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Abstract

For a graph G, its rth power Gr is defined as the graph with the same
vertex set as G, and an edge between any two vertices whenever they are
within distance r of each other in G. Motivated by a result from additive
number theory, Hegarty raised the question of how many new edges Gr

has when G is a regular, connected graph with diameter at least r. We
address this question for r �= 3, 6. We give a lower bound for the number
of edges in the rth power of G in terms of the order of G and the minimal
degree of G. As a corollary, for r �= 3, 6, we determine how small the ratio
e(Gr)/e(G) can be for regular, connected graphs of diameter at least r.

1 Introduction

The rth power of G, denoted Gr, is the graph with vertex set V (G), and xy an edge
whenever x and y are within distance r of each other. Consider the following question
“How many new edges are added to a graph G by taking its rth power?” If G is a
complete graph then Gr doesn’t have any new edges. Therefore it is natural to place
additional restrictions on G. The diameter of a connected graph G, denoted diam(G),
is defined to be the maximal distance between a pair of vertices in G (alternatively,
diam(G) is the minimal r for which Gr is complete). One would expect that when r
is smaller than diam(G), then Gr has substantially more edges than G. In this paper
we study how many new edges are added to a graph G by taking its rth power, for
G a connected graph with diam(G) ≥ r. In particular, for r �= 3, 6, we determine
how small the ratio e(Gr)/e(G) can be for regular, connected graphs G.

The motivation for studying this comes from a corollary of the Cauchy-Davenport
Theorem from additive number theory. Before we can state this corollary, we need a
definition. The Cayley graph of a subset A ⊆ Zp is constructed on the vertex set Zp.
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For two distinct vertices x, y ∈ Zp, we define xy to be an edge whenever x − y ∈ A
or y − x ∈ A. The following is a consequence of the Cauchy-Davenport Theorem
(usually stated in the language of additive number theory).

Theorem 1.1 (Cauchy and Davenport, [1, 2]). Let p be a prime, G the Cayley graph
of a set A ⊆ Zp, and r an integer such that r < diam(G). Then we have

e(Gr)

e(G)
≥ r. (1)

One could ask whether inequalities similar to (1) hold for more general families
of graphs. Motivated by the fact that Cayley graphs are regular, Hegarty asked this
question for regular graphs and proved the following theorem.

Theorem 1.2 (Hegarty, [7]). Let G be a regular, connected graph, satisfying
diam(G) ≥ 3. Then we have

e(G3)

e(G)
≥ 1 + ε, (2)

where ε ≈ 0.087.

The constant ε has since been improved to 1/6 by the author [8] and to 3/4
by DeVos and Thomassé [4]. The value ε = 3/4 is optimal in the sense that
there exists a sequence of regular graphs of diameter greater than 3, Gm, satisfy-
ing e(G3

m)/e(Gm) → 7/4 as m → ∞ [4].

Hegarty also asked what happens for other powers of G. For G2, Hegarty showed
that no inequality similar to (2) can hold for regular graphs in general, by exhibiting
a sequence of regular, connected graphs of diameter greater than 2, Gm, satisfy-
ing e(G2

m)/e(Gm) → 1 as m → ∞ [7]. Goff [6] studied the 2nd power of regular
graphs further. He showed that for any d-regular graph connected graph G such
that diam(G) > 2, we have e(G2)/e(G) ≥ 1 + 3

2d
− o

(
1
d

)
. For general d-regular con-

nected graphs G with diam(G) > 2, he showed that the 3
2d

term in this result cannot
be replaced with λ/d for any λ > 3

2
. However he showed that with the exception

of two families of exceptional graphs, we have e(G2)/e(G) ≥ 1 + 2
d
− o

(
1
d

)
for all

d-regular connected graphs with diam(G) > 2.

The goal of this paper is to deal with the case when r ≥ 4. In particular, for
r �= 3, 6, we find how small the ratio e(Gr)/e(G) can be for a regular, connected
graph G of diameter at least r.

The requirement of G being regular in Theorem 1.2 is quite restrictive. DeVos
and Thomassé noticed that it is possible to remove this assumption, and bound e(G3)
in terms of the order of G and the minimum degree of G. They proved the following
theorem.

Theorem 1.3 (DeVos and Thomassé, [4]). Let G be a connected graph of minimum
degree δ(G) and satisfying diam(G) ≥ 3. Then we have

e(G3) ≥ 7

8
δ(G)|G|. (3)
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When G is regular, the above theorem immediately implies Theorem 1.2 with the
optimal constant of ε = 3/4. The main theorem which we shall prove in this paper
is a generalisation of Theorem 1.3 to higher powers of G.

Theorem 1.4. Suppose that r �= 6. Let G be a connected graph satisfying
diam(G) ≥ r and having minimum degree δ(G).

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(

r + 3

6
− 3

4(r + 3)

)
δ(G)|G|.

• If r �≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r

3

⌉
δ(G)|G|.

The case r = 3 of Theorem 1.4 is due to DeVos and Thomassé [4], and will not be
proved here. Applying Theorem 1.4 to regular graphs gives the following corollary.

Corollary 1.5. Suppose that r �= 6. Let G be a connected, regular graph, and r a
positive integer such that diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr)

e(G)
≥ r + 3

3
− 3

2(r + 3)
.

• If r �≡ 0 (mod 3), then we have

e(Gr)

e(G)
≥

⌈r

3

⌉
.

Corollary 1.5 gives a lower bound on the ratio e(Gr)/e(G) for regular graphs.
The bounds on e(Gr)/e(G) in Corollary 1.5 are optimal in the following sense. For
each r, there exists a sequence of regular, connected graphs of diameter at least r,
Gm, such that e(Gr

m)/e(Gm) tends to the bound given by Corollary 1.5 as m tends
to infinity. We will give a construction of such sequences in Section 3.

The structure of this paper is as follows. In Section 2 we define some notation
and prove Theorem 1.4. In Section 3, we construct sequences of regular graphs which
show that the bounds on e(Gr)/e(G) in Corollary 1.5 are optimal. In Section 4 we
make some remarks about the case when r = 6, as well as some open problems in
this area.
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2 Proofs

In this section we prove Theorem 1.4.

Although Theorem 1.4 is a theorem about loopless graphs, in this section we
will also consider graphs which may contain loops. This is because the proof of our
results is more natural in this setting.

We will denote graphs which may contain loops by curly letters such as “G”.
Graphs with loops explicitly forbidden are donoted by Roman letters such as “G”.
For two vertices x and y (possibly x = y) we only ever allow one edge between x and
y. The neighbourhood of a vertex x, N(x), is defined as the set of vertices adjacent
to x. (If there is a loop at x, then N(x) will contain x itself.) The degree of x is
|N(x)|. Notice that this ensures that a loop is counted only once in the degree of
a vertex. The minimal degree of a graph, taken over all vertices in G is denoted by
δ(G). For graphs with loops allowed, Gr is again defined to be the graph with vertex
set V (G), and xy an edge whenever x and y are within distance r of each other in
G. Notice that this definition implies that Gr always has a loop at each vertex (since
for any vertex v we have d(v, v) = 0). For two sets of vertices X and Y , let d(X, Y )
denote the length of a shortest path between a vertex in X and a vertex in Y . If X
is a set of vertices, let N r(X) be the set of vertices at distance at most r from X. We
abbreviate N r({x}) as N r(x). Notice that since Gr has a loop at every vertex, we
always have e(Gr) = 1

2

∑
v∈V (G)(|N r(v)| + 1). For all other notation, we refer to [5].

We will prove the following theorem, and then deduce Theorem 1.4 as a corollary.

Theorem 2.1. Let G be a connected graph, and r a positive integer such that r �= 3, 6
and diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(

r + 3

6
− 3

4(r + 3)

)
δ(G)|G| + 1

2
|G|.

• If r �≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r

3

⌉
δ(G)|G| + 1

2
|G|.

The basic strategy of the proof is simple—for each vertex v, we show that |N r(v)|
is large, thereby showing that e(Gr) = 1

2

∑
v∈V (G)(|N r(v)|+1) is large as well. When

r �≡ 0 (mod 3), this is an easy task—it will turn out that in this case each vertex
in v satisfies |N r(v)| ≥ �r/3� δ. When r ≡ 0 (mod 3), the proof is more compli-
cated. In that case, we will show that a large proportion of the vertices of G satisfy
|N r(v)| ≥ (r/3 + 1)δ, which in turn will imply the bound in Theorem 2.1. This is
the same general strategy as the one used by DeVos and Thomassé [4] in the proof
of Theorem 1.3. However, many of our intermediate steps are different from their
proof.
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Proof of Theorem 2.1. For convenience, we will set δ = δ(G). If P is a path between
two vertices x and y, we say that P is a geodesic if the length of P is d(x, y). The
notion of a geodesic is useful because the neighbourhood of a geodesic must be quite
large. This is quantified in the following claim.

Claim 2.2. Let P be a length k geodesic. Then |N(P )| ≥ (⌊
k
3

⌋
+ 1

)
δ holds.

Proof. Let x0, x1, . . . , xk be the vertices of P (in the order in which they oc-
cur along the path). Notice that N(x0), N(x3), . . . , N(x3
 k

3�) must all be dis-

joint, since otherwise we could find a shorter path between x0 and xk. The sets
N(x0), N(x3), . . . , N(x3
 k

3�) must also be contained in N(P ), and each have order

at least δ. This implies the result.

We now prove the theorem in the case when r �≡ 0 (mod 3).

The diameter of G is at least r, so G must contain a length r geodesic, P . Claim 2.2
implies that the following holds:

|G| ≥ |N(P )| ≥
(⌊r

3

⌋
+ 1

)
δ =

⌈r

3

⌉
δ. (4)

Since Gr contains a loop at every vertex, we have e(Gr) =
∑

v∈V (G)

(
1
2
|N r(v)| + 1

2

)
.

Thus to prove Theorem 2.1 it is sufficent to exhibit
⌈

r
3

⌉
δ elements of N r(v) for each

vertex v ∈ V (G).

Suppose that there exists a length r − 1 geodesic Pv starting from a vertex v.
Then N(Pv) is contained in N r(v), giving

|N r(v)| ≥ |N(Pv)| ≥
(⌊

r − 1

3

⌋
+ 1

)
δ =

⌈r

3

⌉
δ.

The second inequality is an application of Claim 2.2.

Suppose that all the vertices in G are within distance r − 1 of v. In this case we
have N r(v) = V (G), which is of order at least

⌈
r
3

⌉
δ by (4). This completes the proof

of the case “r �≡ 0 (mod 3)” of the theorem.

For the rest of the proof fix r such that r ≡ 0 (mod 3) and r ≥ 9.

If v is a vertex of G, we say that v is sufficient if |N r(v)| ≥ (
r
3

+ 1
)
δ. Otherwise

we say that v is insufficient.

The following is a useful property of insufficient vertices.

Claim 2.3. Let v be an insufficient vertex. Then there is some vertex at distance
r + 1 from v.

Proof. Since diam(G) ≥ r, Claim 2.2 implies that |G| ≥ (
r
3

+ 1
)
δ. Since v is insuf-

ficient, we have |N r(v)| <
(

r
3

+ 1
)
δ, and so v cannot be within distance r from all

the vertices in the graph.
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The following three claims will allow us to bound the number of insufficient
vertices in G.

Claim 2.4. If 2 < d(x, y) < r holds for x, y ∈ V (G), then either x or y is sufficient.

Proof. Suppose that x is insufficient. By Claim 2.3, we can find a length r geodesic
starting from x with vertex sequence x, x1, x2, . . . , xr.

Suppose that N(y)∩N(xi) �= ∅ for some i with 3 ≤ i ≤ r − 3. In this case N(x),
N(x3), N(x6), . . . , N(xr) are all contained in N r(y). There are r

3
+ 1 of these, they

are all disjoint (since x, x1, x2, . . . , xr form a geodesic), and are of order at least δ.
Hence y is sufficient.

Otherwise N(y) ∩ N(xi) = ∅ for all r ≤ i ≤ r − 3. In this case N(x), N(y),
N(x3), N(x6), . . . , N(xr−3) are all disjoint and contained in N r(x). This contradicts
our initial assumption that x is insufficient.

Claim 2.5. Let x and y be two vertices in G such that r ≤ d(x, y) ≤ r + 2. If there
exists a vertex z ∈ G such that d(z, x) ≥ r − 1 and d(z, y) ≥ r − 1, then either x or
y is sufficient.

Proof. Choose any z in N r−1({x, y}) \ N r−2({x, y}). This set is nonempty by the
second assumption of the claim. We will have d(z, x), d(z, y) ≥ r − 1 and either
d(z, x) or d(z, y) = r− 1. Without loss of generality assume that d(z, x) = r− 1 and
d(z, y) ≥ r − 1.

We will show that x is sufficient. Let x, x1, . . . , xd(x,y)−1, y be a geodesic between
x and y. For i = 1, . . . , d(x, y) − 1, the triangle inequality implies that

d(x, z) − i = d(x, z) − d(x, xi) ≤ d(xi, z), (5)

d(y, z) − d(x, y) + i = d(y, z) − d(y, xi) ≤ d(xi, z). (6)

Averaging (5) and (6), and using the inequalities d(z, x), d(z, y) ≥ r−1 and d(x, y) ≤
r + 2 gives

r − 4

2
≤ d(xi, z). (7)

Using r ≥ 9 and the fact that d(xi, z) is an integer, (7) implies that d(z, xi) ≥ 3
for all i. Hence N(x), N(z), N(x3), N(x6), . . . , N(xr−3) are all disjoint and contained
in N r(x). Hence x is sufficient.

Claim 2.6. If d(x, y) = r holds for x, y ∈ V (G), then either x or y is sufficient.

Proof. Suppose that x and y are insufficient. By Claim 2.3 there exists z ∈ V (G)
such that d(x, z) = r + 1. Let x, x1, . . . , xr−1, y be a geodesic between x and y.
Since x and y are insufficient, Claim 2.5 implies that we have d(z, y) < r − 1.
Note that d(x, z) = r + 1 implies that N(z) ∩ N(xi) = ∅ for all i ≤ r − 2. Thus
N(z), N(x1), N(x4), . . . , N(xr−2) are all disjoint and contained in N r(y). This
contradicts our assumption that y is insufficient.
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Let X be the set of insufficient vertices in G. We define an equivalence relation
“∼” on X by letting x ∼ y if d(x, y) ≤ 2. For r ≥ 9, Claim 2.4 implies that this is
an equivalence relation. Let X1, . . . , Xl be the equivalence classes of “∼”.

The following claim gives a lower bound on the order of G.

Claim 2.7. |G| ≥ (
r+3
6

)
δl.

Proof. First suppose that l ≤ 2. Let P be a geodesic in G of length diam(G) ≥ r.
Then Claim 2.2 implied that |G| ≥ |N(P )| ≥ (r + 3)δ/3, proving the result.

Thus we can suppose that l ≥ 3. Claims 2.4 and 2.6 imply that d(Xi, Xj) ≥ r+1
for all i �= j.

If we had d(Xi, Xj) ≤ r + 2 for some i and j, then Claim 2.5 would imply that
we have d(Xi, z) < r − 1 or d(Xj, z) < r − 1 for all z ∈ V (G). Then, Claim 2.4
would imply that all the vertices outside of Xi and Xj are sufficient, contradicting
the assumption that l ≥ 3.

Therefore we can suppose that d(Xi, Xj) ≥ r + 3 for all i �= j. For each i, choose

xi to be any vertex in Xi. Note that N
 r
2�(xi) contains a length

⌊
r
2

⌋
geodesic, P .

Using Claim 2.2 gives

∣∣∣N
 r
2�+1(Xi)

∣∣∣ ≥ |N(P )| ≥
(⌊

1

3

⌊r

2

⌋⌋
+ 1

)
δ ≥

(
r + 3

6

)
δ.

For the last inequality we are using the fact that r ≡ 0 (mod 3). Note that

d(Xi, Xj) ≥ r + 3 implies that N
 r
2�+1(Xi) ∩ N
 r

2�+1(Xj) = ∅ for all i, j. This
implies that the following holds:

|V (G)| ≥
l∑

i=1

∣∣∣N
 r
2�+1(Xi)

∣∣∣ ≥
(

r + 3

6

)
δl.

When x is insufficient, the following claim gives a lower bound on the order of
N r(x).

Claim 2.8. Suppose that x is an insufficient vertex in the equivalence class Xi.
Then, |N r(x)| ≥ |Xi| + r

3
δ holds.

Proof. By Claim 2.3, we can choose a length r geodesic from x. Let x, x1, . . . , xr

be the vertices of this geodesic. Suppose that Xi ∩ N(xj) is nonempty for some xj .
Choose y ∈ Xi∩N(xj). Clearly j ≤ 1 must hold, since otherwise N(x), N(x3), N(x6),
. . . , N(xr) would all be contained in N r(y), contradicting that y is insufficient (since
y ∈ Xi).

Hence Xi, N(x2), N(x5), . . . , N(xr−1) are all disjoint and contained in N r(x)
proving the claim.
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Combining Claims 2.7 and 2.8 we prove the theorem.

2e(Gr) −
(

r + 3

3
− 3

2(r + 3)

)
δ|G| − |G| =

∑
x∈V (G)

|N r(x)| −
(

r + 3

3
− 3

2(r + 3)

)
δ|G|

≥
∑

x sufficient

(r

3
+ 1

)
δ +

l∑
i=1

(
|Xi| + r

3
δ
)
|Xi|

−
(

r + 3

3
− 3

2(r + 3)

)
δ|G|

=
3

2(r + 3)
δ|G| +

l∑
i=1

(|Xi|2 − |Xi|δ
)

≥ 1

4
δ2l +

l∑
i=1

(|Xi|2 − |Xi|δ
)

=
l∑

i=1

(
|Xi|2 − |Xi|δ +

1

4
δ2

)

=
l∑

i=1

(
|Xi| − 1

2
δ

)2

≥ 0.

The first equality uses the fact that Gr contains a loop at every vertex, hence 2e(Gr) =∑
x∈V (G) |N r(x)| + |G|. The first inequality follows from the definition of “sufficient

vertex” and Claim 2.8. The second equality follows from the fact that there are
|G| − ∑l

i=1 |Xi| sufficient vertices in G. The second inequality follows from Claim
2.7. This completes the proof.

We now deduce Theorem 1.4 from Theorem 2.1.

Proof of Theorem 1.4. Let G be a copy of G with a loop added at every vertex. Then
Gr will be isomorphic to Gr with a loop added at every vertex. Note that we have
e(Gr) = e(Gr) + |G|, and δ(G) = δ(G) + 1. Substitute these into Theorem 2.1 to
obtain the following.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(

r + 3

6
− 3

4(r + 3)

)
δ(G)|G| +

(
r + 3

6
− 3

4(r + 3)
− 1

2

)
|G|.

• If r �≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r

3

⌉
δ(G)|G| +

(
1

2

⌈r

3

⌉
− 1

2

)
|G|.
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Note that for r ≥ 3, both r+3
6

− 3
4(r+3)

− 1
2

and 1
2

⌈
r
3

⌉ − 1
2

are non-negative, so
Theorem 1.4 follows.

3 Extremal constructions

In this section we construct graphs which demonstrate the optimality of Theorem 1.4
and Corollary 1.5. Specifically, for each r, we will construct a sequence of regular,
connected graphs of diameter at least r, Gm, such that e(Gr

m)/e(Gm) tends to the
bound given by Corollary 1.5 as m tends to infinity. See Figure 1 for a diagram of
the sequences that we will construct. We prove the following.

Proposition 3.1. Let r be an integer greater than 3. There exists a sequence of
regular, connected graphs of diameter ≥ r, Gm, which satisfy the following.

• If r ≡ 0 (mod 3), then we have

lim
m→∞

e(Gr
m)

e(Gm)
=

r + 3

3
− 3

2(r + 3)
.

• If r �≡ 0 (mod 3), then we have

lim
m→∞

e(Gr
m)

e(Gm)
=

⌈r

3

⌉
.

Proof. For r �≡ 0 (mod 3), we construct the following sequence of graphs Gm. Take
disjoint sets of vertices N0, ..., Nr, with |Ni| = m − 1 if i ≡ 1 (mod 3) and |Ni| = 2
otherwise. Add all the edges between Ni and Ni+1 for i = 0, 1, . . . , r − 1. Add
all the edges within Ni for all i. Remove a cycle passing through all the vertices in
N1 ∪ ... ∪ Nr−1. It is easy to see that Gm is m-regular and of diameter r. If r ≡ 1
(mod 3) then |Gm| = 1

3
(rm + 2m + 3r − 6) will hold. Since Gm is m-regular, we

have e(Gm) = 1
6
(rm + 2m + 3r − 6)m. Since Gr

m is complete, we have e(Gr
m) =

1
18

(rm + 2m + 3r− 6)(rm + 2m + 3r− 7). This implies that e(Gr
m)/e(Gm) → ⌈

r
3

⌉
as

m → ∞. A similar calculation can be used to show that the same limit holds when
r ≡ 2 (mod 3).

For r ≡ 0 (mod 3), we construct the following sequence of graphs Gm to show
that Corollary 1.5 is optimal. Take disjoint sets of vertices N0, ..., Nr+1. Let |N0| =
|Nr+1| = 2m + 1, |Ni| = 1 if i ≡ 2 (mod 3), and |Ni| = 2m otherwise. Add all the
edges between Ni and Ni+1 for i = 0, 1, . . . , r. Add all the edges within Ni for all
i. Delete a perfect matching from each of the sets N1 and Nr. This will ensure that
Gm is 4m-regular and has diameter r + 1. Note that |Gm| = 1

3
(4rm + r + 12m + 6),

and so we have e(Gm) = 1
6
(4rm + r + 12m+ 6)4m. The only edges missing from Gr

m

will be between N0 and Nr+1, so we have e(Gr
m) = 1

18
(4rm+ r +12m+6)(4rm+ r +

12m + 5) − (2m + 1)2. This implies that e(Gr
m)/e(Gm) → r+3

3
− 3

2(r+3)
as m → ∞.

This construction is a generalization of one from [4].
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K2m+1 K2m K2mK2m K2m+1K2m

K1 K1

Km+1

K2 K2 K2 K2 K2 K2

Km+1 Km+1

r = 8

r = 6

Km+1

K2 K2 K2 K2 K2

Km+1 Km+1

r = 7

Figure 1: Graphs showing the optimality of the cases “r = 6,” “r = 7,” and
“r = 8” of Corollary 1.5. The grey circles represent complete graphs of specified
order. The black lines between the sets represent all the edges being present
between them. The white cycle in the “r = 7” and “r = 7” cases represents a
single cycle passing through all the vertices in the specified sets being removed.
The white matchings in the “r = 6” case represent a perfect matching being
removed from the specified sets.

4 Remarks

In this section we discuss some problems which are left open in this paper.

• One natural open problem is to extend the results of this paper to the case
when r = 6. In particular it would be interesting to know if Theorem 1.4 holds
for r = 6. It seems to be difficult to extend our proof of this theorem to the
case when r = 6. One reason for this is that there are examples showing that
Claim 2.7 does not always hold when r = 6. We sketch one such construction
here.

For fixed m, and i = 1, 2, 3, we define a set of vertices Bi of order m as well
as three vertices ai, ci, di. For each i, all the edges inside Bi are present as
well as the edges between Bi and {ai, ci}, and the edge cidi. We add a set
of vertices X of order m and add all the edges inside X and between X and
{d1, d2, d3}. This produces a graph Gm, with minimum degree m+2 and order
4m + 9. However, it is easy to check that for m ≥ 2 the insufficient vertices
in this graph are a1, a2, and a3. Since d(ai, aj) = 8 for i �= j, we obtain that
there are three equivalence classes of insufficient vertices in G. But then we
have |Gm| = 4m + 9 ≤ 9δ(Gm), showing that the conclusion of Claim 2.7 does
not hold for this graph.

Therefore it seems that some new ideas would be needed in order to extend
the results of this paper to the case when r = 6.

• Notice that Theorems 1.4 and Corollary 1.5 have the condition “diam(G) ≥
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r” whereas Theorem 1.1 has the condition “diam(G) > r”. Both bounds
are natural to study. Although Corollary 1.5 is a statement about graphs
satisfying “diam(G) ≥ r”, we can use it to obtain a lower bound on the quantity
e(Gr)/e(G) for graphs satisfying “diam(G) > r” as well. When r ≡ 0 or 1
(mod 3), it is easy to see that the lower bound Corollary 1.5 gives cannot be
increased even when restricted to graphs satisfying “diam(G) > r” (using the
examples we constructed in Section 3).

In more generality one could ask for bounds on e(Gr) among all graphs satis-
fying diam(G) > D for some fixed D. When D is larger than r, then it is likely
that that the bounds in Theorem 1.4 could be improved. Some results in this
direction have already been obtained by DeVos, McDonald, and Scheide. We
refer the reader to [3] for details.
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