
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 58(2) (2014), Pages 249–263

A construction of a class of graphs
with depression three∗

C. M. Mynhardt† M. Schurch

Department of Mathematics and Statistics
University of Victoria, P.O. Box 3060 STN CSC

Victoria, BC V8W 3R4
Canada

mynhardt@math.uvic.ca mschurch@uvic.ca

Abstract

An edge ordering of a graph G is an injection f : E → R, the set of
real numbers. A path in G for which the edge ordering f increases along
its edge sequence is called an f -ascent ; an f -ascent is maximal if it is
not contained in a longer f -ascent. The depression of G is the smallest
integer k such that any edge ordering f has a maximal f -ascent of length
at most k. We provide a construction of a large class of graphs with
depression three.

1 Introduction

An edge ordering of a graph G is an injection f : E(G) → R, the set of real numbers.
Denote the set of all edge orderings of G by F(G). A path λ in G for which f ∈ F(G)
increases along its edge sequence is called an f -ascent ; an f -ascent is maximal if it
is not contained in a longer f -ascent. The flatness of an edge ordering f , denoted by
h(f), is the length of a shortest maximal f -ascent of G. In [9] it was shown that for
a given edge-ordering f of a graph G the problem of determining the value of h(f)
is NP-hard.

The depression of G was defined in [6] as ε(G) = maxf∈F(G) {h(f)}. The inter-
pretation of the depression of a graph G is that any edge ordering f has a maximal
f -ascent of length at most ε(G), and ε(G) is the smallest integer for which this
statement is true.

Clearly, ε(G) = 1 if and only if K2 is a component of G. Graphs with depression
two were characterized in [6], while trees with depression three were characterized

∗ This paper is based on part of Mark Schurch’s doctoral dissertation.
† Supported by an NSERC discovery grant.



C.M. MYNHARDT ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 249–263 250

in [10]. Graphs with depression three and no adjacent vertices of degree three or
higher were characterized in [13]. In this paper we further investigate graphs with
depression three and describe a construction of a large class of graphs with depression
three, which includes cyclic graphs and graphs with adjacent vertices of high degree.
This paper is based on part of the second author’s dissertation [15].

2 Definitions and Background

We consider simple, finite graphs G = (V (G), E(G)). For basic graph theoretic
definitions we refer the reader to the book [4] or any of its predecessors. The open
neighbourhood of a vertex v of G is the set of all vertices adjacent to v and is denoted
by NG(v), or just N(v), and its closed neighbourhood is NG[v] = N [v] = N(v)∪ {v}.

Consider two disjoint graphs G1 and G2 and vertices vi ∈ V (Gi). The vertex-
coalescence of G1 and G2 via v1 and v2 is the graph obtained by identifying v1

and v2 to form a new vertex v, and is denoted (G1 · G2)(v1, v2 : v). In forming
G = (G1 · G2)(v1, v2 : v), if v2 is unimportant we also say we attach G1 to G2 at v1,
and if G is the resulting graph, we say that G contains G1 as an attachment at v1.

A branch vertex of a tree is a vertex with degree at least three. Let B(T ) and
L(T ) respectively denote the sets of all branch vertices and all leaves of the tree T .
For v ∈ V (T ) and l ∈ L(T ), a (v, l)-endpath, or v-endpath if l is unimportant, or
endpath if neither v nor l is important, is a path P from v to l such that each internal
vertex of P has degree two in T . A spider S(a1, a2, ..., ar) is a tree with exactly one
branch vertex v and v-endpaths of lengths 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar, where r = deg v.

Given an edge ordering f of the graph G, an f -ascent λ is simply called an ascent
if the ordering is clear, and if λ has length k, it is also called a (k, f)-ascent. If
the path λ with vertex sequence v0, v1, ..., vk or edge sequence e1, e2, ..., ek forms an
f -ascent, we denote this fact by writing λ as v0v1...vk or e1e2...ek. which f ∈ F(G)
increases along the edges of P , is called a u-v direct f -ascent, or a direct f -ascent if
u and v are clear, or simply a direct ascent if u, v, and f are clear.

We emphasize that to show that ε(G) = k, we must show that

(a) each edge ordering of G has a maximal ascent of length at most k – this shows
that ε(G) ≤ k,

(b) there exists an edge ordering f of G with no maximal ascents of length less
than k, i.e. for which each (l, f)-ascent, where l < k, can be extended to a
(k, f)-ascent – this shows that ε(G) ≥ k.

The height of an edge ordering f , denoted H(f), is the length of a longest f -
ascent of G. In [2] the altitude of G was defined as α(G) = minf∈F(G) {H(f)}. The
interpretation of the altitude of a graph G is that any edge ordering f ∈ F(G) has
an f -ascent of length at least λ(G), and λ(G) is the largest integer for which this
statement is true.
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The study of lengths of increasing paths was initiated by Chvátal and Komlós [5]
who posed the problem of determining the altitude of the complete graph. This is a
difficult problem and α(Kn) is known only for 1 ≤ n ≤ 8 (see [2, 5]). The altitude
of graphs was also investigated in e.g. [1, 2, 3, 8, 9, 11, 14, 16].

3 Known Results

Let τ(G) denote the length of a longest path in G, called the detour length in G. If
we assume that G is connected and of size at least two, then

2 ≤ ε(G), α(G) ≤ τ(G).

By taking the edge ordering f for the path Pn, n ≥ 3, to increase along its edge
sequence we see that ε(Pn) = τ(Pn) = n− 1. On the other hand, by taking the edge
ordering for the path Pn, n ≥ 3, as 1, n − 1, 2, n− 2, ...,

⌈
n
2

⌉
along its edge sequence,

we see that α(Pn) = 2.

If a connected graph G has a vertex v that is adjacent to u, w, where u, w are end-
vertices or adjacent vertices of degree two, then in any edge ordering f of G, either
u, v, w or w, v, u is a maximal (2, f)-ascent, hence ε(G) = 2. In [6] it was shown that
the converse of this statement is also true, which gives the following characterization
of graphs with depression two.

Theorem 1. [6] If G is connected, then ε(G) = 2 if and only if G has a vertex
adjacent to two end-vertices or to two adjacent vertices of degree two.

It is reasonable to expect a link between the depression of a graph and the diam-
eter of its line graph, and indeed the following result appeared in [6].

Theorem 2. [6] If diam L(G) = 2, then ε(G) ≤ 3.

However, the difference diam L(G) − ε(G) can be arbitrarily large, a result that
easily follows from Theorem 1. Much harder to see is that the difference ε(G) −
diam L(G) can also be arbitrarily large, as shown by Gaber-Rosenblum and Roditty
in [7].

We see from Theorem 1 that if v is the central vertex of P3 or any vertex of
K3, and G is any connected graph containing P3 or K3 as an attachment at v, then
ε(G) = 2.

An interesting question arises from this result.

• If H is a graph with ε(H) = k and v ∈ V (H), what properties should H and
v satisfy so that if we attach an arbitrary graph to H at v, the resulting graph
has depression at most k?

To help answer this question, a k-kernel of a graph G is defined in [10] as a set
U ⊆ V (G) such that for any edge ordering f of G there exists a maximal (l, f)-ascent
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Figure 1: The set of graphs H.

for some l ≤ k that neither starts nor ends at a vertex in U and k is the smallest
value for which this is true. For example, it is easy to verify that any vertex of P4

with degree two is a 3-kernel of P4. If an f -ascent λ neither starts nor ends in a
set A ⊂ V (G), we say that λ is an A-avoiding (maximal) f -ascent or an a-avoiding
(maximal) f -ascent if A contains a single vertex a (and λ is not contained in a longer
f -ascent). The following theorem relates the concept of kernels to the question above.

Theorem 3. [10] Let H be an arbitrary graph and let U be a k-kernel of H. Form
a graph G by adding any set A of new vertices and arbitrary edges joining vertices
in U ∪ A. Then ε(G) ≤ k.

Therefore, if G has a non-empty k-kernel, Theorem 3 provides us with a method
of forming a family of graphs with depression at most k. For example, if v is a vertex
of P4 with degree 2 and G is any graph that contains P4 as an attachment at v, then
by Theorem 3, ε(G) ≤ ε(P4) = 3.

The following theorem describes a necessary condition for a vertex v to be a
k-kernel of a graph G with diam(L(G)) = 2, where k ∈ {2, 3}.

Theorem 4. [12] Let G be a graph with diam(L(G)) = 2. If v is a vertex such that
N [v] is a vertex cover of G, then v is a k-kernel of G for some k ∈ {2, 3}.

Theorem 4 allows one to construct a large class of graphs with depression three.
For example, the line graph of any complete graph Kn with n ≥ 4 has diameter
two, and for any vertex v ∈ Kn, N [v] is a vertex cover of Kn. Therefore, it follows
from Theorem 4 that any graph G with an end-block B ∼= Kn, where n ≥ 4, has
depression at most three.

Graphs with depression three and no adjacent vertices of degree three or more
were characterized in [13].

Let H be the set of graphs consisting of P4, K2,m for m ≥ 2, and the spider
S(2, 2, 2)– see Figure 1. For each graph in Figure 1 the vertex labelled w is a 3-
kernel of its associated graph.

Theorem 5. [13] Let G be a connected graph with diam(L(G)) ≥ 3, no vertex
adjacent to two end-vertices or to two adjacent vertices of degree two, and no adjacent
vertices of degree three or more. Then ε(G) = 3 if and only if G = S(2, 2, 2), or for
some H ∈ H, G contains H as an attachment at a vertex which is a 3-kernel of H.
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The following characterization of trees with depression three was given in [10].

Let Sk be the class of trees Sk, k ≥ 1, that can be constructed recursively as
follows. Let S0 = K2 with V (S0) = {α, α′}. Define U0 = ∅ and Y0 = {α}. Once
Si has been constructed, construct Si+1 by performing one of the following two
operations.

O1: For any y ∈ Yi, join y to the vertex u of a new edge ux; let Ui+1 = Ui ∪ {u}
and Yi+1 = Yi.

O2: For any y ∈ Yi, join y to the central vertex w of a new P5 : s, r, w, t, z; let
Ui+1 = Ui ∪ {w} and Yi+1 = Yi ∪ {r, t}.

Let S =
⋃

k=1 Sk. Note that S0 = K2 is not in S. For a tree S ∈ S, define
US = Uk. Let G be the class of all graphs GS constructed as follows.

O3: Add any set A = A(GS) of new vertices to a tree S ∈ S and arbitrary edges
between vertices in A ∪ US.

Let T = {T ∈ G : T is a tree}.

Theorem 6. [10] For any tree T , ε(T ) = 3 if and only if T ∈ T and no vertex of T
is adjacent to two leaves.

The main result of this paper is a generalization of this characterization of trees
with depression three.

4 Main Result

In this section we provide a construction of a large class of graphs with depression
three which includes acyclic graphs and graphs with adjacent vertices of high degree.
The construction is a generalization of the construction used in [10] to characterize
trees with depression three.

Let S ′
k be the class of graphs Sk, k ≥ 1, that can be constructed recursively in k

steps as follows. Let S0 = K2 with V (S0) = {x0, y0}. Define U0 = ∅ and Y0 = {y0}.
Once Si has been constructed, construct Si+1 by performing one of the following five
operations.

O1: For any y ∈ Yi, join y to the vertex u1 of a new edge u1x1; let Ui+1 = Ui ∪{u1}
and Yi+1 = Yi.

O2: For any y ∈ Yi, join y to the central vertex u2 of a new P5 : x2, y2, u2, y
′
2, x

′
2; let

Ui+1 = Ui ∪ {u2} and Yi+1 = Yi ∪ {y2, y
′
2}.

O3: For any y ∈ Yi, join y to the vertices u3 and v3 of a new edge u3v3; let Ui+1 =
Ui ∪ {u3} and Yi+1 = Yi.
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Figure 2: S1 for each of the five operations O1-O5.

O4: For any y ∈ Yi, join y to the central vertex y4 and an end vertex u4 of a new
P3 : u4, y4, x4; let Ui+1 = Ui ∪ {u4} and Yi+1 = Yi.

O5: For any y ∈ Yi, join y to the vertex v5 of the graph
G5 = ({x5, x

′
5, v5, v

′
5, v

′′
5 , u5, y5}, {v5y5, y5x5, v5v

′
5, v5v

′′
5 , v

′
5v

′′
5 , v

′
5u5, u5x

′
5}); let Ui+1 =

Ui ∪ {u5} and Yi+1 = Yi ∪ {y5}.

The operations O1-O5 performed on S0 are illustrated in Figure 2.

Let Sk be the family of graphs such that Sk ∈ Sk whenever Sk ∈ S ′
k and in

the construction of Sk, any vertex y ∈ Yk is involved in O3 at most once. Define
S =

⋃
k≥1 Sk. Note that S0 = K2 is not in S. For a graph S = Sk ∈ S, define

US = Uk and YS = Yk. Let G be the class of all graphs GS formed by performing the
following two operations.

O6: Add any set A = A(GS) of new vertices to a graph S ∈ S and arbitrary edges
between vertices in A ∪ US.

O7: Add any arbitrary edges between vertices in YS.

Remark 7. Let S ∈ S. The operations O1-O5 show that if y ∈ YS, then y is
adjacent to exactly one vertex of degree one.

We define the following property for a graph G.

P1: A graph G has property P1 with respect to an edge ordering f and sets
UG, YG ⊆ V (G), if for each y ∈ YG for which a UG-avoiding maximal (2, f)-
or (3, f)-ascent ends (starts) at y, there exists a UG-avoiding maximal (2, f)-
or (3, f)-ascent for which its last (first) edge is assigned the largest (smallest)
value under f over all edges incident with y.
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Lemma 8. If S ∈ S and f is an edge ordering of S for which there exists a US-
avoiding maximal f -ascent of length at most three and all such ascents start or end
in YS, then S has property P1 with respect to f , US and YS.

Proof. Let y ∈ YS be a vertex for which a US-avoiding maximal (2, f)- or (3, f)-
ascent ends at y, Ay be the set of all such f -ascents, and λ = aby or λ = acby,
where λ is the maximal f -ascent such that its last edge by is assigned the largest
value over all edges of ascents in Ay. Let x be the end vertex adjacent to y. Clearly,
f(by) > f(yx).

Suppose to the contrary that f(by) 
= maxv∈N(y){f(vy)}. Then there exists an
edge wy ∈ E(S) such that w 
= b and f(wy) = maxv∈N(y){f(vy)}. Since λ is a
maximal f -ascent, w is a vertex of λ. By the construction of graphs in S, all cycles
of S have length three and we may assume that wby is a 3-cycle. If the cycle was
introduced by O3, then λ = wby, b ∈ US, w /∈ US∪YS, and both w and b have degree
2. But since f(yw) > f(wb) and deg(w) = 2, xyw is a US ∪ YS-avoiding maximal
f -ascent, a contradiction.

Suppose then that the cycle wby was introduced by O4. Then w ∈ YS and there
exists an end vertex x′ adjacent to w. If f(x′w) < f(wy), then x′wy is a maximal
f -ascent, which contradicts our choice of λ. Now if f(x′w) > f(wy), then xywx′ is
a maximal f -ascent which is also a contradiction.

A similar argument may be used to show that if a US-avoiding maximal f -ascent
of length at most three starts at y, then there exists a US-avoiding maximal (2, f)- or
(3, f)-ascent λ such that for the initial edge yb of λ, f(yb) = minv∈N(y){f(yv)}.

Theorem 9. For each S ∈ S, ε(S) ≤ 3 and US is a k-kernel of S for some k ∈ {2, 3}.

Proof. The proof is by induction on k, the number of steps used to construct S = Sk

from K2 = S0. To prove the result we must show that for any edge ordering f of S
there exists a US-avoiding maximal (2, f)- or (3, f)-ascent.

If k = 1, then S was constructed by performing one of the operations O1-O5 on
K2 = S0

Case 1 O1 is performed. Then S = P4 and US = {u1}. Since diam(L(S)) = 2 and
N [u1] is a vertex cover of S, the result follows from Theorem 4.

Case 2 O2 is performed. Then S = S(2, 2, 2) and US = {u2}. Consider any edge
ordering f of S. Without loss of generality we may assume f(x0y0) < f(y0u2). If
f(y0u2) > y(u2y2), then either x2y2u2y0 (if f(x2y2) < f(y2u2)) or y2u2y0 (if f(x2y2) >
f(y2u2)) are u2-avoiding maximal f -ascents of S with length at most three. The same
argument applies if f(y0u2) > f(u′

2y
′
2). Suppose then that f(y0u2) < f(u2y2) and

f(y0u2) < f(u′
2y

′
2). To avoid a u2-avoiding maximal f -ascents of length at most three,

both x0y0u2x2y2 and x0y0u2x
′
2y

′
2 are maximal (4, f)-ascents of S. This implies either

y2u2y
′
2x

′
2 (if f(y2u2) < f(u2y

′
2)) or y′

2u2y2x2 (if f(y2u2) > f(u2y
′
2)) is a u2-avoiding

maximal f -ascent of the required length.
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Figure 3: Operation O5 is performed, and the paths abcd and rst are f -ascents of S.

Case 3 O3 is performed. Then US = {u3}. Since diam(L(S)) = 2 and N [u3] is a
vertex cover of S, the result follows from Theorem 4.

Case 4 O4 is performed. Then US = {u4}. Since diam(L(S)) = 2 and N [u4] is a
vertex cover of S, once again, the result follows from Theorem 4.

Case 5 O5 is performed. Then US = {u5}. Suppose to contrary that u5 is not
a 3-kernel of S. Let f be an edge ordering f of S for which all maximal (2, f)-
and (3, f)-ascents either start or end at u5. Necessarily, either x0y0v5y5x5 or its
reverse is a (4, f)-ascent of S, and without loss of generality we assume the former.
Furthermore, by our assumption, neither v′′

5v5v
′
5 nor its reverse is a maximal (2, f)-

ascent of S, which implies either v′′
5v5v

′
5u5, v′′

5v5v
′
5u5x

′
5, or the reverse of one of these

paths is a maximal f -ascent. We need only consider the former two of these cases
since for any f -ascent present in an edge ordering extended from these cases, its
reverse will be present in one of the latter cases–with the roles of x0 and y0 switched
with x5 and y5 respectively. These cases are shown in Figure 3 where the paths
labelled abcd and rst are f -ascents of S. Moving forward we will refer to the labels
in this figure to simplify notation.

Firstly, suppose rst is a maximal f -ascent. Then t > π and, since u5 is not a
3-kernel of S, πtφr is a (4, f)-ascent. But then t < φ < r < s < t, which is a
contradiction.

Secondly, suppose that rstπ is an f -ascent of S. If r < b, then since t > r,
either rb (if φ > r) or φrb (if φ < r) is a maximal f -ascent, which in either case is
a contradiction. Therefore we may assume r > b. We may also assume that φ > r,
or else abr is a u5-avoiding maximal f -ascent. Furthermore, if c > r, then rcd is a
maximal f -ascent, so we may assume c < r. Now if φ < s, then φs is a u5-avoiding
maximal f -ascent, which is a contradiction. Thus we may assume φ > s. Since r < s
by assumption, we now have c < r < s < φ, which implies that csφ is a maximal
f -ascent, and again we have a contradiction.

This case completes the basis step of the proof.

Assume the result to be true for graphs in S constructed from K2 in fewer than
k ≥ 2 steps. Consider any graph S = Sk constructed from K2 in k steps, and any
edge ordering f of S.



C.M. MYNHARDT ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 249–263 257

Sk−1

x4

y4y

x u4

b

Figure 4: S is constructed by joining y to y4 and u4 of a new P3 : u4, y4, x4.

Suppose that in the construction of S one of O1, O2 or O5 was performed at
least once. Then S contains y ∈ YS such that y was joined to a new vertex in step
i ≥ 2 and such that y is incident with at least two bridges. Let y ∈ YS be incident to
at least two bridges, and x be the vertex of degree one adjacent to y. Note that one
of the bridges incident with y is xy. Let G1, G2, ..., Gm be the components of S − y
which consist of at least two vertices. For each 1 ≤ i ≤ m, let G′

i be the subgraph
induced by {x, y} ∪ V (Gi). Then each G′

i ∈ Sj for some 1 ≤ j < k. If G′
i
∼= Sj ∈ Sj ,

then let UG′
i
= Uj and f ′

i be the edge ordering of G′
i induced by f .

Since y is incident with a bridge other than xy, there exists an i, say i = 1, such
that degG′

1
(y) = 2. Let H = S −G1 and fH be the edge ordering of H induced by f .

Then H ∼= Sj ∈ Sj for some 1 ≤ j < k. Let UH = Uj . By the induction hypothesis
there exists at least one UH -avoiding maximal (2, fH)- or (3, fH)-ascent and we may
assume that all such maximal fH-ascents start or end at y, or else there exists a US-
avoiding maximal f -ascent of length at most three in S and we are done. Without
loss of generality assume that there exists a UH-avoiding maximal fH -ascent of length
at most three which ends at y. Then by Lemma 8 there exists a maximal fH -ascent
λ = aby or λ = acby such that fH(by) = maxv∈N(y){fH(vy)} and a ∈ V (H) − UH .

Let b1 be the neighbour of y in G1. By the induction hypothesis, there exists at
least one UG′

1
-avoiding maximal (2, f ′

1)- or (3, f ′
1)-ascent and we may assume that all

such maximal f ′
1-ascents start or end at y, or else we are done. Thus either b1y is the

initial or final edge of a UG′
1
-avoiding maximal f ′

1-ascent α of length at most three. If
α starts at y, then f ′

1(b1y) < f(xy) < f(by) and λ is a US-avoiding maximal f -ascent
of length at most three. If α ends at y, then in S either α (if f ′

1(b1y) > fH(by)) or λ
(if f ′

1(b1y) < fH(by)) is a US-avoiding maximal f -ascent of length at most three.

Suppose then that only O3 and O4 are used in the construction of S.

Firstly, suppose that S is constructed from Sk−1 by joining y to y4 and u4 of a new
P3 : u4, y4, x4 (see Figure 4). Then US = Uk−1 ∪ {u4}. Let f ′ be the edge ordering of
Sk−1 induced by f , and x the end vertex adjacent to y. By the induction hypothesis,
in Sk−1 there exists a Uk−1-avoiding maximal f ′-ascent of length at most three. We
may assume that all such f ′-ascents start or end at y or else we are done. Without loss
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of generality assume that there exists a Uk−1-avoiding maximal f ′-ascent of length at
most three which ends at y. By Lemma 8 there exists a maximal f ′-ascent λ = aby
or λ = acby such that f ′(by) = maxv∈N(y){f ′(vy)} and a ∈ V (Sk−1)−Uk−1. If λ is a
maximal f -ascent, then we are done so we may assume that either

f(yu4) > f(by) or f(yy4) > f(by). (1)

• Suppose f(yu4) > f(by). Then f(yu4) = maxv∈N(y)−y4
{f(vy)}.

◦ If f(y4u4) < f(u4y), then either y4u4y or x4y4u4y is a US-avoiding maximal
f -ascent.

◦ Suppose f(y4u4) > f(u4y). Then f(x4y4) > f(y4u4), or else x4y4u4 is a
US-avoiding maximal f -ascent.

- If f(yy4) > f(y4x4), then f(yy4) = maxv∈N(y){f(vy)} and x4y4y is a
US-avoiding a maximal f -ascent.

- If f(yy4) < f(y4x4), then either xyy4x4 (if f(xy) < f(yy4)) or y4yx
(if f(xy) > f(yy4)) is a US-avoiding maximal f -ascent.

• Suppose then that f(yu4) < f(by). Then by (1), f(yy4) > f(by) and f(yy4) =
maxv∈N(y){f(vy)}. This implies either xyy4x4 (if f(yy4) < f(y4x4)) or x4y4y
(if f(yy4) > f(y4x4)) is a maximal f -ascent, neither of which starts or ends in
US.

Secondly, suppose that S is constructed from Sk−1 by joining y ∈ Yk−1 to the
vertices v3 and u3 of a new edge u3v3. Then US = Uk−1 ∪ {u3}. Let S ′ be the
subgraph of S induced by {x, y, v3, u3}, f ′ the edge ordering of S ′ induced by f ,
and f ′′ the edge ordering of Sk−1 induced by f . Note that S ′ ∼= S1 ∈ S1. Let
US′ = {u3}. By the induction hypothesis, there exists a u3-avoiding maximal f ′-
ascent α of length at most three. We may assume that α either starts or ends
at y, or else we are done. Without loss of generality assume that α starts at y.
Necessarily, f ′(yx) > f ′(yu3) and α = yu3v3. Furthermore, we may assume that
f ′(yv3) > f ′(yu3), or else f ′(yv3) < f(yu3) < f(u3v3) and v3yx is a US-avoiding
maximal f -ascent of length two and we are done. Thus f ′(yu3) = minv∈N(y){f ′(vy)}.

By the induction hypothesis, there exists a Uk−1-avoiding maximal f ′′-ascent λ of
length at most three in Sk−1. We may assume that λ starts or ends at y or else we are
done. If λ starts at y, then by Lemma 8 there exists a maximal f ′′-ascent λ′ = aby
or λ′ = acby such that f ′′(by) = minv∈N(y){f ′′(vy)} and a ∈ V (Sk−1) − Uk−1. This
implies either λ′ or α is a US-avoiding maximal f -ascent of length at most three.
Assume then that λ ends at y, and furthermore, that all Uk−1-avoiding maximal f ′′-
ascents of length at most three end at y. Then there exists an edge vy ∈ E(Sk−1) such
that f ′′(vy) < f ′(yu3) otherwise α is a US-avoiding maximal f -ascent of length two
and we are done. Let wy be the edge in Sk−1 such that f ′′(wy) = minv∈N(y){f ′′(vy)}.
Then f ′′(wy) < f ′(yu3) < f ′(yv3) which implies f(wy) = minv∈N(y){f(vy)}. Recall
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y′

v3y

u3

Sk−1

x

x′

u′

Figure 5: S is constructed from Sk−1 by joining y to u3 and v3 of a new edge {u3, v3}.

that we have assumed S is constructed using only O3 and O4, and that for any
graph in S, each vertex in y ∈ YS is involved in O3 at most once. Thus the edge
wy was introduced by O4, which implies either w = u′ ∈ Uk−1 and is adjacent to a
vertex y′ ∈ Yk−1, or w = y′ ∈ Yk−1 and is adjacent to a vertex u′ ∈ Uk−1. In either
case, let x′ be the vertex of degree one adjacent to y′ – see Figure 5.

Suppose w = y′. If f(x′y′) < f(y′y), then, since f(y′y) < f(xy), x′y′yx is
a US-avoiding maximal f -ascent of length three. If f(x′y′) > f(y′y), then, since
f(y′y) = minv∈N(y){f(vy)}, yy′x′ is a US-avoiding maximal f -ascent of length two.

Suppose then that w = u′. Let G1 be the component of S − y containing w,
and G′

1 the subgraph of S induced by V (G1) ∪ {y, x}. Then G′
1
∼= Sj ∈ Sj for some

1 ≤ j < k. Let UG′
1

= USj
and f ′

1 be the edge ordering of G′
1 induced by f . By

the induction hypothesis, there exists a UG′
1
-avoiding maximal f ′

1 ascent of length at
most three in G′

1. Necessarily all UG′
1
-avoiding maximal f ′

1 ascent of length at most
three start or end at y or else we are done. Suppose there exists such an ascent which
starts at y. By Lemma 8 there exists a UG′

1
-avoiding maximal f ′

1 ascent λ of length at
most three whose initial edge is yw = yu′. But since f(yu′) = minv∈N(y){f(yv)}, λ is
also a US-avoiding maximal f -ascent which is a contradiction. Hence we may assume
that there exists a UG′

1
-avoiding maximal f ′

1-ascent λ of length at most three which
ends at y. Since f ′

1(u
′y) = minv∈N(y){f ′

1(vy)}, f ′
1(u

′y) > f ′
1(xy) and the last edge of

λ is y′y. This implies f ′
1(yy′) > f ′

1(xy) or equivalently, f(y′y) > f(yx). Necessarily,
f(x′y′) < f(y′y), or else xyy′x′ is a US-avoiding maximal f -ascent of length at most
three. Now we look at three cases for the value of f(y′u′). In these cases we assume
that degS(y′) > 3 or else either xyy′ (if f(y′u′) < f(yy′)) or yu′y′ (if f(y′u′) > f(yy′))
is a US-avoiding maximal f -ascent.

Case 1 f(yu′) < f(y′u′) < f(x′y′). Then yu′y′x′ is a US-avoiding maximal f -ascent.

We define the following to aid us in the next two cases. Let H1 be the component
of Sk−1 − y′ containing w, H ′

1 the the subgraph of Sk−1 induced by V (H1) ∪ {y′, x′},
and H ′

2 the subgraph of Sk−1 induced by V (Sk−1) − V (H1). Then each Hi ∈ S� for
some 1 ≤ � < k. If H ′

i
∼= S� ∈ S�, then let UH′

i
= U� and fi be the edge ordering of
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Figure 6: A graph G constructed from S0 by performing O3 twice at y0, and an edge
labelling f of G for which every maximal f -ascent of length at most three starts or
ends in UG = {u3, u

′
3}.

H ′
i induced by f .

Case 2 f(y′u′) < f(x′y′) and f(y′u′) < f(u′y). Then, in H ′
1, y′u′yx is a UH′

1
-avoiding

maximal f1-ascent starting at y′ and xyy′ is a UH′
1
-avoiding maximal f1-ascent ending

at y. By the induction hypothesis, in H2, there exists a UH′
2
-avoiding maximal f2-

ascent of length at most three. We may assume that all such f2-ascents start or end at
y′. Without loss of generality suppose there exists a UH′

2
-avoiding maximal f2-ascent

of length at most three that ends at y′. By Lemma 8, there exists a UH′
2
-avoiding

maximal f2-ascent λ = aby′ or λ = acby′ such that f2(by
′) = maxv∈N(y′){f2(vy′)}.

Thus, in S, either λ or xyy′ is a US-avoiding maximal f -ascent of length at most
three.

Case 3 f(y′u′) > f(x′y′). Then either xyy′ (if f(y′u′) < f(yy′)) or yu′y′ (if f(y′u′) >
f(yy′)) is a UH′

1
-avoiding maximal f1-ascent which ends at y′. Again, by the induction

hypothesis, in H2, there exists a UH′
2
-avoiding maximal f2-ascent of length at most

three and we assume that all such f2-ascents start or end at y′. Suppose there
exists a UH′

2
-avoiding maximal f2-ascent of length at most three that ends at y′.

By Lemma 8, there exists a UH′
2
-avoiding maximal f2-ascent λ = aby′ or λ = acby′

such that f2(by
′) = maxv∈N(y′){f2(vy′)}. Therefore, in S, either λ, xyy′, or xu′y′ is

a US-avoiding maximal f -ascent of length at most three. Suppose then that there
exists a UH′

2
-avoiding maximal f2-ascent of length at most three that starts at y′.

By Lemma 8, there exists a UH′
2
-avoiding maximal f2-ascent λ = aby′ or λ = acby′

such that f2(by
′) = minv∈N(y′){f2(vy′)}. Necessarily, f(by′) < f(y′x′), and since

f(y′y) > f(y′x′) and f(y′u′) > f(y′x′), λ is a US-avoiding maximal f -ascent of
length at most three.

In the construction of Sk ∈ Sk, any vertex y ∈ Yk is involved in O3 at most once.
If not, then Uk is no longer a 3-kernel of Sk. Consider the graph G shown in Figure 6,
which is constructed from S0 by performing O3 twice at y0. Let UG = {u3, u

′
3}. For

the edge labelling f of G shown in the figure, any maximal f -ascent of length at
most three starts or ends in UG.
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Recall that the graphs GS ∈ G are obtained from a graph S ∈ S by performing
operations O6 and O7. We now show that these graphs also have depression at most
three.

Theorem 10. For each GS ∈ G, ε(G) ≤ 3.

Proof. Let G′
S be constructed from S ∈ S by adding n ≥ 0 edges between vertices in

YG′
S

= YS and let UG′
S

= US. If n = 0, then G′
S ∈ S and by Theorem 9, ε(G′(S)) ≤ 3

and UG′
S

is a k-kernel of G′
S, where k ∈ {2, 3}.

Suppose that n ≥ 1. Let f be an edge ordering of G′
S, and f ′ the edge ordering

of S induced by f . If there exists a (US ∪ YS)-avoiding maximal f ′-ascent of length
at most three, then h(f) ≤ 3. Suppose then that there does not exist a (US ∪ YS)-
avoiding f ′-ascent of length at most three. By Theorem 9 there exists a US-avoiding
maximal f ′-ascent of length at most three in S, thus all maximal US-avoiding (2, f ′)-
or (3, f ′)-ascents start or end in YS.

Without loss of generality we assume there exists a maximal US-avoiding ascent
of length at most three which ends in YS. By Lemma 8, S has property P1, which
implies that there exists a maximal f ′-ascent λ = aby1 or λ = acby1 such that
y1 ∈ YS and f ′(by1) = maxv∈NS (y1){f ′(vy1)}. Suppose that in G′

S there exists an
edge y1w such that f(y1w) = maxv∈NG′

S
(y1){f(vy1)} > f(by1) and w is not a vertex

of λ. Necessarily, y1w /∈ E(S) which implies w ∈ YS. Let w = y2, and x1 and x2 be
the vertices of degree one adjacent to y1 and y2 respectively. Since λ is a maximal
f ′-ascent in S, it follows that f(y1x1) < f(by1) < f(y1y2). Therefore, either x1y1y2x2

(if f(y2x2) > f(y1y2)) or x2y2y1 (if f(y2x2) < f(y1y2)) is a UG′
S
-avoiding maximal

f -ascent. Hence UG′
S

is a k-kernel of G′
S, where k ∈ {2, 3}.

Let GS ∈ G be constructed from G′
S by adding any set A = A(GS) of new

vertices to G′
S and arbitrary edges between vertices in A∪UG′

S
. Then by Theorem 3,

ε(GS) ≤ 3.

Note that κ(GS) = 1 for each GS ∈ GS. We also note that for each graph G
in the classes of graphs with depression three defined in [6], [10], and [13], either
diam(L(G)) = 2 or κ(G) = 1. The graph H shown in Figure 7 is an example
of a graph with κ(H) > 1, diam(L(H)) > 2, and ε(H) = 3. We provide the
following argument to support the claim that ε(H) = 3. Suppose to the contrary
that ε(H) > 3. Let f : E(H) → {1, 2, ..., 8} be an edge ordering of H such that
every maximal f -ascent has length at least 4. Since e1 and e8 are the only edges in
H which are at distance three in L(H), it follows that {f(e1), f(e8)} = {1, 8}. If
not, then there exists a maximal f -ascent of length at most three which begins and
ends with the edges assigned 1 and 8 under f , a contradiction.

Without loss of generality we may assume that f(e1) = 1 and f(e8) = 8. Without
loss of generality we may also assume that f(e5) = max{f(e2), f(e3), f(e4), f(e5)}.
Then, since h(f) > 3 and f(e4) < f(e5), it follows that e7e2e4e5 is a maximal f -
ascent. However, this implies e1e2 is a maximal f -ascent, a contradiction.
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Figure 7: A graph H with κ(H) > 1, diam(L(H)) > 2, and ε(H) = 3.

5 Open Problems

1. Characterize the class of graphs with depression three.

2. Does there exist a finite number of operations of the type O1-O7 that would
yield all graphs with depression three?

3. Use a similar construction to produce large classes of graphs with depression
k ≥ 4.
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