
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 58(2) (2014), Pages 320–332

A colour-sliding problem on graphs

Landan Hicks Marc Lipman Matt Walsh

Indiana-Purdue University Fort Wayne
Fort Wayne, Indiana

U.S.A.

Abstract

We investigate several aspects of a family of problems involving restoring
a scrambled proper colouring on the vertices of a graph. Specifically, the
restoration is accomplished by removing the colour from some number
of vertices and sliding the remaining colours into the resulting “voids”;
our principal interest in this paper is the number of voids required for
different classes of graphs.

1 Sliding colours

For our purposes, graphs are simple and finite without loops. A proper colouring
of (the vertices of) a graph G is a function f : V (G) → [k] such that f(v) 6= f(w)
whenever vw ∈ E(G) (where [k] = {1, . . . , k}); we assume for convenience that for
any i ∈ [k] the set f−1(i) is nonempty. The colour profile of a colouring is the
multiset of colours it employs; two colourings feature the same colour profile if they
employ the same colours the same number of times.

Suppose that we have a proper colouring of G which is then scrambled by some
villainous person or persons. (By scrambled we mean that a permutation π : V (G)→
V (G) is composed with the colouring.) We wish to restore the colouring to propriety
(although not necessarily to the exact same colouring as we started with); however,
unlike in Clark et al. [1] ours is not the power of our enemy to move colours around
arbitrarily. What we can do is delete the colours from one or more vertices, resulting
in a partial colouring containing voids ; given such a partial colouring, we may then
evolve it into a new colouring by finding a pair of adjacent vertices v, w such that
v is coloured and w is not and switching the colour with its adjacent void, in effect
sliding the colour along the joining edge.

For the purposes of restoring a proper (partial) colouring we treat voids as irrel-
evant to the constraints: that is, two adjacent voids do not count against propriety.
We treat the deletion of colours as an expensive operation compared to colour slid-
ing, and thus our principal question is: given a graph G, what is the minimum
number of voids that must be deployed to guarantee that any scrambled colouring
of G can be restored to a proper partial colouring by sliding colours? Let us call this
minimum the sliding number of G, denoted ξ(G). (Note that the colouring being

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 321

scrambled is not required to be minimum or balanced; all we ask is that it is proper
before scrambling.) We do not require that the voids be filled in (with the original
deleted colours, in some order) at the end of the process; we also allow the restorer
to choose exactly which vertices become voids in the original scrambled colouring.
Strengthening either of these requirements may lead to situations where extra voids
are required.

In the following section we give an obvious upper bound for ξ(G) and show
that there are infinite classes of graphs which require this number of voids. The
following three sections determine ξ(G) (or at least very tight bounds on ξ(G)) for
all (connected) graphs G: trees in Section 3, 2-connected graphs in Section 4, and
general graphs in Section 5. We subsequently show that, given a known proper
colouring of G, the number of slides required is polynomial in the order of G.

2 Sliding and edge covers

If our goal is to minimize the number of voids required, one obvious strategy gives a
clear upper bound: conflicts can only happen between adjacent vertices of the same
colour, so if the voids were arranged so that we never had two coloured vertices
adjacent then we would have a proper partial colouring. In such a case the voids
would form an edge cover (sometimes edge-by-vertex cover) of G, whence:

Lemma 2.1. For any graph G, ξ(G) ≤ β′(G) where β′(G) denotes the size of a
minimum edge cover of G.

Note that we can achieve this upper bound in several ways. One example that
does so is the graph consisting of n disjoint copies of Kn; our villain could scramble
the colours so that all instances of a given colour lie in the same component, and
hence we can do no better than uncolouring all vertices but one in each clique.
Clearly, we can generalize this to disconnected graphs in general; for this reason,
henceforth we shall devote our attention to connected graphs. Even here we can find
examples requiring the edge cover number of voids.

Theorem 2.2. ξ(Pn) = bn−1
2
c.

Proof. When n ≤ 2 the result is clear, since Pn is complete in these cases. For
n ≥ 3, note that we can consider the scrambled colouring as successive clusters of
colours, and the highly limited connectivity of the path ensures that we can never
get one colour past another; hence, for any scrambled colouring the best we can do
is to select voids to form an edge cover in each colour-cluster. It follows that the
worst-case scenario must then involve a 2-colouring that has been sorted into two
colour-clusters, thus maximizing the number of conflicts on edges; the size of the
clusters must be dn

2
e and bn

2
c, and a case analysis of the parities confirms the stated

result.

When n is odd, then, the edge-cover bound is achieved by Pn.

Corollary 2.3. ξ(Cn) = bn−2
2
c.

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 322

Proof. The argument for paths holds here as well, since we can still only break up
clusters with voids (not having any way of sliding one colour into another cluster).
When n is even the sliding number for Cn equals that of Pn by a parallel argument;
when n is even we save a void by virtue of the necessity for a third colour.

Of course, we can find further examples of graphs that satisfy the edge cover
bound among those with small edge cover numbers.

Lemma 2.4. ξ(K1,n) = 1.

Recall that a double-star is a tree with exactly two vertices of degree greater than
1. We use the notation Dm,n to refer to the double-star with vertices of degree m+ 1
and n+1; m and n then count the number of leaves adjacent to each support vertex.

Lemma 2.5. For positive integers m ≤ n,

ξ(Dm,n) =

{
1 if m+ n ≤ 3

2 if m+ n ≥ 4

Proof. Let x and y be the vertices of degree m + 1 and n + 1, respectively. Clearly
ξ(Dm,n) ≤ 2 = β′(Dm,n) by Lemma 2.1. We note that Dm,n has a unique proper
2-colouring, with colour classes of size m+ 1 and n+ 1.

Let n ≥ 3. Then consider a 2-colouring that assigns the same colour to x, y, and
one of each of their leaf-neighbours. (Since n ≥ 3 we know that one of the colour
classes must have size at least 4.) This gives an induced monochromatic P4, which
will require two vertices to be either uncoloured or recoloured to fix. Therefore one
void is clearly inadequate. (Even with sliding the void around, in a tree with a single
void the best we can do is shift the colours of vertices along a path by one vertex. In
this colouring this means that even after such a shift we must still have two adjacent
vertices of the same colour.) We can take the same tack with D2,2, with the proviso
that we must use three colours in order to get a colour class of size 4 to work with.

Note that D1,1 = P4 and is therefore covered by Theorem 2.2. For D1,2 we can
always use one void: if the graph is 2-coloured, then the three vertices in the larger
colour class will either induce P3 or P2 ∪ P1, and in either case a single void is
sufficient to obviate the conflict(s). If the two vertices of the smaller colour class are
adjacent, then we can always choose the void to be adjacent to one of those vertices,
thus allowing a slide to fix the last conflict. (Similar remarks hold in the case of a
3-colouring, and of course with more colours at most one void would be needed.)

As a side note to the previous proof, notice that any scrambled minimum colour-
ing of D2,2 requires only one void to fix. To show this, let x and y be the vertices of
degree 3, with u, v the private neighbours of x and w, z those of y. If u, v, x are all
the same colour then we can uncolour x and slide y’s colour onto it. If v and u are
both coloured differently from x (whether or not they share a common colour), then
any conflict must involve y so uncolouring y gives a resolution. Finally, if v and x
share a colour (say 1) and u is coloured differently (say 2), then we uncolour u and
slide the 1 from x to u. If y is also coloured 1 then we have achieved a proper partial
colouring (since w and z must have colour 2); otherwise we can now slide the colour
2 from y to x.

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 323

3 The sliding numbers of trees

We begin our consideration of trees in general by concentrating on those structures
that lack vertices of degree 2; our justification is that such vertices can create “bot-
tlenecks” in the tree that will require extra voids to work around. Without such
bottlenecks, we can unscramble arbitrary colourings with a small number of voids.

Theorem 3.1. Let T be a tree containing no vertices of degree 2. Then ξ(T) ≤ 3.

Proof. We begin by considering the smallest such tree not covered by Lemma 2.5:
the tree T ′ with three vertices of degree 3 and five of degree 1, where the three
3-valent vertices form a path. In this tree we can uncolour the three high-degree
nodes, which gives us an edge-cover solution to the problem. More usefully, we also
note that the colours on the remaining five (leaf) nodes can be permuted freely with
each other. (That is, we can derive the full group S5 of permutations of the labels
of these five vertices.)

We employ this insight as follows: let T be a tree on at least eight vertices
containing no nodes of degree 2, and suppose that f0 : V (T)→ V (T) is a scrambled
colouring of T with f ∗ a corresponding unscrambled version of f0. Remove the
colours of three vertices in f0; for the sake of definiteness choose colours that are at
or near the centre of T in f ∗. We then move the voids to occupy the central vertices.
Call this partial colouring g0.

Choose a vertex v ∈ T maximally distant from the centre of T with the property
that g0(v) 6= f ∗(v). Find the closest instance of the colour f ∗(v) in g0 that is at least
as central as v; call the vertex sporting this colour w. (We may assume that, if w
and v are equally eccentric, then f ∗(w) 6= go(w).) We can evolve the colouring g0

into a new colouring g1 which is identical save that g1(v) = g0(w) and vice-versa in
the following way:

1. If dT (v, w) ≤ 4 and w does not lie on the path between v and the centre,
then there is a subtree T ∗ of T that is isomorphic to T ′ and contains v and
w as leaves; we can move the voids in from the centre, take advantage of the
availability of permutations to swap the colours on v and w, and then move
the voids back to the centre. This new partial colouring is g1.

2. Otherwise, move the three voids so that they lie on the path between v and w,
with one adjacent to w. (It is possible that this will require moving the colour
already on w, if w lies between v and the centre. If this happens call w0 the
vertex where w’s colour lands; if this doesn’t happen then w0 = w.)

3. We can now identify a subtree T ∗0 of T isomorphic to T ′ which contains w0 as a
leaf and the three voids as the central vertices. If v is in T ∗0 then we can swap
the colours on v and w0 and reset our voids; if not, then find a vertex w1 in T ∗0
that is closer to v but not on the path between v and w0, and swap the colours
on w0 and w1.

4. Now move the voids to be between w1 and v (or as many of them as is possible;
we might end up with voids hanging off the side, if dT (v, w1) < 4). We can

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 324

now pick out a subtree T ∗1 isomorphic to T ′ and containing w1. As before, if
v ∈ V (T ∗1) then we can complete our swap and move the voids back to the
centre; if not, then we pick out another intermediary vertex w2 and swap its
colour with w1, subsequently identifying the tree T ∗2 . We repeat this process
until we can swap the original colour on w onto v, at which point we shuttle
the voids back to the centre. g1 is the resulting partial colouring.

(Note that in the second case above, involving iterated colour swaps, we can always
carefully retrace our steps to return to effectively the original colouring but for the
single swap we wished to accomplish; the process of moving voids to a desired location
can be seen to be self-reversing if we move the voids back along the same route from
which they came.)

In either case, the colouring g1 is “closer” to f ∗ than g0 is, in the sense that
either the maximum distance of badly-coloured vertices from the centre is less in g1

or else that this distance is the same but the number of badly-coloured vertices at
this distance is smaller in g1. Iterating this process leads therefore to a sequence
g0, g1, g2, . . . of colourings that approaches f ∗, resulting in a colouring g that agrees
with f ∗ on every coloured vertex. This is a proper partial colouring.

We have as an easy consequence of this result that any two partial scrambled
colourings of such a T with at least three voids and the same colour distribution
can be transformed into each other by shifting, as there is nothing in the proof that
requires that our reference colouring f ∗ be proper.

In the presence of degree-2 vertices, our approach above runs into some snags;
specifically, if we need to exchange colours that are on opposite sites of a long string
of degree-2 vertices, then we will naturally need extra voids in order to maintain
transportation. In what follows, let bT represent the bottleneck number of T , defined
as the largest number of degree-2 vertices in direct sequence (i.e. if we took the
induced subgraph of T on all vertices of degree 2, bT would be the order of the
largest component). Using substantially the same method as in the previous proof,
we find:

Corollary 3.2. For any tree T , ξ(T) ≤ 3 + bT .

This bound is sharp in a great many cases, but under some circumstances it may
be possible to do better than this; specifically, imagine a situation where all of the
vertices of degree 2 are along a single path, at one end of which is a leaf. (We shall
call such a feature a tail of T , fearlessly mixing animal and vegetable metaphors.) In
this case we don’t really think of this as a bottleneck, since we’re not trying to use
them for transportation; instead, we could use a relatively small number of voids to
fix the rest of the tree and then park them in the tail to solve it the way we solved
paths in the previous section (i.e. with an edge cover). Such a strategy assumes
that there are either no internal bottlenecks, or at least that those present are small
compared with the number of tail-packing voids required.

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 325

4 The sliding numbers of blocks

In this section we deal with graphs that are 2-connected but not cycles (which were
dispensed with earlier). We start with the simplest such graphs, consisting of a
cycle with a subdivided chord; we call such a graph a theta, for obvious reasons.
Let G be a theta with V (G) = {h, x, 1, . . . , i, a1, . . . , aj, b1, . . . , bk}, i ≤ j ≤ k; h
and x are vertices of degree 3, with three paths between them consisting of the
numerical vertices, that a-vertices, and the b-vertices respectively. (See Figure 1 for
an example with i = 2, j = 3, k = 4; note that we count upwards from h for the
numerical vertices, but from x for the other two sequences.)

h x

1 2

a3 a1a2

b4 b1b2b3

Figure 1: A theta graph

Theorem 4.1. If G is a theta then ξ(G) = 1.

Proof. Let f be a scrambled proper colouring of G with a corresponding proper
colouring f ∗. We delete one copy of the colour f ∗(h) in f and then slide this void to
occupy h; this partial colouring g is our starting point.

Note that any sequence of slides that ends with the void in its starting place gives
a permutation on the colours of the (coloured) vertices. Our strategy here is to show
that the permutation group available to us in any theta is broad enough that we can
unscramble any scrambled proper colouring.

Consider the result of taking the partial colouring g and sliding the void along the
following walk: h, aj, aj−1, . . . , a1, x, i, i−1, . . . , 1, h; we denote by A the permutation
this gives on the labels of V (G)\{h}. Then A = (12 . . . ixa1a2 . . . aj), a cycle of length
i + j + 1. Likewise, let B denote the permutation resulting from pushing the void
along the walk h, bk, bk−1, . . . , b1, x, i, i − 1, . . . , 1, h. Then B = (12 . . . ixb1b2 . . . bk),
a cycle of length i + k + 1. Let Γ = 〈A,B〉. Every element of Γ corresponds to a
sequence of slides that can be performed in G that begins and ends with the void at
vertex h. We will show that Γ is large enough to unscramble g to a proper partial
colouring.

It is easy to show that Γ is primitive on V (G) \ {h}. Suppose that S is a
block of Γ containing at least two vertices. Since A is a cycle on the set A =
{1, 2, . . . , i, x, aj, aj−1, . . . , a1} and hence primitive on A, S cannot be a proper subset
of A. Analogously, the cycle B shows that S cannot be a proper subset of B =
{1, 2, . . . , i, x, bj, bj−1, . . . , b1}. Γ leaves neither A nor B intact; therefore S 6= A and

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 326

S 6= B. Hence S must contain at least one ar and one bs. If there is some at /∈ S then
some power of A moves ar to at while leaving bs fixed, which is impossible. Therefore
S contains every ar and bs. The action of A then forces x and the numbered vertices
to also be in S. Therefore, Γ is primitive.

A theorem of Jordan (as found in [2], among other places) states that any primi-
tive permutation group X operating on a set X that contains a 3-cycle contains the
full alternating group on X . If in addition X contains an odd permutation, then X
is the full symmetric group on X .

Since Γ is primitive on V (G) \ {h}, it is useful to determine when Γ contains a
3-cycle. Let C = A−1B = (ajaj−1 . . . a1xb1b2 . . . bk), which corresponds to sliding the
void along the walk h, bk, . . . , b1, x, a1, . . . , aj, h. Let D = ABA−1B−1. We examine
Γ by cases, and show that except for exactly one case Γ contains a 3-cycle.

Case i = 0. Then 1 ≤ j ≤ k, and D = (xa1b1).

Case i = 1. Then D = (1x)(a1b1). If also j = 1 then A = (1xa1). So assume that
j ≥ 2.

If we also have k ≥ 3:

CDC−1 = (1b1)(xb2)

C2DC−2 = (1b2)(b1b3)

AC2DC−2A−1 = (xb2)(b1b3)

Then CDC−1 · AC2DC−2A−1 = (1b1)(xb2) · (xb2)(b1b3) = (1b1b3).

The case i = 1, j = k = 2 is exceptional and discussed below.

Case i ≥ 2. Then D = (12)(a1b1).

Suppose i = j = k = 2:

CDC−1 = (12)(xb2)

C2DC−2 = (12)(b1a2)

DC2DC−2 = (a1b1a2)

If k = 3 then C3DC−3 = (12)(a1b2); then DC3DC−3 = (a1b2b1).

Finally if k ≥ 4 then C3DC−3 = (12)(b2b4) and DC3DC−3 = (xb2b4).

Therefore, except in the case where i = 1, j = k = 2, Γ is either the full symmetric
group or the full alternating group on V (G)\{h}. In the former case, Γ can slide g to
any desired partial colouring by selecting the proper permutation and constructing
it from A and B. In the latter case, if every colour occurs only once in g then the
partial colouring is trivially proper. Otherwise, let y and z be vertices such that
g(y) = g(z); then for any vertex w /∈ {h, y, z} the 3-cycle (wyz) ∈ Γ. This results
in a permutation that exactly switches the colours of w and y. Jordan’s theorem
implies that Γ acts as the full symmetric group on the set of partial colourings of G,
and hence can unscramble G.

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 327

For the remaining case Gθ with i = 1, j = k = 2, we constructed Γ with the help
of the SAGE software package [3]. In this case |Γ| = 120. Using brute force, we may
show directly that we can unscramble every partial colouring. Details for the strong
of stomach are available in the appendix.

Corollary 4.2. Let G be a theta not isomorphic to Gθ, and let g1, g2 be partial
colourings of G with one void and the same colour profile where at least one colour
appears twice. Then there is a sequence of moves that converts g1 to g2.

Proof. Given the starting colouring g1, our first operation is to move the void to one
of the degree-3 vertices, which we label h. From here, we have full access to the
alternating group of permutations of the colours, if not the full symmetric group;
this allows us to arrange the colours arbitrarily using our trick from the previous
proof. If g2 has its void at h, then we can construct it directly; if the void is at some
other vertex v, then we construct a colouring with the property that, once we move
the void along a chosen path from h to v, the resulting partial colouring is g2.

Lemma 4.3. Let G be a 2-connected graph with ∆(G) ≥ 3. Any two vertices of G
lie on some subgraph of G isomorphic to a theta.

Proof. Let u, v ∈ V (G). We know that u and v must lie on a common cycle C1, by
the definition of 2-connectedness; some vertex (say w) on this cycle must have degree
greater than 2. Let x, y, z be neighbours of w with xw,wy ∈ E(C1). The edges wy
and wz must also be in a common cycle C2. Then the set of edges given by C2 −C1

contains one or more paths; let P indicate the path in C2 − C1 containing the edge
wz. Then C1 ∪ P is a theta-subgraph of G.

Theorem 4.4. Let G be a 2-connected graph with ∆(G) ≥ 3. Then ξ(G) = 1.

Proof. Suppose that f is a scrambled colouring of the vertices of G, with a corre-
sponding proper colouring f ∗. If f colours all vertices uniquely then we are done, so
assume that at least one colour appears at least twice. Remove a copy of the colour
f ∗(h) for some maximum-degree vertex h, and move the resulting void to h. By
Lemma 4.3, every vertex appears on some theta with h, and hence we can use Corol-
lary 4.2 to unscramble f into f ∗ piecemeal as long as the theta-subgraph in question
is not Gθ. (Note that if we need a colour from outside of the theta we’re looking
at, we can find a sequence of thetas with pairwise common vertices to transfer the
colour through.)

If there are two vertices y, z whose only common theta-subgraph containing h is
isomorphic to Gθ, then one of them (say y) must correspond to the vertex we would
label 1 in our previous discussion of thetas.

Corollary 4.5. Let G be a 2-connected graph with ∆(G) ≥ 3 not isomorphic to Gθ,
and let g1, g2 be partial colourings with one void and the same colour profile where at
least one colour appears twice. Then there is a sequence of moves that converts g1

to g2.

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 328

Proof. Since we have effective access to the whole group, this follows easily. Another
way to approach it is to find some partial proper colouring g∗ sharing the colour
profile of g1, which we know we can solve for; we then go from g1 to g∗ and thence
to g2 by reversing a solution for g2.

5 General connected graphs

Our strategy for general connected graphs is to combine our methods for (nontrivial)
blocks and for trees. Recall that a block decomposition of a graph G is a partition of
E(G) into subgraphs which are either single (cut-)edges or maximally 2-connected;
by a block-tree decomposition we mean the result of taking a block decomposition
and merging connected sets of trivial blocks (i.e. edges) into unified components
(trees).

Lemma 5.1. Let G be a graph consisting of two cycles C1, C2 that intersect at a single
vertex x. Then ξ(G) = 2. Further, with two voids we can permute the remaining
colours arbitrarily.

Proof. It is easy to see that ξ(G) > 1: let |C1| ≤ |C2| and consider a 2-colouring
that assigns the same colour to all vertices in C1 − x. None of these colours can be
slid unless the void is positioned at x, and when it is we can only slide them to other
vertices in C1. Since we can never remove these colours from C1 we clearly cannot
replace them with the other colour (which is only in C2).

Now consider the situation with two voids. We shall use u1, v1, u2, v2 to refer to
the neighbours of x, with subscripts indicating the containing block. Without loss
of generality suppose that we have positioned the voids at x and at v2; then we can
rotate the colours in C1 around to a point where a colour we wish to dispose of is
positioned at v1, from which it can be taken to v2 in two slides. This now leaves
voids at x and v1, and we can rotate the colours in C1 in such a way as to position
the voids between any two colours in the sequence. This allows us to carry out
successive exchanges between C1 and C2 to achieve any permutation we wish of the
colours available to us; specifically, we can achieve an unscrambled colouring.

Theorem 5.2. Let G be a graph with κ′(G) ≥ 2 and ∆(G) ≥ 3. Then ξ(G) ≤ 2.

Proof. We have already dealt with the case where κ(G) ≥ 2 in Theorem 4.4, so
assume that G contains at least one cut-vertex x. If G1, G2 are blocks of G containing
x, then we can find a cycle Ci in each Gi and use Lemma 5.1 to set up an interchange
between C1 and C2. This allows us to move colours between blocks; if we want to
trade colours that are in nonadjacent blocks then we can repeat this process through
a sequence of cutpoints x, x′, x′′, . . . that lie on a path between the two target vertices.

The strategy for unscrambling is as follows: choose a terminal block B1 (that
is, a block with interior vertices on no path between other blocks) and determine
what colours we wish it to contain (and in what positions). We can use Lemma 5.1
repeatedly in the method just described to bring the colours to (or just outside of)
B1; once we have the desired colours in place we can use either Corollary 4.5 or

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 329

Lemma 5.1 to give B1 its correct colouring. (We may need the lemma if B1 does not
meet the requirements of the corollary: that is, if B1 is either a cycle or isomorphic to
Gθ. In either of these cases, we can swap “dummy colours” from a block adjacent to
B1 in and out to achieve the required permutations.) Once B1 is fixed then we never
need to disturb it again (except possibly for its cut-vertex); we then find another
terminal block B2 in (the nontrivial component of) the graph G−E(B1) and repeat.
We continue recursively until we are left with either one block that satisfies the
premises of Corollary 4.5 or else two adjacent blocks that don’t; in the latter case we
can use Lemma 5.1 to achieve the final colouring.

Theorem 5.3. Let G be a connected graph with the property that no tree in its
block-tree decomposition contains a vertex of degree 2. Then ξ(G) ≤ 3 unless G is a
cycle.

Proof. If the block-tree decomposition of G contains no trees at all then Theorem 5.2
applies here, so assume that there is at least one tree in the decomposition. We
distinguish between a terminal tree (which shares only a single vertex with one or
more blocks) and a transitional tree (which provides connectivity between multiple
blocks). In either case, if T1 is a tree in the decomposition that shares a vertex x
with a block B1, then we may in some sense consider the neighbours of x in B1 as
being part of T1 for the purposes of running our procedures.

As in the previous result, our strategy is recursive: arrange the colours required
in a terminal segment (block or tree) which we can subsequently ignore. With a
terminal block, we can use a mix of Theorems 5.2 and 3.1 to move colours into it
(and then to arrange them as required). With a terminal tree, we use the same
two theorems to transition colours into the neighbourhood of the tree, and then
Theorem 3.1 (treating the linking cut-vertex as the root) to arrange the colours in
the tree.

We define the bottleneck number bG of a general graph as:

bG = max{bT : T is a tree in the block-tree decomposition of G}

(We can ignore degree 2 vertices in the nontrivial blocks of the graph, since they
can easily be routed around.) As in our earlier discussion, in order to maintain
transportation we need additional voids to deal with bottlenecks; likewise as before,
we can move the voids between bottlenecks as we need to get through.

Corollary 5.4. For any connected graph G that is not a cycle, ξ(G) ≤ 3 + bG.

6 Computational complexity

In reckoning the complexity of our procedures, we assume that the solver has a proper
colouring of the graph (with the same colour profile as the scrambled colouring) for
reference; without such a colouring to guide us, solving a sliding-colours problem
could be as difficult as determining the chromatic number of G.

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 330

Given a reference colouring, we measure the complexity of a solution (unscram-
bling to a partial analogue of the given colouring) in terms of the number of slides
required. We make no claim that our methods as described above are optimal by
this metric; they are, however, good enough for polytime. In the following results n
is the number of vertices in the graph under discussion.

Theorem 6.1. Unscrambling a tree T containing no vertices of degree 2 can be
accomplished in O(n2) slides.

Proof. The process of switching the colours on two vertices is O(n), since permuting
two labels within a copy of T ′ is O(1) and we may be required to do this a number
of times equal to a linear function of the tree’s diameter. Since each switch that we
make only guarantees that we reduce the incorrectly coloured vertex count by one
or two, the number of such swaps is again O(n).

Corollary 6.2. Unscrambling a tree T with bottleneck number bT can by accomplished
in O(n2bT) slides using 3 + bT voids.

Proof. The analysis parallels the one above; the main difference is that switching
vertices within a subdivided T ′ (i.e. a segment containing bottlenecks) could require
up to O(bT) slides rather than O(1).

Theorem 6.3. Unscrambling a 2-connected graph G can be accomplished in O(n4)
slides with a minimum number of voids.

Proof. Assume that G contains a theta, since otherwise we have a cycle that requires
no slides at all using the edge-cover bound. Executing the generating cycles of the
permutations in a theta on k vertices is O(k), and from the generating cycles we
can construct any 3-cycle in O(k) operations. We can construct any required (even)
permutation on a theta with O(k) 3-cycles; therefore fixing a theta on k vertices
requires O(k3) slides. The number of distinct thetas that we might need to work with
will be O(n), each with O(n) vertices, giving us the O(n4) bound for the number of
slides required with a single void.

Assembling the above pieces in the natural way gives us:

Theorem 6.4. Unscrambling a general graph G using 3 + bG voids can be accom-
plished in O(n4) slides.

Appendix: Unscrambling the (1,2,2)-theta

Recall that the graph Gθ, the theta-graph with vertex set {h, x, 1, a1, a2, b1, b2}, was
too small for our general methods to work. We used SAGE to find that its au-
tomorphism group Γ has order 120 and includes the element (a1b1)(a2b2), a fact
that reduces the number of cases we are required to consider. We also know that
α(Gθ) = χ(Gθ) = 3, which reduces the number of partitions of 7 (as distributions of
colours in a proper colouring) that we need to consider. In what follows we use the

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 331

notation zK to indicate that vertex z receives colour K. We remind the reader that
our basic operations on thetas in this case take the form A = (1xa1a2), B = (1xb1b2),
and C = A−1B = (1b2b1a1a2).

Our cases are structured around the number of colours n in the original colouring.
n = 7 is always proper, and therefore trivial; if n = 6 then either the colouring is
proper or we may create our void by deleting one of the copies of the duplicate colour.

For n = 5, the only possible partitions for the colouring are (3,1,1,1,1) and
(2,2,1,1,1). In either case, we can select a vertex to clear that leaves a partial colour-
ing with distribution (2,1,1,1,1); let P represent the duplicate colour. If we move the
void to h and the result is not a proper colouring, then there are essentially three
possible locations for the conflict (up to the symmetry of the a and the b paths):

• 1P, xP : applying A−1 creates a proper colouring.

• a1P, xP : applying B creates a proper colouring.

• a1P, a2P : applying A creates a proper colouring.

For n = 4, the possible colour distributions are (3,2,1,1) and (2,2,2,1); in either
case we may delete a colour to get the partial colour distribution (2,2,1,1). Let P and
Q be the duplicate colours; as usual, we move the void to h. We can use the methods
in the previous case to ensure that we have no adjacent vertices coloured with Q;
this leaves us the following possibilities to investigate (up to symmetry, again):

P vertices Q vertices Move sequence

1, x a1, b1 C
a1, b2 C
a2, b2 A

a1, x 1, a2 B
1, b1 B
1, b2 A2

a2, b1 B
a2, b2 B

a1, a2 Any A to reduce to
a previous case

For n = 3, the possible colour distributions are (3,3,1) and (3,2,2); we can always
remove a colour to give us a partial colouring with distribution (3,2,1). Let P,Q,R
represent the colours in descending order of frequency; as usual, we move to void to
h to start with. As in the case where n = 4, we can always find a configuration where
the only conflicts are between P -vertices. That gives us the following possibilities
(once more modulo the symmetry between the as and the bs), where “reduce” means
reducing a two-conflict configuration to a one-conflict configuration:

L. HICKS ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 320–332 332

P − P edge count P vertices R vertex Move sequence

1 1, x, a2 Any (b1 or b2) C−1

x, a1, b2 Any B
1, a1, a2 b1 C
a1, a2, b1 Any C
a1, a2, b2 x BA

2 1, x, a1 Any (b1 or b2) A to reduce
x, a1, b1 1 A to reduce

a2 A to reduce
b2 B−1 to reduce

x, a1, a2 b1 A
b2 B−1

References

[1] S.A. Clark, J.E. Holliday, S.H. Holliday, P.D. Johnson Jr., J.E. Trimm, R.R.
Rubalcaba and M. Walsh, Chromatic villainy in graphs, Proc. Thirty-Seventh
Southeastern Int. Conf. Combin., Graph Theory, Computing, Congressus Nu-
merantium 182 (2006), 171–182.

[2] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York —
Heidelberg — Berlin, 1996.

[3] http://www.sagemath.org/doc/index.html

(Received 14 May 2013; revised 18 Nov 2013)

