≤ aj(G) ≤ a′
j(G).

Proof. To see that c′j(G) ≤ cj(G), it is enough to show;

1

2

n−cj∑
i=1

(dn−i+1 − 1) ≥ min
S∈Fj

{m([V − S]) − m([S])}.
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With this in mind, let A be a maximum j-independent set which realizes
minS∈Fj

{m([V −S])−m([S])}. Denote by m1 the number of edges in [A], by m2 the
number of edges in [V − A], and by m3 the number of edges between A and V − A.
Now we get the following three equations, which will simplify what follows:

m[V − A] − m[A] = m2 − m1,∑
v/∈A

deg(v) = 2m2 + m3,

∑
v∈A

deg(v) = 2m1 + m3.

From Theorem 3.4, cj(G) ≤ αj(G), so:

1

2

n−cj∑
i=1

(dn−i+1 − 1) ≥ 1

2

n−αj∑
i=1

(dn−i+1 − 1) =
1

2

n−αj∑
i=1

dn−i+1 − n − αj

2
.

However, since the sum of the n − αj highest degrees is at least as large as the sum
of the degrees of the n − αj vertices in V − A,

1

2

n−αj∑
i=1

dn−i+1 − n − αj

2
≥ 1

2

∑
v/∈A

deg(v) − n − αj

2
= m2 +

1

2
m3 − n − αj

2
.

Next we observe that

m2 +
1

2
m3 − n − αj

2
≥ m2 − m1(= min

S∈Fj

{m([V − S]) − m([S])})

if and only if

n − αj ≤ 2m1 + m3 =
∑
v∈A

deg(v).

But this last inequality is true since each of the n−αj vertices not in A has a neighbor
in A due to the fact that A is a maximum j-independent set. From this we conclude
that c′j(G) ≤ cj(G) ≤ αj(G).

On the other hand, to see that a′
j(G) ≥ aj(G), let I be a maximum j-independent

set such that for all S ∈ Fj , m[V − I] − m[I] ≥ m([V − S]) − m([S]). Now, since

αj ≤ aj , m[V − I] ≥ 0, and m[I] ≤ αj(j−1)

2
, we deduce;

aj∑
i=1

di − aj(j − 1)

2
≤

aj∑
i=1

di − αj(j − 1)

2
≤

aj∑
i=1

di + m[V − I] − m[I] ≤ m(G).

As a′
j(G) is the largest integer having this property by definition, aj(G) ≤ a′

j(G),
completing the proof.
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Remark 4.3. We should note here that the weak annihilation number of G, a′
j(G),

is exactly equal to the annihilation number from Definition 3.1 when j = 1. Thus
Theorem 4.2 is a generalization of Theorem 3.2, while Theorem 3.4 is both a general-
ization and an improvement. The definition of a′

j(G), and its relationship to αj(G),
was previously discovered by Pepper and Waller [30], though it was never published.

The main idea of this section was to make use of the DSI strategy to create
efficient approximations for NP-hard invariants that we are interested in. As more
information about the graph is known, the approximations can be made more precise.
In fact, the definition of the weak lower j-annihilation number does not even depend
on j, so that c′j(G) = c′1(G). Moreover, the weak upper j-annihilation number was
defined without any consideration for the edges outside of a maximum j-independent
set, even though this was part of the definition for the upper j-annihilation number.
Some of these weaknesses can be addressed by knowing more about the structure of
the graph.

4.1 Approximations assuming planarity

With that in mind, let us turn our attention to planar graphs. The following result
was discovered using a DSI approach, but a shorter direct proof is given below.

Theorem 4.4. Let G be a planar graph with n(G) ≥ 3. Then, for any positive
integer j ≤ δ(G);

αj(G) ≤ 2n(G) − 4

δ(G) − j + 1
.

Proof. Let S be a maximum j-independent in G. Consider the subgraph H formed
by deleting all edges from both [S] and [V − S]. This is a bipartite planar graph
and therefore has at most 2n(G) − 4 edges by appeal to Euler’s formula. Since
Δ([S]) ≤ j − 1, for each vertex x ∈ S, degH(x) ≥ degG(x) − (j − 1) ≥ δ(G) − j + 1,
where degH(x) and degG(x) mean, respectively, the degree of vertex x in H and the
degree of vertex x in G. Summing the degrees in H over all αj(G) vertices of S we
get;

αj(G)(δ(G) − j + 1) ≤
∑
v∈S

degH(v) = m(H) ≤ 2n(G) − 4,

which, after rearranging, yields the desired result.

When j = 1, this result becomes a theorem from a paper of Caro and Roddity
[7]. In that paper, examples are given showing that equality holds in Theorem 4.4,
when j = 1, for infinitely many graphs and for each value of δ ∈ {2, 3, 4, 5}. A nice
corollary to Theorem 4.4, namely the case that δ(G) = 5 and j = 1, appeared before
in [7].

To see that the inequality in Theorem 4.4 is sharp even for j > 1, consider the
following example. We show here that the theorem is satisfied with equality (only
asymptotically in one case) for the following pairs (j, δ): {(1, 3), (1, 4), (1, 5), (2, 2),
(2, 3), (2, 4), (3, 4), (3, 5)}. For the pairs (3, 3), (4, 4), and (5, 5) equality is not pos-
sible. The cases when j = 1 appeared in [7], though we give another example of
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the (1, 4) case below. Examples for the other cases where equality holds are col-
lected below. We do not know whether the bound is sharp for some graphs for the
(j, δ) = (2, 5) and (j, δ) = (4, 5) cases, and leave these for open problems.

Remark 4.5. First, when j = δ(G) = 2, a complete graph on 3 vertices is the unique
graph with the desired properties, and there are no other instances where equality
can be achieved when j = δ(G). So we restrict our attention to j ≤ δ(G)− 1. When
j = 2 and δ(G) = 3, the complete graph on 4 vertices is the unique graph with the
desired properties.

Example 4.6. Now, let G be the graph formed by taking a cycle on 3p vertices,
where p ≥ 2 is an integer, adding a vertex u inside this cycle and a vertex v outside
the cycle, and then joining each of u and v to each of the 3p vertices of the cycle.
Observe that m(G) = 9p = 3n(G) − 6. Hence, G is a maximum planar graph with
δ(G) = 4. When j = 1, we find that,

2n(G) − 4

δ(G) − j + 1
=

2n(G) − 4

4
=

n(G)

2
− 1 = α1(G) = α(G).

Moreover, when j = 2, we find,

2n(G) − 4

δ(G) − j + 1
=

2n(G) − 4

3
= 2p = α2(G).

Finally, when j = 3, we find,

2n(G) − 4

δ(G) − j + 1
= n(G) − 2 = 3p = α3(G).

Thus, we see there are infinitely many examples satisfying Theorem 4.4 with equality
when δ = 4 and 1 ≤ j ≤ 3.

Example 4.7. When the δ(G) = 5 and j = 3, we can construct a family of graphs
for which the inequality is “nearly” sharp, meaning different only by a small constant
as n grows arbitrarily large. Let G be the graph described as follows. Let r ≥ 5 be
an integer. Let A = Pr be a path on r vertices labeled {a1, . . . , ar}, let B = Pr be a
path on r vertices labeled {b1, . . . , br}, and let C = Pr−1 be a path on r − 1 vertices
labeled {c1, . . . , cr−1}. Draw A above C above B. Join a1 to b1 and join ar to br.
For each i ∈ {1, . . . , r − 1}, join ci to ai, ai+1, bi, and bi+1. Add a vertex u, and
join it to all of the vertices of A, and a vertex v, and join it to all of the vertices of
B. Finally, join a1 to ar, join b1 to br, and a1 to br. This graph is maximum planar
with δ(G) = 5. When j = 3, the set (A − a1) ∪ (B − br) is a 3-independent set of
order 2r − 2. Moreover, since n = 3r + 1

2n(G) − 4

δ(G) − j + 1
=

2n(G) − 4

3
= 2r − 2

3
= α3(G) +

4

3
.
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4.2 Approximations using chromatic number

Next we will focus on using the chromatic number to get upper bounds on the
independence number. Before proceeding, let us define the j-chromatic number of
G, denoted by χj(G), as the fewest number of j-independent sets the vertices of G
can be partitioned into. For example, when j = 1, this is just the regular chromatic
number.

Theorem 4.8. For any positive integer j and for any graph G = (V, E);

αj(G) ≤ aj(G) ≤ max{k ∈ Z|
k∑

i=1

di +

(
χj − 1

2

)
− k(j − 1)

2
≤ m(G)} ≤ a′

j(G).

Proof. To prove this result, as with the earlier approximations of Theorem 3.4, it
suffices to establish that;(

χj − 1

2

)
− aj(G)(j − 1)

2
≤ max

S∈Fj

{m([V − S]) − m([S])},

where again, Fj is the family of all maximum j-independent sets.
To this end, let A be a maximum j-independent set realizing maxS∈Fj

{m([V −
S]) − m([S])}. The first point to observe is that;

χj([V − A]) ≥ χj(G) − 1,

since otherwise, because A is j-independent, we could have found a smaller partition
than χj(G). Now, partition V − A into χj([V − A]) j-independent sets. The next
point to observe is that there is at least one edge between all pairs of these sets, due
to the minimality of the coloring. Consequently;

m[V − A] ≥
(

χj − 1

2

)
.

To conclude, since we know that each vertex of A is adjacent to at most j−1 others,
and αj(G) ≤ aj(G);

m[A] ≤ αj(G)(j − 1)

2
≤ aj(G)(j − 1)

2

For the j = 1 case, we have the following corollary.

Corollary 4.9. For any graph G = (V, E):

α(G) ≤ max{k ∈ Z|
k∑

i=1

di +

(
χ − 1

2

)
≤ m(G)}.

With this corollary in hand for instance, we could get a slight improvement over
the naive annihilation number upper bound for all planar graphs, where we know that
χ(G) ≤ 4 from the Four Color Theorem. It also gives us another way to interpret
the intuitive idea that highly chromatic graphs have relatively small maximum in-
dependent sets, since high chromatic number would generally push the upper bound
above lower.
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4.3 Specification to Claw-Free and K1,p-Free Graphs

Now we focus specifically on using the DSI strategy to find approximations to the
independence number for K1,p-free graphs (graphs which have no induced K1,p).

Theorem 4.10. Let p ≥ 3 be an integer and let G = (V, E) be a K1,p-free graph with
degree sequence D = {d1 ≤ d2 ≤ . . . ≤ dn}. Define w(G) as;

w(G) = max{k ∈ Z|
k∑

i=1

di +
1

2

n∑
i=k+1

di − (n − k)(p − 1)

2
≤ m(G)}.

Then the following inequality is true;

a1(G) ≤ w(G).

Proof. Let A be a maximum upper 1-annihilating set of G. First we observe that

|A|∑
i=1

di+
1

2

n∑
i=|A|+1

di− (n − |A|)(p − 1)

2
≤

∑
v∈A

deg(v)+
1

2

∑
v/∈A

deg(v)− (n − |A|)(p − 1)

2
.

This is true because the weight of the first sum is 1 while that of the second is 1
2
, so

any deviation from the lowest |A| terms of D being the degrees of the vertices in A
would only favor the right hand side of the above inequality. Next we observe that

∑
v∈A

deg(v) +
1

2

∑
v/∈A

deg(v) − (n − |A|)(p − 1)

2
≤

∑
v∈A

deg(v) + m[V − A] ≤ m(G),

which follows from the fact that

1

2

∑
v/∈A

deg(v) − (n − |A|)(p − 1)

2
=

1

2

∑
v/∈A

(deg(v) − (p − 1)) ≤ m[V − A]

because each of the n− |A| vertices in V −A has at most p− 1 edges going back to
A since G is K1,p-free. Hence, |A| is an integer satisfying the definition of w(G), and
since w(G) is the largest such integer, we know |A| ≤ w(G). Finally, from Lemma
3.9, we get that |A| = a1(G) ≤ w(G) which completes the proof.

Theorem 4.10 together with Theorem 3.4 give us the corollary below.

Corollary 4.11. Let p ≥ 3 be an integer and let G = (V, E) be a K1,p-free graph
with degree sequence D = {d1 ≤ d2 ≤ · · · ≤ dn}. Then, with w(G) defined as above,
α(G) ≤ w(G).

In a paper from 1992 by Faudree, Gould, Jacobson, Lesniak, and Lindquester
[15], it is established that, for K1,p-free graphs of order n(G) with minimum degree
δ(G) and independence number α(G),

α(G) ≤ (p − 1)n(G)

δ(G) + p − 1
.

It turns out that this result follows from Corollary 4.11, and hence also from Theo-
rems 3.4 and 4.10.
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Corollary 4.12. Let p ≥ 3 be an integer and let G = (V, E) be a K1,p-free graph
with degree sequence D = {d1 ≤ d2 ≤ · · · ≤ dn}. Then, with w(G) defined as above,

α(G) ≤ a1(G) ≤ w(G) ≤ (p − 1)n(G)

δ(G) + p − 1
.

Proof. The first two inequalities in the chain have already been established, so it
remains to show the final inequality. To start, we know from the definition of w(G)
that

m(G) ≥
w∑

i=1

di +
1

2

n∑
i=w+1

di − (n − w)(p − 1)

2
.

Hence it is also true that

2m(G) ≥ 2

w∑
i=1

di +

n∑
i=w+1

di − (n − w)(p − 1),

which is equivalent to

2m(G) + (n − w)(p − 1) ≥
n∑

i=1

di +

w∑
i=1

di.

This last inequality is equivalent to

(n − w)(p − 1) ≥
w∑

i=1

di.

Finally, since
w∑

i=1

di ≥ δw,

we arrive at
(n − w)(p − 1) ≥ δw,

which, after rearranging, yields our desired inequality, completing the proof.

We can use the DSI strategy as well to generalize this result from independence
to j-independence. We present a shorter direct proof below.

Theorem 4.13. Let j and p ≥ 3 be integers and let G = (V, E) be a K1,p-free graph
with minimum degree δ(G) ≥ j − 1. Then,

αj(G) ≤ j(p − 1)n(G)

j(p − 1) + δ(G) − (j − 1)
.
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Proof. Let A be a maximum j-independent set and denote by m(A, V − A) the
number of edges with one vertex in A and the other vertex in V − A. Since the
maximum degree in [A] is at most j − 1, each vertex of A has at least δ(G)− (j − 1)
neighbors in V − A. Hence,

m(A, V − A) ≥ |A|(δ(G) − (j − 1)) = αj(G)(δ(G) − (j − 1)). (5)

On the other hand, suppose there is a vertex u ∈ V − A which has at least
j(p− 1)+1 neighbors in A. Let NA(u) denote the neighbors of u in A. Consider the
subgraph induced by NA(u), which we will denote by [NA(u)]. Since Δ([NA(u)]) ≤
j − 1, there must be an independent set in [NA(u)] of size at least,

|NA(u)|
Δ([NA(u)]) + 1

≥ |NA(u)|
(j − 1) + 1

=
|NA(u)|

j
≥ j(p − 1) + 1

j
= p − j − 1

j
.

This means that, since the independence number is an integer, α([NA(u)]) ≥ p.
However, this is a contradiction since G was K1,p-free. Therefore, every vertex in
V − A has at most j(p − 1) neighbors in A. From this we deduce that,

m(A, V − A) ≤ j(p − 1)(n(G) − αj(G)). (6)

Now combining Equations 5 and 6, we have:

αj(G)(δ(G) − (j − 1)) ≤ j(p − 1)(n(G) − αj(G)).

Solving this last inequality for αj(G), we reach our desired conclusion.

5 Other Applications of the DSI Strategy

As another example of the DSI strategy, we observe that similar treatment could be
given for j-domination number. As was stated in the introduction, researching the j-
domination number is very popular and some examples are [8, 12, 13, 24]. Meanwhile,
there is some strong relationships between the j-domination and j-independence
numbers as seen for instance in [10, 16, 22, 27].

Definition 5.1. Let D = {d1 ≤ d2 ≤ · · · ≤ dn} be the degree sequence of a graph
G = (V, E) and let Fj denote the family of all minimum j-dominating sets in G. We
define the following two graph invariants:

zj(G) = max{k ∈ Z|
k∑

i=1

di + max
S∈Fj

{m([V − S]) − m([S])} ≤ m(G)},

wj(G) = min{k ∈ Z|
k∑

i=1

dn−i+1 + min
S∈Fj

{m([V − S]) − m([S])} ≥ m(G)}.

Now we have an analogue to Theorem 3.4 with respect to the j-domination num-
ber.
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Theorem 5.2. For any positive integer j and for any graph G = (V, E),

wj(G) ≤ γj(G) ≤ zj(G).

Proof. First we prove the upper bound. Let T be a minimum j-dominating set such
that for all S ∈ Fj, m([V − T ]) − m([T ]) ≥ m([V − S]) − m([S]). Denote by m1

the number of edges in [T ], by m2 the number of edges in [V − T ], and by m3 the
number of edges between T and V − T . Observe the following chain of inequalities:

γj∑
i=1

di +(m([V −T ])−m([T ])) ≤
∑
v∈T

deg(v)+m2 −m1 = 2m1 +m3 +m2 −m1 = m.

Since γj is an integer satisfying the condition in Definition 5.1 above, and zj is the
largest such integer, the upper bound is proven.

Next we prove the lower bound. Let T be a minimum j-dominating set such that
for all S ∈ Fj , m([V −T ])−m([T ]) ≤ m([V −S])−m([S]). Denote m1, m2, and m3

as above. Observe the following chain of inequalities:

γj∑
i=1

dn−i+1+(m([V −T ])−m([T ])) ≥
∑
v∈T

deg(v)+m2−m1 = 2m1+m3+m2−m1 = m.

Since γj is an integer satisfying the condition in Definition 5.1 above, and wj is the
smallest such integer, the lower bound is proven.

From this new starting point, we can repeat some of the same ideas we had for
j-independence number. Namely, try to approximate it in some computationally
efficient way, make some structural assumptions to see what more can be said under
certain conditions, and compare to known results about j-domination number. To
give just one example of such endeavors, while choosing to leave the rest for future
work, consider the following theorem.

Theorem 5.3. For any positive integer j and for any graph G = (V, E), define
w′

j(G) as follows;

w′
j(G) = min{k ∈ Z|

k∑
i=1

dn−i+1 +
1

2

n∑
i=k+1

(dn−i+1 − j) ≥ m(G)}.

Then the following inequality is true,

γj(G) ≥ w′
j(G).

Proof. Let D be a minimum j-dominating set and consider the following simplifying
notation; m[D] = m1, m[V − D] = m2, and m(D, V − D) = m3. To prove the
theorem, we verify that γj(G) is an integer satisfying the condition in the definition
of w′

j(G), which is itself the smallest such integer. To this end, it suffices to show;

γj∑
i=1

dn−i+1 +
1

2

n∑
i=γj+1

(dn−i+1 − j) ≥
∑
v∈D

deg(v) +
1

2

∑
v∈V −D

(deg(v) − j) ≥ m(G).
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The first inequality above is true because any degree in D not among the highest
γj(G) degrees in G is counted with a weight of 1 on the left but only a weight of 1

2

on the right. To see that the second inequality above is true, notice that,

∑
v∈D

deg(v) +
1

2

∑
v∈V −D

(deg(v) − j) = 2m1 + m3 + m2 +
m3

2
− j(n − γj)

2
.

However, since m(G) = m1 + m2 + m3, the second inequality is true if and only if,

m1 +
m3

2
≥ j(n − γj)

2
,

or equivalently, ∑
v∈D

deg(v) = 2m1 + m3 ≥ j(n − γj).

Finally, this last inequality is true since each of the (n − γj) vertices from V − D
have at least j neighbors in D because it is a j-dominating set.

6 Final Remarks

To conclude, the main goal of our paper was to present the DSI strategy and give
some examples of how it could be used to derive approximations for computationally
difficult graph invariants. We showed how, as more information is known about the
graph, stronger results can be obtained – and we gave some examples of how this is
done. The authors hope there will be many other instances where the DSI strategy
can be used to get new results or give deeper insight to known results. In particular,
we primarily focused our studies on k-independence number, while leaving mostly
unexplored the applications of DSI to the last parts of the paper dealing with k-
domination number. Finally, we left open the question of whether or not equality
can be obtained in Theorem 4.4 for the (j, δ) = (2, 5) and (j, δ) = (4, 5) cases.

References

[1] N. Alon and N. Kahale, Approximating the independence number via the θ-
function, Math. Programming 80 (1998), 253–264.

[2] D. Amos, R. Davila and R. Pepper, On the k-residue of disjoint unions of graphs
with applications to k-independence, Discrete Math. 321 (2014), 24–34.

[3] M. Blidia, M. Chellali, O. Favaron and N. Meddah, Maximal k-independent sets
in graphs, Discuss. Math. Graph Theory 28 (2008), 151–163.

[4] P. Borowiecki and F. Goring, GreedyMAX-type Algorithms for the Maxi-
mum Independent Set Problem, SOFSEM 2011: Theory and Practice of Com-
puter Science, Lec. Notes Comp. Sci. 2011, Vol. 6543/2011, 146–156, DOI:
10.1007/978-3-642-18381-2 12.



CARO & PEPPER /AUSTRALAS. J. COMBIN. 59 (1) (2014), 1–23 22

[5] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications, American El-
sevier Publishing, 1976.

[6] Y. Caro and A. Hansberg, New Approach to the k-independence number of a
graph, Electr. J. Combin. 20 (2013), # P33.

[7] Y. Caro and Y. Roddity, On the vertex-independence number and star decom-
position of graphs, Ars Combin. 20 (1985), 167–180.

[8] Y. Caro and Y. Roddity, A note on the k-domination number of a graph, Int.
J. Math. Math. Sci. 13 (1990), 205–206.

[9] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph
Theory 15 (1991), 99–107.

[10] M. Chellali, O. Favaron, A. Hansberg, and L. Volkmann, k-Domination and
k-Independence in Graphs: A Survey, Graphs Combin. 28 no. 1 (2012), 1–55.

[11] E. DeLaVina and R. Pepper, Graffiti.pc on the k-independence number of a
graph, Congr. Numer. 213 (2012), 185–195.

[12] E. DeLaVina, W. Goddard, M.A. Henning, R. Pepper and E.R. Vaughan,
Bounds on the k-domination number of a graph, Appl. Math. Letters 24 (2011),
996–998.

[13] E. DeLaVina, C.E. Larson, R. Pepper and B. Waller, Graffiti.pc on the 2-
domination number of a graph, Congr. Numer. 203 (2010), 15–32.

[14] S. Fajtlowicz and R. Pepper, Interpretations of the Annihilation Number, (pre-
print).

[15] R.J. Faudree, R.J. Gould, M.S. Jacobson, L.M. Lesniak, T.E. Lindquester,
On independent generalized degrees and independence numbers in K(1, m)-free
graphs, Discrete Math. 103 (1992), 17–24.

[16] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and
k-dependence, J. Combin. Theory, Ser. B 39 (1985), 101–102.

[17] O. Favaron, M. Maheo, and J.F. Sacle, On the Residue of a Graph, J. Graph
Theory 15 (1991), 39–64.

[18] J.F. Fink and M.S. Jacobson, n-domination in graphs, Graph Theory with Appli-
cations to Algorithms and Computer Science, John Wiley and Sons, New York,
1985, 283–300.

[19] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden
subgraphs, Graph Theory with Applications to Algorithms and Computer Sci-
ence, John Wiley and Sons, New York, 1985, 301–311.



CARO & PEPPER /AUSTRALAS. J. COMBIN. 59 (1) (2014), 1–23 23

[20] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman and
Company, New York, 1979.

[21] S.L. Hakimi, On the Realizability of a Set of Integers as Degrees of the Vertices
of a Graph, SIAM J. Appl. Math. 10 (1962), 496–506.

[22] A. Hansberg and R. Pepper, On k-domination and j-independence in graphs,
Discrete Appl. Math. 161 (2013), 1472–1480.

[23] V. Havel, A Remark on the Existence of Finite Graphs, CasopisPest. Mat. 80
(1955), 477–480.

[24] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in
Graphs, Marcel Dekker, New York (1998).

[25] R. Karp, Reducibility among combinatorial problems, Plenum Press, New York,
1972. Miller and Thatcher (eds).

[26] C.E. Larson and R. Pepper, Graphs with Equal Independence and Annihilation
Numbers, i Electr. J. Combin. 18 (2011), # P180.

[27] R. Pepper, Implications of Some Observations About the k-Domination Num-
ber, Congr. Numer. 206 (2010), 65–71.

[28] R. Pepper, On the Annihilation Number of a Graph, Proc. 15th American Conf.
Appl. Math., World Scientific and Engineering Academy and Society, (2009),
217–220.

[29] R. Pepper, Binding Independence, Ph.D. Dissertation, University of Houston,
2004.

[30] R. Pepper and B. Waller, private correspondence, (2010).

[31] W. Willis, Bounds for the Independence Number of a Graph, Masters Thesis,
Virginia Commonwealth University, 2011.

(Received 6 Oct 2012; revised 22 June 2013, 8 Feb 2014)


