A characterisation of eccentric sequences of maximal outerplanar graphs

P. Dankelmann
Department of Mathematics
University of Johannesburg
South Africa
pdankelmann@uj.ac.za
D.J. Erwin
Department of Mathematics and Applied Mathematics
University of Cape Town
South Africa
david.erwin@uct.ac.za
W. Goddard
School of Computing and Department of Mathematical Sciences
Clemson University
Clemson, SC 29634
U.S.A.
goddard@clemson.edu
\section*{S. Mukwembi}
School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal
South Africa
mukwembi@ukzn.ac.za
H.C. Swart
Department of Mathematics and Applied Mathematics
University of Cape Town
South Africa
swarth@ukzn.ac.za

Abstract

Let G be a connected graph. The eccentricity of a vertex v is defined as the distance in G between v and a vertex farthest from v. The nondecreasing sequence of the eccentricities of the vertices of G is the eccentric sequence of G. In this paper, we characterize eccentric sequences of maximal outerplanar graphs.

1 Overview

Let G be a connected graph. The eccentricity $\operatorname{ecc}_{G}(v)$ of a vertex v is defined as the distance in G between v and a vertex farthest from v. The nondecreasing sequence $s_{1}, s_{2}, \ldots, s_{n}$ of the eccentricities of the vertices of G is the eccentric sequence of G. Clearly, s_{1} is the radius of G, and s_{n} is the diameter of G.

A sequence of integers is called eccentric if it is the eccentric sequence of some graph. The problem of characterising all eccentric sequences appears very difficult. Eccentric sequences were first considered by Lesniak [8]. She showed that in the eccentric sequence of every graph each entry, except possibly the smallest, appears at least twice, and she characterised sequences that are eccentric sequences of trees. Lesniak further showed that a nondecreasing sequence S of positive integers containing m distinct values is eccentric if and only if some subsequence of S with m distinct values is eccentric. This result suggests the following definition: An eccentric sequence is called minimal if it has no proper eccentric subsequence with the same number of distinct eccentricities. Minimal eccentric sequences with two values, i.e., minimal eccentric sequences of the form a^{h}, b^{k} (i.e., a repeated h times and b repeated k times) were considered by Hrnčiar and Monoszová [6]. They showed that there are exactly seven minimal eccentric sequences of the form $4^{h}, 5^{k}$, viz. $4^{7}, 5^{2} ; 4^{6}, 5^{4}$; $4^{5}, 5^{6} ; 4^{4}, 5^{8} ; 4^{3}, 5^{9} ; 4^{2}, 5^{12}$; and $4,5^{14}$. They conjectured that in general there exist $2 a-1$ minimal eccentric sequences of the form $a^{h},(a+1)^{k}$. Buckley [1] reports that Nandakumar [9] determined all minimal eccentric sequences with least eccentricity 1 or 2 . All 13 minimal eccentric sequences with least eccentricity 3 were determined by Haviar, Hrnčiar and Monoszová [5]. To date no characterisation of minimal eccentric sequences has been found.

A different approach to the problem of characterising eccentric sequences is to consider a restriction to suitable graph classes. Lesniak's characterisation of the eccentric sequences of trees [8] remains the only example for this approach. In this paper, we present a characterisation of the eccentric sequences of maximal outerplanar graphs.

The notation we use is as follows. G always denotes a maximal outerplanar graph (MOP) of order at least 3 with vertex set V and edge set E. The number of vertices of G is usually denoted by n. For a subset $A \subseteq V$ we define $N_{G}(A)$ to be the set of all vertices that are adjacent to some vertex in A, but are not themselves in A. If $A=\{v\}$, then we write $N_{G}(v)$ for $N_{G}(\{v\})$. The distance between two vertices u and v, i.e., the minimum number of edges on a (u, v)-path, is denoted by $d(u, v)$.

Figure 1: Four of the seven possible centers of a MOP.

The eccentricity of a vertex v, denoted by $\operatorname{ecc}(v)$, is the distance to a vertex farthest away from v, and a vertex at distance ecc (v) from v is called an eccentric vertex of v. For each $v \in V$ we choose an eccentric vertex of v and denote it by \bar{v}. The smallest and largest eccentricity of the vertices of G are the radius and the diameter of G, denoted by $\operatorname{rad}(G)$ and $\operatorname{diam}(G)$, respectively. The nondecreasing sequence of the eccentricities of the vertices of G is the eccentric sequence of G. For a nonnegative integer i we define e_{i} to be the number of vertices of eccentricity i in G. Clearly the eccentric sequence determines the $e_{i}(\operatorname{rad}(G) \leq i \leq \operatorname{diam}(G))$ and vice versa. So for a characterisation of eccentric sequences it suffices to characterise the sequence of the e_{i}.

A centre vertex of G is a vertex of minimum eccentricity. The centre of G, denoted by C, is the set of all centre vertices. The centre subgraph of G is the subgraph induced by C.

It is a well-known fact that every graph is the centre subgraph of some graph. However, Proskurowski [11] showed that the centre of a MOP is always isomorphic to one of seven graphs. We denote by K_{n} the complete graph on n vertices.

Theorem 1. [11] Let G be a MOP. Then the centre of G is isomorphic to one of the following seven graphs: $K_{1}, K_{2}, K_{3}, G_{4}, G_{5}, G_{6}, H_{6}$, where G_{4}, G_{5}, G_{6}, and H_{6} are shown in Figure 1.

The present authors showed in [4] that in a 2-connected chordal graph every eccentricity strictly between the radius and the diameter occurs at least four times. Since every MOP is 2-connected and chordal, we have the following theorem which we will use extensively.

Theorem 2. ([4]) Let G be a MOP with radius r, diameter d. Then $e_{i} \geq 4$ for $i \in\{r+1, r+2, \ldots, d-1\}$.

If G is a MOP of order at most 5 , then G is one of the graphs $K_{1}, K_{2}, K_{3}, G_{4}$, and G_{5}, and so a sequence of at most five integers is the eccentric sequence of a MOP if and only if it is the eccentric sequence of one of these five graphs. We may thus restrict our attention to MOPs of order at least 6. Our main result is the following theorem:

Theorem 3. Let $S: s_{1}, s_{2}, \ldots, s_{n}$ be a nondecreasing sequence of positive integers, where $n \geq 6$, and, for $i \geq 1$, let e_{i} be the number of entries of S with value exactly i. Let $r=s_{1}$ and $d=s_{n}$. Then S is the eccentric sequence of some MOP if and only if $e_{d} \geq 2, e_{i} \geq 4$ for all i with $r<i<d$, and one of the following holds:
(1) $n \geq 6 r-6, r \geq 2$, $d=2 r-2, e_{r}=6, e_{i} \geq 6$ for all i with $r<i<d$, and $e_{d} \geq 3$,
(2) $r \geq 3, d=2 r-1$, and $e_{r}=6$,
(3) $r \geq 2, d=2 r-1$, and $e_{r}=5$,
(4) $r \geq 2, d=2 r-1$, and $e_{r}=4$,
(5) $n \geq 4 r-1, d=2 r-1$, and $e_{r}=3$,
(6) $r \geq 2, d=2 r$, and $e_{r}=2$,
(7) $n \geq 4 r+1, d=2 r$, and $e_{r}=1$.

The rest of the paper is the proof of the seven cases in Theorem 3: In Section 2, we prove the necessity - that the eccentric sequence of a MOP of order at least 6 always satisfies the conditions of Theorem 3-while in Section 3, we prove the sufficiency by showing how to construct MOPs satisfying these conditions.

2 Necessary Conditions

We denote the set of all centre vertices of a given MOP by C, and the individual vertices of C are $v_{1}, v_{2}, \ldots, v_{|C|}$, where the vertices are labeled as shown in Figure 1. Subscripts will always be taken modulo $|C|$.

Now let G be a MOP with $|C| \geq 3$. Consider a component H of $G-C$. Since G is outerplanar, there are adjacent vertices v_{i}, v_{j} of C such that $N_{G}(V(H)) \subset\left\{v_{i}, v_{j}\right\}$. Moreover, $v_{i} v_{j}$ is on the boundary of the unbounded face of $G[C]$ and thus of the form $v_{i} v_{i+1}$, and there is no further component H^{\prime} of $G-C$ with $N_{G}\left(V\left(H^{\prime}\right)\right)=\left\{v_{i}, v_{i+1}\right\}$. We denote the set of vertices $V(H) \cup\left\{v_{i}, v_{i+1}\right\}$ by U_{i}. Hence each vertex of $G-C$ is in exactly one U_{i}. We will frequently use the fact that a path in G joining a vertex in U_{i} and a vertex in U_{j} always contains a vertex in $\left\{v_{i}, v_{i+1}\right\}$ and a vertex in $\left\{v_{j}, v_{j+1}\right\}$.

In Lemmas 1 to 7 we prove the necessity of each of the seven conditions stated in Theorem 3.

Lemma 1. Let G be a MOP of diameter d and radius r whose centre is isomorphic to H_{6}. Then $d=2 r-2$ and
(i) $e_{r}=6$,
(ii) $e_{i} \geq 6$ for $r<i<d$,
(iii) $e_{d} \geq 3$,
(iv) $n \geq 6 r-6$.

Proof. Claim 1: $d(v, C) \leq r-2$ for all vertices v.
Let $v \in V$ be an arbitrary vertex. Without loss of generality we assume that v is in U_{1}. Then every $\left(v, v_{5}\right)$-path passes through $\left\{v_{1}, v_{2}\right\}$, hence

$$
r \geq d\left(v, v_{5}\right) \geq d\left(v,\left\{v_{1}, v_{2}\right\}\right)+d\left(\left\{v_{1}, v_{2}\right\}, v_{5}\right)=d(v, C)+2
$$

which yields Claim 1.
Claim 2: Let $i \in\{1,3,5\}$. Then $\overline{v_{i+3}} \in U_{i-1} \cup U_{i}$ and $d\left(\overline{v_{i+3}}, v_{i}\right)=r-2$, and $d\left(\overline{v_{i+3}}, v_{j}\right)=r-1$ for $j \in\{i-1, i+1\}$.
We show the statement for $i=1$, the other statements are proved analogously. Consider vertex v_{4}. Since the vertices $v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ are within distance 1 of v_{4}, it follows from Claim 1 and the triangle inequality that every vertex in $H_{2} \cup H_{3} \cup H_{4} \cup H_{5}$ is within distance $r-1$ of v_{4}; hence, $\overline{v_{4}}$ is in $H_{6} \cup H_{1}$.

We may assume that $\overline{v_{4}} \in U_{1}$; the case $\overline{v_{4}} \in U_{6}$ is analogous. Then every ($\overline{v_{4}}, v_{4}$)path goes through $\left\{v_{1}, v_{2}\right\}$. Since v_{2} is adjacent to v_{4}, it follows that $d\left(\overline{v_{4}}, v_{2}\right) \geq r-1$. In conjunction with Claim 1 this implies that $d\left(v_{1}, \overline{v_{4}}\right)=r-2$ and $d\left(v_{2}, \overline{v_{4}}\right)=r-1$. Clearly we have also $d\left(v_{6}, \overline{v_{4}}\right)=r-1$.
Claim 3: $d=2 r-2$ and $e_{d} \geq 3$.
By Claim 1, every vertex is within distance $r-2$ of its nearest vertex in C, and any two vertices in C are at most distance 2 apart; hence, $d \leq 2(r-2)+2=2 r-2$. It follows from Claim 2 that $d\left(\overline{v_{4}}, \overline{v_{6}}\right)=d\left(\overline{v_{6}}, \overline{v_{2}}\right)=d\left(\overline{v_{2}}, \overline{v_{4}}\right)=2 r-2$. Hence $d=2 r-2$ and $e_{d} \geq 3$.
We now prove that for any j with $r<j<d$ we have $e_{j} \geq 6$. Since the eccentricities of adjacent vertices differ by at most 1 , the vertices of eccentricity j that belong to $U_{i-1} \cup U_{i}$ separate C and $\overline{v_{i+3}}$ for $i \in\{1,3,5\}$. Since G is 2 -connected, $U_{i-1} \cup U_{i}$ contains at least two vertices of eccentricity j in G. Hence G contains at least six vertices of eccentricity j.
Claim 4: $n \geq 6 r-6$.
Suppose without loss of generality that $\overline{v_{4}} \in U_{1}$. Then by Claim 2 and the fact that G is 2 -connected, there are internally disjoint $\overline{v_{4}}-v_{1}$ and $\overline{v_{4}}-v_{2}$ paths in U_{1} having lengths at least $r-2$ and $r-1$, respectively. Thus $U_{1}-\left\{v_{1}, v_{2}\right\}$ contains at least $1+2 r-5$ vertices. Applying the same argument to $\overline{v_{2}}$ and $\overline{v_{6}}$, we get $n \geq 6 r-6$.

In what follows we make use of the following result, due to Chang:
Theorem 4. [3] If G is a chordal graph in which the diameter is twice the radius, then the center of G is a clique.

Lemma 2. Let G be a MOP of diameter d and radius r whose centre is isomorphic to G_{6}. Then $r \geq 3$ and $d=2 r-1$. Moreover
(i) $e_{r}=6$,
(ii) $e_{i} \geq 4$ for $r<i<d$,
(iii) $e_{d} \geq 2$.

Proof. In view of Theorems 2 and 4, it suffices to show that $r \geq 3$ and that $d \geq 2 r-1$. The former follows from $d\left(v_{3}, v_{6}\right)=3$.
CLAIM 1: (i) $d\left(v,\left\{v_{5}, v_{1}\right\}\right) \leq r-2$ for all $v \in U_{5} \cup U_{6}$,
(ii) $d\left(v,\left\{v_{2}, v_{4}\right\}\right) \leq r-2$ for all $v \in U_{2} \cup U_{3}$,
(iii) $\max \left(d\left(v, v_{1}\right), d\left(v, v_{2}\right)\right) \leq r-1$ for all $v \in U_{1}$,
(iv) $\max \left(d\left(v, v_{4}\right), d\left(v, v_{5}\right)\right) \leq r-1$ for all $v \in U_{4}$.

To prove (i) consider vertex v_{3}. Since every path from a vertex $v \in U_{5} \cup U_{6}$ to v_{3} goes through $\left\{v_{1}, v_{5}\right\}$, and since $d\left(v_{3}, v_{1}\right)=d\left(v_{3}, v_{5}\right)=2$, we have $d\left(v,\left\{v_{5}, v_{1}\right\}\right)=$ $d\left(v, v_{3}\right)-2 \leq r-2$, and (i) follows. Part (ii) is proved similarly by considering vertex v_{6}.
To prove (iii) let v be an arbitrary vertex in U_{1}. Since $d\left(v_{4}, v\right) \leq r$, and every $\left(v, v_{4}\right)$-path goes through $\left\{v_{1}, v_{2}\right\}$, we have $d\left(v_{2}, v\right) \leq r-1$. Similarly, every shortest $\left(v, v_{6}\right)$-path goes through $\left\{v_{1}, v_{2}\right\}$, so $d\left(v_{1}, v\right) \leq r-1$, and (iii) follows. Similarly we prove (iv).
Claim 2: $d \geq 2 r-1$.
By Claim 1 every vertex in $U_{2} \cup U_{3} \cup U_{4} \cup U_{5} \cup U_{6}$ is within distance $r-1$ of v_{5}, so $\overline{v_{5}} \in U_{1}$. Clearly, $d\left(\overline{v_{5}}, v_{1}\right) \geq r-1$ and $d\left(\overline{v_{5}}, v_{2}\right) \geq r-1$. By Claim 1 we get $d\left(\overline{v_{5}}, v_{1}\right)=d\left(\overline{v_{5}}, v_{2}\right)=r-1$.
Similarly, $\overline{v_{2}} \in U_{4}$ and $d\left(\overline{v_{2}}, v_{4}\right)=d\left(\overline{v_{2}}, v_{5}\right)=r-1$. From these statements we get that

$$
\begin{aligned}
d\left(\overline{v_{5}}, \overline{v_{2}}\right) & \geq d\left(\overline{v_{5}},\left\{v_{1}, v_{2}\right\}\right)+d\left(\left\{v_{1}, v_{2}\right\},\left\{v_{4}, v_{5}\right\}\right)+d\left(\left\{v_{4}, v_{5}\right\}, \overline{v_{2}}\right) \\
& =(r-1)+1+(r-1)=2 r-1,
\end{aligned}
$$

as desired.
Lemma 3. Let G be a MOP of diameter d and radius r whose centre is isomorphic to G_{5}. Then $d=2 r-1$. Moreover,
(i) $e_{r}=5$,
(ii) $e_{i} \geq 4$ for $r<i<d$,
(iii) $e_{d} \geq 2$.

Proof. In view of Theorems 2 and 4 it suffices to show that $d \geq 2 r-1$.
CLAim 1: (i) $d(v, C) \leq r-2$ for all $v \in U_{5} \cup U_{2}$,
(ii) $d\left(v, v_{4}\right) \leq r-1$ for all $v \in U_{3} \cup U_{4}$,
(iii) $\max \left(d\left(v, v_{1}\right), d\left(v, v_{2}\right)\right) \leq r-1$ for all $v \in U_{1}$.

Parts (i) and (ii) are proved as above by using the fact that for $v \in U_{5} \quad\left(v \in U_{2}\right.$, $\left.v \in U_{3}, v \in U_{4}\right)$ the distance between v and $v_{3}\left(v_{5}, v_{1}, v_{2}\right)$ is not more than r. Part
(iii) follows from the fact that $d\left(v, v_{3}\right) \leq r$ and $d\left(v, v_{5}\right) \leq r$ for all $v \in U_{1}$.

CLAIM 2: (i) $\overline{v_{4}} \in U_{1}$ and $d\left(\overline{v_{4}}, v_{1}\right)=d\left(\overline{v_{4}}, v_{2}\right)=r-1$.
(ii) We can choose $\overline{v_{2}}$ such that $\overline{v_{2}} \in U_{3} \cup U_{4}$.
(iii) $d\left(\overline{v_{2}}, v_{3}\right)=d\left(\overline{v_{2}}, v_{4}\right)=r-1$ if $\overline{v_{2}} \in U_{3}$, and $d\left(\overline{v_{2}}, v_{4}\right)=d\left(\overline{v_{2}}, v_{5}\right)=r-1$ if $\overline{v_{2}} \in U_{4}$.

Consider vertex v_{4}. It follows from Claim 1 that every vertex in $U_{5} \cup U_{6} \cup U_{2} \cup U_{3}$ is within distance $r-1$ of v_{4}, so $\overline{v_{4}} \in U_{1}$. Then $d\left(\overline{v_{4}}, v_{1}\right) \geq r-1$ and $d\left(\overline{v_{4}}, v_{2}\right) \geq r-1$, and in conjunction with Claim 1 we get $d\left(\overline{v_{4}}, v_{1}\right)=d\left(\overline{v_{4}}, v_{2}\right)=r-1$, and part (i) follows.
To prove (ii) consider a common neighbour u of v_{1} and v_{2} in U_{1}. Then $\operatorname{ecc}(u)=r+1$ since u is not a centre vertex. It follows from Claim 1 that $\bar{u} \notin U_{1} \cup U_{2} \cup U_{5}$, so $\bar{u} \in U_{3} \cup U_{4}$. Since $d\left(v_{2}, \bar{u}\right) \geq r, \bar{u}$ is an eccentric vertex of v_{2}.
Part (iii) is proved as above.
Claim 3: $d \geq 2 r-1$.
We may assume that $\overline{v_{2}} \in U_{4}$. By Claim 2 we have

$$
d\left(\overline{v_{2}}, \overline{v_{4}}\right) \geq d\left(\overline{v_{2}},\left\{v_{4}, v_{5}\right\}\right)+1+d\left(\left\{v_{1}, v_{2}\right\}, \overline{v_{4}}\right) \geq 2 r-1,
$$

as desired.
Lemma 4. Let G be a MOP of diameter d and radius r whose centre is isomorphic to G_{4}. Then $d=2 r-1$. Moreover,
(i) $e_{r}=4$,
(ii) $e_{i} \geq 4$ for $r<i<d$,
(iii) $e_{d} \geq 2$.

Proof. In view of Theorems 2 and 4 , it suffices to show that $d \geq 2 r-1$.
Claim 1: (i) $d\left(v, v_{1}\right) \leq r-1$ for all $v \in U_{4} \cup U_{1}$,
(ii) $d\left(v, v_{3}\right) \leq r-1$ for all $v \in U_{2} \cup U_{3}$,

Parts (i) and (ii) are proved as above by using the fact that for $v \in U_{4}\left(v \in U_{1}\right.$, $\left.v \in U_{2}, v \in U_{3}\right)$ the distance between v and $v_{2}\left(v_{4}, v_{4}, v_{2}\right)$ is not more than r. This also implies the following.
CLAIM 2: (i) $\overline{v_{1}} \in U_{2} \cup U_{3}$ and $d\left(\overline{v_{1}}, v_{3}\right)=r-1$.
(ii) If $\overline{v_{1}} \in U_{2}\left(\overline{v_{1}} \in U_{3}\right)$ then $d\left(\overline{v_{1}}, v_{2}\right) \geq r-1\left(d\left(\overline{v_{1}}, v_{4}\right) \geq r-1\right)$.

Claim 3: $d \geq 2 r-1$.
We may assume that $\overline{v_{1}} \in U_{2}$. Then U_{2} contains a common neighbour w of v_{2} and v_{3}. Since ecc $(w)=r+1$, it follows from Claim 1 that every vertex in U_{2} has distance at most r from w; so $\bar{w} \notin U_{2}$. Hence every ($\left.\bar{w}, \overline{v_{1}}\right)$-path passes through $\left\{v_{2}, v_{3}\right\}$. Now $d\left(\bar{w},\left\{v_{2}, v_{3}\right\}\right) \geq \operatorname{ecc}(w)-1=r$, and in conjunction with Claim 1 we get

$$
d\left(\bar{w}, \overline{v_{1}}\right) \geq d\left(\bar{w},\left\{v_{2}, v_{3}\right\}\right)+d\left(\left\{v_{2}, v_{3}\right\}, \overline{v_{1}}\right) \geq r+(r-1)=2 r-1,
$$

as desired.

Lemma 5. Let G be a MOP of order n, diameter d and radius r whose centre is isomorphic to K_{3}. Then $d=2 r-1$. Moreover
(i) $e_{r}=3$,
(ii) $e_{i} \geq 4$ for $r<i<d$,
(iii) $n \geq 4 r-1$.

Proof. In view of Theorem 2 it suffices to show that $n \geq 4 r-1$ and $d=2 r-1$. If $r=1$, then since no outerplanar graph contains K_{4} as a subgraph, we must have $G=K_{3}$. If $r \geq 2$, then $C=K_{3}$ is a proper subgraph of G and we may then assume that $\left|U_{1}\right|>2$. We claim that $\left|U_{2}\right|>2$ or $\left|U_{3}\right|>2$; if this is not the case, then since v_{1} and v_{2} have a neighbour $x_{1} \in U_{1}$, we have $e\left(x_{1}\right) \leq e\left(v_{3}\right)$, a contradiction. We hence assume that $\left|U_{2}\right|>2$. Since for every vertex $y \in U_{1}$, we have $d\left(x_{1}, y\right) \leq d\left(v_{3}, y\right) \leq r$, we must (without loss of generality) have $\overline{x_{1}} \in U_{2}$. Furthermore, every $x_{1}-\overline{x_{1}}$ path contains v_{1} or v_{2}; since $d\left(v_{1}, \overline{x_{1}}\right), d\left(v_{2}, \overline{x_{1}}\right) \leq r$, this implies that $d\left(x_{1}, \overline{x_{1}}\right)=r+1$. In fact, since every $v_{1}-\overline{x_{1}}$ path contains v_{2} or v_{3} and v_{2} is adjacent to v_{3}, we must have $d\left(v_{2}, \overline{x_{1}}\right)=r$. Since $d\left(v_{1}, \overline{x_{1}}\right) \leq r$, this then implies that $d\left(v_{3}, \overline{x_{1}}\right)=r-1$. Since G is 2 -connected, there are internally disjoint $\overline{x_{1}}-v_{2}$ and $\overline{x_{1}}-v_{3}$ paths, which implies that $U_{2}-\left\{v_{2}, v_{3}\right\}$ contains at least $1+r-2+r-1=2 r-2$ vertices. A similar argument proves that $U_{1}-\left\{v_{1}, v_{2}\right\}$ contains at least $2 r-2$ vertices. Hence G has order at least $3+2(2 r-2)=4 r-1$.

Finally, every vertex of G is distance at most $r-1$ from C, so $d \leq 2 r-1$. Let x_{2} be a common neighbour of v_{2} and v_{3} in U_{2}. Then $\overline{x_{2}} \in U_{1}$ or $\overline{x_{2}} \in U_{3}$. If $\overline{x_{2}} \in U_{1}$, then a similar argument to the preceding shows that $d\left(v_{2}, \overline{x_{2}}\right)=r$ and $d\left(v_{1}, \overline{x_{2}}\right)=r-1$, which implies that $d\left(x_{2}, \overline{x_{2}}\right)=2 r-1$. The case when $\overline{x_{2}} \in U_{3}$ is handled similarly.
Lemma 6. Let G be a MOP of diameter d and radius r whose centre is isomorphic to K_{2}. Then $d=2 r$. Moreover,
(i) $e_{r}=2$,
(ii) $e_{i} \geq 4$ for $r<i<d$,
(iii) $e_{d} \geq 2$.

Proof. In view of Theorem 2 it suffices to show that $d=2 r$.
Claim 1: $G-C$ has exactly two components.
It suffices to show that edge $v_{1} v_{2}$ is not on the boundary of the unbounded face. Suppose it is. Then v_{1} and v_{2} have a common neighbour v. Now for every vertex w of G there exist paths of length at most r from w to v_{1} and to v_{2}. Using these paths it is easy to construct a $w-v$ path of length at most r for every $w \in V$, which contradicts the fact that v is not a centre vertex of G.
Claim 2: $d=2 r$.
Clearly, $d \leq 2 r$. The graph $G-C$ has two components H and H^{\prime} with vertex sets U and U^{\prime}, respectively. Then H contains a common neighbour v of v_{1} and v_{2}. Clearly, $\operatorname{ecc}(v)=d(v, \bar{v})=r+1$. We show that

$$
\bar{v} \in U^{\prime} \text { and } d(\bar{v}, C)=r .
$$

Suppose to the contrary that $\bar{v} \notin U^{\prime}$. Then $d\left(v_{1}, \bar{v}\right)=d\left(v_{2}, \bar{v}\right)=r$, and so there exist a $\left(v_{1}, \bar{v}\right)$-path P_{1} and a $\left(v_{2}, \bar{v}\right)$-path P_{2}, both of length r. If v is on P_{1} or P_{2} then $d(v, \bar{v}) \leq r$, a contradiction; hence v is on neither path. But then the union of P_{1} and P_{2}, together with the edge $v_{1} v_{2}$ contains a cycle through v_{1} and v_{2} so that v is on the inside of this cycle. This contradicts the outerplanarity of G, and so $\bar{v} \in U^{\prime}$. Now let u be a common neighbour of v_{1} and v_{2} in H^{\prime}. With a similar argument we show that $\bar{u} \in U$ and $d(\bar{u}, C)=r$. Since \bar{u} and \bar{v} are not in the same component of $G-C$, every (\bar{u}, \bar{v})-path goes through C. Hence

$$
d(\bar{u}, \bar{v}) \geq d(\bar{u}, C)+d(C, \bar{v})=2 r
$$

and so $d=2 r$ as desired.
Lemma 7. Let G be a MOP of diameter d and radius r whose centre is isomorphic to K_{1}. Then $d=2 r$. Moreover,
(i) $e_{r}=1$,
(ii) $e_{i} \geq 4$ for $r<i<d$,
(iii) $e_{d} \geq 2$,
(iv) $n \geq 4 r+1$.

Proof. In view of Theorem 2 it suffices to show that $d=2 r$ and that $n \geq 4 r+1$.
Let $w_{1}, w_{2}, \ldots, w_{k}$ be the neighbours of v_{1} in clockwise order, and such that $v_{1} w_{1}$ and $v_{1} w_{k}$ are the edges incident with v_{1} that lie on the unique hamiltonian cycle of G. Since G is maximal outerplanar, the edges $w_{1} w_{2}, w_{2} w_{3}, \ldots, w_{k-1} w_{k}$ are present in G. Similar to the notation used above, we denote by U_{i} the set of vertices in the component of $G-\left\{v_{1}, w_{1}, w_{2}, \ldots, w_{k}\right\}$ adjacent to $\left\{w_{i}, w_{i+1}\right\}$, together with $\left\{w_{i}, w_{i+1}\right\}$.
CLaim 1: $d\left(w,\left\{w_{i}, w_{i+1}\right\}\right) \leq r-1$ for all $w \in U_{i}, 1 \leq i \leq k$.
The proof is as above.
Claim 2: $d=2 r$.
Since $d \leq 2 r$, it suffices to show that there exists a pair of vertices at distance at least $2 r$. First assume that there exists a set U_{i} containing a vertex u with $\max \left\{d\left(u, w_{i}\right), d\left(u, w_{i+1}\right)\right\}=r$. Without loss of generality let $d\left(u, w_{i}\right)=r$. Then $d\left(u, w_{i+1}\right)=r-1$ by Claim 1. We claim that $d\left(u, \overline{w_{i+1}}\right)=2 r$. A shortest $\left(u, \overline{w_{i+1}}\right)-$ path contains w_{i} or w_{i+1}. If it contains w_{i+1}, then

$$
d\left(u, \overline{w_{i+1}}\right)=d\left(u, w_{i+1}\right)+d\left(w_{i+1}, \overline{w_{i+1}}\right)=(r-1)+(r+1)=2 r,
$$

and if it contains w_{i} then $d\left(u, \overline{w_{i+1}}\right)=d\left(u, w_{i}\right)+d\left(w_{i}, \overline{w_{i+1}}\right) \geq r+r=2 r$, so in both cases we conclude that $d\left(u, \overline{w_{i+1}}\right) \geq 2 r$, as desired.
Hence we may assume that, for all $i \in\{1,2, \ldots, k\}$ and for all $u \in U_{i}$, we have $d\left(u, w_{i}\right) \leq r-1$ and $d\left(u, w_{i+1}\right) \leq r-1$. Fix an eccentric vertex $\overline{v_{1}}$ of the centre vertex v_{1}. Let $\overline{v_{1}} \in U_{j}$, say. Then $d\left(\overline{v_{1}}, w_{j}\right)=d\left(\overline{v_{1}}, w_{j+1}\right)=r-1$. If now there is a vertex w which is a common eccentric vertex of w_{j} and of w_{j+1}, then $w \notin U_{j}$ and so, by $\operatorname{ecc}\left(w_{j}\right)=\operatorname{ecc}\left(w_{j+1}\right)=r+1$, we have $d\left(\overline{v_{1}}, w\right) \geq d\left(\overline{v_{1}},\left\{w_{j}, w_{j+1}\right\}\right)+$
$d\left(\left\{w_{j}, w_{j+1}\right\}, w\right)=(r-1)+(r+1)=2 r$, as desired. Hence we may assume that there is no common eccentric vertex of w_{j} and w_{j+1}. Then $d\left(w_{j}, \overline{w_{j+1}}\right)=d\left(w_{j+1}, \overline{w_{j}}\right)=r$, and so w_{j} is on some shortest $\left(w_{j+1}, \overline{w_{j+1}}\right)$-path P_{j+1}, and w_{j+1} is on some shortest $\left(w_{j}, \overline{w_{j}}\right)$-path P_{j}. Clearly, P_{j+1} and P_{j} do not pass through v_{1}. We conclude that $\overline{w_{j}} \in$ $U_{j+1} \cup U_{j+2}$, and similarly that $\overline{w_{j+1}} \in U_{j-1} \cup U_{j-2}$. Now $\overline{w_{j+1}} \notin U_{j-1}$ since otherwise, if $\overline{w_{j+1}} \in U_{j-1}$, we would obtain the contradiction $d\left(\overline{w_{j+1}}, w_{j+1}\right)=d\left(\overline{w_{j+1}}, w_{j}\right)+$ $d\left(w_{j}, w_{j+1}\right) \leq(r-1)+1=r$. Therefore we have $\overline{w_{j+1}} \in U_{j-2}$, and similarly $\overline{w_{j}} \in U_{j+2}$. This implies that there is a shortest $\left(\overline{w_{j+1}}-\overline{w_{j}}\right)$-path that contains v_{1}. Since $d\left(v_{1}, \overline{w_{j+1}}\right)=d\left(v_{1}, \overline{w_{j}}\right)=r$, we conclude that $d\left(\overline{w_{j+1}}, \overline{w_{j}}\right)=r+r=2 r$, as desired.

Claim 3: $n \geq 4 r+1$.
Let x and y be vertices of G with $d(x, y)=d=2 r$. Since G is 2 -connected, there are internally disjoint $x-y$ paths P_{1} and P_{2}, each of length at least $2 r$, which implies that $n \geq 4 r$. Suppose that $n=4 r$. Then $P_{1} \cup P_{2}$ is the unique hamilton cycle of G, and both P_{1} and P_{2} are $x-y$ geodesics of length $2 r$. Suppose without loss of generality that $v_{1} \in V\left(P_{1}\right)$; then $d\left(v_{1}, x\right)=d\left(v_{1}, y\right)=r$. If deg $v_{1}=2$, then since G is a MOP, the two neighbours of v_{1} on P_{1} are adjacent, contradicting the fact that P_{1} is a geodesic. For the same reason, the vertex v_{1} cannot be adjacent to three vertices of P_{1}. It follows that v_{1} is adjacent to a vertex z of $P_{2}-\{x, y\}$. The vertex z is distance at most r away from every vertex of $P_{1}-\{x, y\}$. Since ecc $(z)>\operatorname{ecc}\left(v_{1}\right)$, it follows that $\bar{z} \in V\left(P_{2}\right)$, which implies, without loss of generality, that $\bar{z}=x$. Let z^{\prime} be the neighbour of z on P_{2} that lies between z and x. If z^{\prime} is adjacent to v_{1}, then we obtain $\operatorname{ecc}\left(z^{\prime}\right)=r$, a contradiction. On the other hand if z^{\prime} is not adjacent to v_{1}, then since G is a MOP, the vertex z must be adjacent to the neighbour of v_{1} on P_{1} that lies between v_{1} and x. But then $d(z, x) \leq r$, a contradiction. It follows that $n \geq 4 r+1$.

3 Constructions

We now prove the sufficiency of Theorem 3 by showing, for every sequence S satisfying one of the conditions (1)-(7) of Theorem 3, how to construct a MOP with eccentric sequence S.

3.1 Cases 2, 3, 4, and 6

We make use of the following gadget in our construction. Let $m \geq 1$ and let $a_{0}=$ $2, a_{1}, \ldots, a_{m}$ be a sequence of integers with $a_{s} \geq 2$ for all $s \in\{1, \ldots, m-1\}$ and $a_{m} \geq 1$. We define a graph $P\left(2, a_{1}, \ldots, a_{m}\right)$ of order $\sum_{s=0}^{m} a_{s}$ as follows.
The vertex set is $\left\{x_{s, t}: 0 \leq s \leq m\right.$ and $\left.1 \leq t \leq a_{s}\right\}$. The edge set consists of
(i) all edges of the form $x_{s, t} x_{s, t+1}$, where $0 \leq s \leq m$ and $1 \leq t \leq a_{s}-1$;
(ii) all edges of the form $x_{s, 2} x_{s+1, t}$, where $0 \leq s \leq m-2$ and $1 \leq t \leq a_{s+1}$;
(iii) all edges of the form $x_{m-1,1} x_{m, t}$, where $1 \leq t \leq a_{m}$;
(iv) all edges of the form $x_{s, 1} x_{s+1,1}$, where $0 \leq s \leq m-2$; and
(v) the edge $x_{m-1,2} x_{m, 1}$.

Figure 2: The construction of $P\left(2, a_{1}, \ldots, a_{m}\right)$
Lemma 8. Let $W=P\left(2, a_{1}, \ldots, a_{m}\right)$. Then
(a) W is a MOP;
(b) if $m \geq 2$, then $d\left(x_{0,2}, x_{s, t}\right)=s$ for all $1 \leq s \leq m$ and $1 \leq t \leq a_{s}$; and
(c) if $m \geq 2$, then $d\left(x_{0,1}, x_{m, t}\right)=m$ for all $1 \leq t \leq a_{m}$.

Proof. (a) We can think of building W as follows. Start with two adjacent vertices, and repeatedly add a path L, joining everything on L to some vertex y and joining one end of L to one neighbor of y. This graph is a MOP at each stage.
(b) Easy by induction on s.
(c) Easily checked.

We now present the constructions.
CASE 2: $r \geq 3, d=2 r-1, e_{r}=6, e_{i} \geq 4$ for all i with $r<i<d$, and $e_{d} \geq 2$.
Let $a_{s}=2$ for $1 \leq s \leq r-2$ and let $a_{r-1}=1$. For $1 \leq s \leq r-1$, let $b_{s}=e_{r+s}-a_{s}$. Let $W_{A}=P\left(2, a_{1}, \ldots, a_{r-1}\right)$ and $W_{B}=P\left(2, b_{1}, \ldots, b_{r-1}\right)$. We denote the vertices of W_{A} by $x_{s, t}^{A}$ and the vertices of W_{B} by $x_{s, t}^{B}$. Let $G(S)$ be the graph constructed from G_{6} (which, as before, has vertex set $\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$), W_{A}, and W_{B}, by identifying $v_{1}=x_{0,2}^{A}, v_{2}=x_{0,1}^{A}, v_{4}=x_{0,2}^{B}$, and $v_{5}=x_{0,1}^{B}$. The construction is illustrated in Figure 3.

Figure 3: The construction for Case 2.

Clearly, $G(S)$ is a MOP. Since $r \geq 3$, by Lemma 8 , both v_{1} and v_{2} are within distance $r-1$ of every vertex of W_{A}, and both v_{4} and v_{5} are within distance r 1 of every vertex of W_{B}. Hence, every vertex of G_{6} has eccentricity at most r. Furthermore, $d\left(v_{1}, x_{r-1,1}^{B}\right)=d\left(v_{2}, x_{r-1,1}^{B}\right)=d\left(v_{3}, x_{r-1,1}^{B}\right)=r$, and $d\left(v_{4}, x_{r-1,1}^{A}\right)=$ $d\left(v_{5}, x_{r-1,1}^{A}\right)=d\left(v_{6}, x_{r-1,1}^{A}\right)=r$; so every vertex of G_{6} has eccentricity r. Consider now a vertex $x_{s, t}^{A}$; then $x_{s, t}^{A}$ is distance s from v_{2}, which implies that $e\left(x_{s, t}^{A}\right) \leq r+s$. Furthermore $d\left(x_{s, t}^{A}, x_{r-1,1}^{B}\right)=r+s$, so $e\left(x_{s, t}^{A}\right)=r+s$. Similarly, for every vertex $x_{s, t}^{B}$ we have $e\left(x_{s, t}^{B}\right)=r+s$. It follows that $G(S)$ has eccentricity sequence S, as required.

CASE 3: $r \geq 2, d=2 r-1, e_{r}=5, e_{i} \geq 4$ for all i with $r<i<d$, and $e_{d} \geq 2$.
If $r \geq 3$, then simply delete v_{3} from the construction for Case 2. If $r=2$, then one can similarly replicate the construction from Case 2 and again delete v_{3}. This is equivalent to taking $G_{6}-\left\{v_{3}\right\}$, adding one vertex $x_{1,1}^{A}$ adjacent to v_{1} and v_{2}, and adding a path L^{B} of length $e_{d}-1$ with v_{5} adjacent to every vertex on L^{B} and with v_{4} adjacent to one end of L^{B}. It is easily checked that $G(S)$ has the desired properties.

CASE 4: $r \geq 2, d=2 r-1, e_{r}=4, e_{i} \geq 4$ for all i with $r<i<d$, and $e_{d} \geq 2$.
Delete v_{6} from the corresponding construction in Case 3.
CASE 6: $r \geq 2, d=2 r, e_{r}=2, e_{i} \geq 4$ for $r<i<d$, and $e_{d} \geq 2$.
Let $a_{s}=2$ for $1 \leq s \leq r-1$ and let $a_{r}=1$. For $1 \leq s \leq r$, let $b_{s}=e_{r+s}-a_{s}$. Let $W_{A}=P\left(2, a_{1}, \ldots, a_{r}\right)$ and $W_{B}=P\left(2, b_{1}, \ldots, b_{r}\right)$. As before, we denote the vertices of W_{A} by $x_{s, t}^{A}$ and the vertices of W_{B} by $x_{s, t}^{B}$. Let $G(S)$ be the graph constructed from W_{A} and W_{B} by identifying $x_{0,1}^{A}=x_{0,2}^{B}$ and $x_{0,2}^{A}=x_{0,1}^{B}$. The construction is illustrated in Figure 4.

3.2 Cases 1, 5 and 7

We make use of the following gadget in our construction. The fundamental difference between this gadget and P above is that in P we have $d\left(x_{0, t}, x_{m, t^{\prime}}\right)=m$ for all

Figure 4: The construction for Case 6.
choices of t and t^{\prime} (provided $m>1$), whereas we now construct a graph such that $d\left(x_{0, t}, x_{m, t^{\prime}}\right)>m$ for some choice of t and t^{\prime}.

Let $m \geq 1$, and let $a_{0}=2, a_{1}, \ldots, a_{m}$ be a sequence of integers with $a_{s} \geq 2$ for all $s \in\{1, \ldots, m-1\}$ and $a_{m} \geq 1$. We define a graph $Q\left(2, a_{1}, \ldots, a_{m}\right)$ of order $\sum_{s=0}^{m} a_{s}$ as follows. The vertex set is $\left\{x_{s, t}: 0 \leq s \leq m\right.$ and $\left.1 \leq t \leq a_{s}\right\}$. The edge set consists of
(i) all edges of the form $x_{s, t} x_{s, t+1}$, where $0 \leq s \leq m$ and $1 \leq t \leq a_{s}-1$;
(ii) all edges of the form $x_{s, 2} x_{s+1, t}$, where $0 \leq s \leq m-1$ and $1 \leq t \leq a_{s+1}$; and
(iii) for each s with $0 \leq s \leq m-1$, the edge $x_{s, 1} x_{s+1,1}$ if $a_{s}=2$, and the edge $x_{s, 3}$ to $x_{s+1, a_{s+1}}$ otherwise.

To illustrate the construction, the graph $Q(2,3,2,4,2)$ is shown in Figure 5.

Figure 5: The graph $Q(2,3,2,4,2)$.

Lemma 9. Let $W=Q\left(2, a_{1}, \ldots, a_{m}\right)$. Then
(a) W is a MOP;
(b) $d\left(x_{0,2}, x_{s, t}\right)=s$ for all $1 \leq s \leq m$ and $1 \leq t \leq a_{s}$; and
(c) if $\sum_{s=1}^{m} a_{s} \geq 2 m$, then $d\left(x_{0,1}, x_{m, a_{m}}\right)=m+1$.

Proof. The proofs of (a) and (b) are as in the proof of Lemma 8.
To prove (c), notice that since $x_{0,1}$ and $x_{0,2}$ are adjacent, it follows from part (b) that $d\left(x_{0,1}, x_{m, a_{m}}\right) \leq m+1$. The condition $\sum_{s=1}^{m} a_{s} \geq 2 m$ means that $a_{s}>2$ for some $1 \leq s<m$, or that $a_{m}>1$. For each s, vertex $x_{s, 1}$ has at most one neighbor of the form $x_{s+1, t}$, namely $t=1$. Thus, if $a_{m}>1$ then we get the claimed distance. Further, if any $a_{s}>2$ for $s<m$, then $x_{s, 1}$ is not adjacent to $x_{s+1,1}$.

We now prove the remaining cases for Theorem 3 .
CASE 1: $n \geq 6 r-6, r \geq 2, d=2 r-2, e_{r}=6, e_{i} \geq 6$ for all i with $r<i<d$, and $e_{d} \geq 3$.

The graph is H_{6} if $r=2$. So assume $r \geq 3$. Then, one can construct three vectors $A=\left(2, a_{1}, \ldots, a_{r-2}\right), B=\left(2, b_{1}, \ldots, b_{r-2}\right)$, and $C=\left(2, c_{1}, \ldots, c_{r-2}\right)$ satisfying the following three conditions: (i) for all $s \in\{1, \ldots, r-2\}$ we have $a_{s}+b_{s}+c_{s}=e_{r+s}$; (ii) for all $s \in\{1, \ldots, r-3\}$ we have $a_{s}, b_{s}, c_{s} \geq 2$, and $a_{r-2}, b_{r-2}, c_{r-2} \geq 1$; and (iii) each of $\sum_{s=1}^{r-2} a_{s}, \sum_{s=1}^{r-2} b_{s}$ and $\sum_{s=1}^{r-2} c_{s}$ is at least $2 r-4$.

Let $W_{A}=Q(A), W_{B}=Q(B)$, and $W_{C}=Q(C)$. We shall denote the vertices of W_{i} by $x_{s, t}^{i}$ as before. Let $G(S)$ be the graph constructed from H_{6} (which, as before, has vertex set $\left.\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}\right), W_{A}, W_{B}$, and W_{C}, by identifying $v_{1}=x_{0,2}^{A}, v_{2}=x_{0,1}^{A}$, $v_{3}=x_{0,2}^{B}, v_{4}=x_{0,1}^{B}, v_{5}=x_{0,2}^{C}, v_{6}=x_{0,1}^{C}$ The construction is illustrated in Figure 6.

Figure 6: The construction for Case 1.
Clearly, $G(S)$ is a MOP. Notice that v_{1}, v_{3}, and v_{5} are within distance r 2 of every vertex in W_{A}, W_{B}, and W_{C}, respectively; so every vertex in H_{6} has eccentricity at most r. Furthermore, $d\left(v_{1}, x_{r-2,1}^{B}\right)=d\left(v_{3}, x_{r-2,1}^{C}\right)=d\left(v_{5}, x_{r-2,1}^{A}\right)=r$. By Lemma $9, d\left(v_{2}, x_{r-2, c_{r-2}}^{C}\right)=d\left(v_{6}, x_{r-2, b_{r-2}}^{B}\right)=d\left(v_{4}, x_{r-2, a_{r-2}}^{A}\right)=r$; hence $e\left(v_{i}\right)=$ r for all $i \in\{1,2, \ldots, 6\}$. Consider now a vertex $x_{s, t}^{i}$ in W_{i} with $s \geq 1$. Then $x_{s, t}^{i}$ is within distance $s+2$ of every vertex in H_{6}, which implies that $e\left(x_{s, t}^{i}\right) \leq$ $r+s$. Furthermore $d\left(x_{s, t}^{A}, x_{r-2, c_{r-2}}^{C}\right)=d\left(x_{s, t}^{B}, x_{r-2, a_{r-2}}^{A}\right)=d\left(x_{s, t}^{C}, x_{r-2, b_{r-2}}^{B}\right)=r+s$. Consequently, $e\left(x_{s, t}^{i}\right)=r+s$. It follows that $G(S)$ has eccentricity sequence S, as required.

CASE 5: $n \geq 4 r-1, d=2 r-1, e_{r}=3, e_{i} \geq 4$ for all i with $r<i<d$, and $e_{d} \geq 2$.

If $r=1$, then the graph is K_{3}; so assume $r \geq 2$. Then, one can construct two vectors $A=\left(2, a_{1}, \ldots, a_{r-1}\right)$ and $B=\left(2, b_{1}, \ldots, b_{r-1}\right)$, satisfying the following three conditions: (i) for all $s \in\{1, \ldots, r-1\}$ we have $a_{s}+b_{s}=e_{r+s}$; (ii) for all $s \in\{1, \ldots, r-2\}$ we have $a_{s}, b_{s} \geq 2$, and, $a_{r-1}, b_{r-1} \geq 1$; and (iii) both $\sum_{s=1}^{r-1} a_{s}$ and $\sum_{s=1}^{r-1} b_{s}$ are at least $2 r-2$.

Let $W_{A}=Q(A)$ and $W_{B}=Q(B)$. Let $G(S)$ be the graph constructed from K_{3} with vertex set $\left\{v_{1}, v_{2}, v_{3}\right\}, W_{A}$ and W_{B}, by identifying $v_{1}=x_{0,2}^{A}, v_{2}=x_{0,2}^{B}$, and $v_{3}=x_{0,1}^{A}=x_{0,1}^{B}$.

Lemma 9 shows that there is some vertex in both W_{A} and W_{B} at distance r from v_{3}. On the other hand, by Lemma $9, v_{1}$ can reach all vertices of W_{A} in $r-1$ steps, and similarly v_{2} in W_{B}. It follows that v_{1}, v_{2}, and v_{3} all have eccentricity r. From this it follows that all $x_{s, t}$ in both W_{A} and W_{B} have eccentricity $r+s$.

CASE 7: $n \geq 4 r+1, d=2 r, e_{r}=1, e_{i} \geq 4$ for all i with $r<i<d$, and $e_{d} \geq 2$.
Then, one can construct two vectors $A=\left(2, a_{1}, \ldots, a_{r}\right), B=\left(2, b_{1}, \ldots, b_{r}\right)$, satisfying the following three conditions: (i) for all $s \in\{1, \ldots, r\}$ we have $a_{s}+b_{s}=$ e_{r+s}; (ii) for all $s \in\{1, \ldots, r-1\}$ we have $a_{s}, b_{s} \geq 2$, and, $a_{r}, b_{r} \geq 1$; and (iii) both $\sum_{s=1}^{r} a_{s}$ and $\sum_{s=1}^{r} b_{s}$ are at least $2 r$.

Let $W_{A}=Q(A)$ and $W_{B}=Q(B)$. Let $G(S)$ be the graph constructed from W_{A} and W_{B}, by identifying $x_{0,2}^{A}=x_{0,2}^{B}$ and adding one edge joining $x_{0,1}^{A}$ to $x_{0,1}^{B}$. The justification is similar to that of Case 5.

4 Open questions

As has been noted previously, the general problem of characterizing the eccentric sequences of graphs appears to be difficult. Proskurowski's characterization of the centers of MOPs [11] plays a central role in our characterization of eccentric sequences of MOPs. Proskurowski has also characterized the centers of 2-trees [12], a class of graphs which properly contains MOPs. It would be interesting to see whether a characterization of eccentric sequences of 2-trees can be obtained via Proskurowksi's characterization of the centers of 2 -trees.

References

[1] F. Buckley, Eccentric sequences, eccentric sets, and graph centrality, Graph Theory Notes N. Y. 40 (2001), 18-22.
[2] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on sun-free chordal graphs, SIAM J. Alg. Disc. Math. 5 (1984), 332-245.
[3] G.J. Chang, Centers of chordal graphs, Graphs Combin. 7 (1991), 305-313.
[4] P. Dankelmann, D. Erwin, W. Goddard, S. Mukwembi, and H.C. Swart, Eccentric counts, connectivity and chordality, Inform. Process. Lett. 112 (2012) 944-947.
[5] A. Haviar, P. Hrnčiar, and G. Monoszová, Minimal eccentric sequences with least eccentricity three. Acta Univ. Mathaei Belii Nat. Sci. Ser. Math. No. 5 (1997), 27-50.
[6] P. Hrnčiar and G. Monoszová, Minimal eccentric sequences with two values, Acta Univ. M. Belii Ser. Math. No. 12 (2005), 43-65.
[7] R. Laskar and D. Shier, On powers and centers of chordal graphs, Discrete Appl. Math. 6 (1983), 139-147.
[8] L. Lesniak-Foster, Eccentric sequences in graphs, Period. Math. Hungar. 6 (1975) no. 4, 287-293.
[9] R. Nandakumar, On some eccentricity properties of graphs, Ph.D. Thesis, Indian Institute of Technology, India (1986).
[10] R. Nandakumar and K.R. Parthasarathy, Eccentricity-preserving spanning trees, J. Math. Phys. Sci. 24 (1990) no. 1, 33-36.
[11] A. Proskurowski, Centers of maximal outerplanar graphs, J. Graph Theory 4 (1980), 75-79.
[12] A. Proskurowski, Centers of 2-trees, Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II, Ann. Discrete Math. 9 (1980), 1-5.
(Received 25 Jan 2013; revised 27 Sep 2013)

