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Abstract

A graph G is fractional ID-[a, b]-factor-critical if G−I includes a fractional
[a, b]-factor for every independent set I of G. In this paper, it is proved

that if α(G) ≤ 4b(δ(G)−a+1)
(a+1)2+4b

, then G is fractional ID-[a, b]-factor-critical.
Furthermore, it is shown that the result is best possible in some sense.

1 Introduction

We only consider finite undirected graphs without loops or multiple edges. Let
G = (V (G), E(G)) be a graph, where V (G) and E(G) denote its vertex set and edge
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set, respectively. For x ∈ V (G), the set of vertices adjacent to x in G is said to
be the neighborhood of x, denoted by NG(x), and |NG(x)| is said to be the degree
of x in G, denoted by dG(x). We write NG[x] = NG(x) ∪ {x}. We use α(G) and
δ(G) to denote the independence number and the minimum degree of G, respectively.
For a subset S ⊆ V (G), the subgraph of G induced by S is denoted by G[S] and
G − S = G[V (G) \ S]. Let A and B be disjoint subsets of V (G). Then we use
eG(A, B) to denote the number of edges that join a vertex in A and a vertex in B.
Let r be a real number. Recall that �r� is the greatest integer such that �r� ≤ r.

Let a and b be two integers such that 1 ≤ a ≤ b. A spanning subgraph F of G
with a ≤ dF (x) ≤ b for any x ∈ V (G) is an [a, b]-factor of G. Suppose that a = b.
Then F is called a k-factor of G. Let h : E(G) → [0, 1] be a function. Then we call
G[Fh] a fractional [a, b]-factor of G with indicator function h if a ≤ ∑

e�x h(e) ≤ b
holds for every x ∈ V (G), where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional
ID-[a, b]-factor-critical if G− I has a fractional [a, b]-factor for every independent set
I of G. A fractional ID-[k, k]-factor-critical graph is a fractional ID-k-factor-critical
graph. Notation and definitions not given here can be found in [1,2].

Graph factors and fractional factors have attracted a great deal of attention [3–
7]. Sufficient conditions for a graph to be fractional ID-k-factor-critical can be found
in [8–10]. The following result is a sufficient condition for a graph to be fractional
ID-[a, b]-factor-critical.

Theorem 1 ([2]). Let G be a graph of order n, and let a and b be two integers with

1 ≤ a ≤ b. If n ≥ (a + 2b)(a + b − 2) + 1

b
and δ(G) ≥ (a + b)n

a + 2b
, then G is fractional

ID-[a, b]-factor-critical.

Now we proceed to investigate fractional ID-[a, b]-factor-critical graphs, and ob-
tain an independence number and minimum degree condition on the existence of
fractional ID-[a, b]-factor-critical graphs. The main result of the paper is the follow-
ing theorem, which is a generalization of a result presented in [8].

Theorem 2 Let G be a graph, and let 1 ≤ a ≤ b be two integers. If

α(G) ≤ 4b(δ(G) − a + 1)

(a + 1)2 + 4b
,

then G is fractional ID-[a, b]-factor-critical.

If a = b = k in Theorem 2, then we obtain the following corollary.

Corollary 1 ([8]). Let G be a graph, and let k be an integer with k ≥ 1. If

α(G) ≤ 4k(δ(G) − k + 1)

k2 + 6k + 1
,

then G is fractional ID-k-factor-critical.
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2 The Proof of Theorem 2

In order to prove Theorem 2, we rely heavily on the following lemma.

Lemma 2.1 ([11]). Let G be a graph. Then G has a fractional [a, b]-factor if and
only if for every subset S of V (G),

δG(S, T ) = b|S| + dG−S(T ) − a|T | ≥ 0,

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ a} and dG−S(T ) =
∑

x∈T dG−S(x).

Proof of Theorem 2. Let X be an independent set of G and H = G − X.
Obviously, δ(H) ≥ δ(G) − |X|. Theorem 2 holds if and only if H has a fractional
[a, b]-factor. Suppose, to the contrary, that H has no fractional [a, b]-factor. Then
by using Lemma 2.1, there exists some subset S ⊆ V (H) satisfying

δH(S, T ) = b|S| + dH−S(T ) − a|T | ≤ −1, (1)

where T = {x : x ∈ V (H) \ S, dH−S(x) ≤ a}. Clearly, T �= ∅ by (1). Set

h = min{dH−S(x) : x ∈ T}.

From the definition of T , we obtain

0 ≤ h ≤ a.

Claim 1. |S| ≥ δ(G) − α(G) − h.

Proof. We choose x1 ∈ T with dH−S(x1) = h. Thus, we have

δ(H) ≤ dH(x1) ≤ dH−S(x1) + |S| = h + |S|,

that is,
|S| ≥ δ(H) − h. (2)

Note that δ(H) ≥ δ(G) − |X|. Combining this with (2), we have

|S| ≥ δ(G) − |X| − h. (3)

Note that |X| ≤ α(G). Then, using (3) we obtain

|S| ≥ δ(G) − α(G) − h.

This completes the proof of Claim 1.

In the following, we consider the subgraph H [T ] of H induced by T . We write
T1 = H [T ]. Assume dT1(t1) is the minimum value of dT1(t) for any t ∈ T1 and
M1 = NT1 [t1]. Let Ti = H [T ] − ⋃

1≤j<i Mj . Moreover, for i ≥ 2, suppose dTi
(ti) is

the minimum value of dTi
(t) for any t ∈ Ti and Mi = NTi

[ti]. We denote the order of
Mi by mi. We continue these processing until we reach the situation in which Ti = ∅
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for some i, say for i = r + 1. It is obvious that {t1, t2, . . . , tr} is an independent set
of H , and r ≥ 1 by T �= ∅.

We easily prove the following properties.

α(H [T ]) ≥ r, (4)

|T | =
∑

1≤i≤r

mi. (5)

Note that α(G) ≥ α(G[T ]) = α(H [T ]). Combining this with (4), we obtain

α(G) ≥ r. (6)

Now, we prove the following claim.

Claim 2. dH−S(T ) ≥ ∑
1≤i≤r(m

2
i − mi).

Proof. Since our choice of ti implies that all vertices in Mi have degree at least
mi − 1 in Ti, we have

∑

1≤i≤r

(
∑

x∈Mi

dTi
(x)) ≥

∑

1≤i≤r

(m2
i − mi). (7)

So (7) yields

dH−S(T ) ≥
∑

1≤i≤r

(m2
i − mi) +

∑

1≤i<j≤r

eH(Mi, Mj) ≥
∑

1≤i≤r

(m2
i − mi).

This completes the proof of Claim 2.

In the following, we shall consider various cases for the value of h and derive a
contradiction in each case.

Case 1. 0 ≤ h ≤ a − 1.

It is easy to see that

m2
i − (a + 1)mi ≥ −(a + 1)2

4
. (8)

According to Claim 1, Claim 2, (5), (6), (8), 0 ≤ h ≤ a − 1 and the condition

α(G) ≤ 4b(δ(G) − a + 1)

(a + 1)2 + 4b
of Theorem 2, we have

δH(S, T ) = b|S| + dH−S(T ) − a|T |
≥ b(δ(G) − α(G) − h) +

∑

1≤i≤r

(m2
i − mi) − a

∑

1≤i≤r

mi

= b(δ(G) − α(G) − h) +
∑

1≤i≤r

(m2
i − (a + 1)mi)
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≥ b(δ(G) − α(G) − h) −
∑

1≤i≤r

(a + 1)2

4

= b(δ(G) − α(G) − h) − (a + 1)2

4
r

≥ b(δ(G) − α(G) − h) − (a + 1)2

4
α(G)

= b(δ(G) − h) − (a + 1)2 + 4b

4
α(G)

≥ b(δ(G) − a + 1) − (a + 1)2 + 4b

4
α(G)

≥ b(δ(G) − a + 1) − (a + 1)2 + 4b

4
· 4b(δ(G) − a + 1)

(a + 1)2 + 4b
= 0,

which contradicts (1).

Case 2. h = a.

By using (1), we obtain

−1 ≥ δH(S, T ) = b|S| + dH−S(T ) − a|T |
≥ b|S| + h|T | − a|T | = b|S| ≥ 0,

which is a contradiction. The proof of Theorem 2 is complete. It is obvious that

4b(δ(G) − a + 1)

(a + 1)2 + 4b
< α(G)

= t + 1

=
⌊4b(δ(G) − a + 1)

(a + 1)2 + 4b

⌋
+ 1

≤ 4b(δ(G) − a + 1)

(a + 1)2 + 4b
+ 1.

We take a vertex xi (1 ≤ i ≤ t + 1) in every Ka+1. Set X = {x1, x2, . . . , xt+1}.
Apparently, X is an independent set of G. We write H = G − X = Kt ∨ (t + 1)Ka,
S = V (Kt) and T = V ((t + 1)Ka). Then we obtain |S| = t, |T | = (t + 1)a,
dH−S(T ) = a(a − 1)(t + 1). Note that (b − a)t ≤ a − 1. Thus, we have

δH(S, T ) = b|S| + dH−S(T ) − a|T |
= bt + a(a − 1)(t + 1) − (t + 1)a2 = (b − a)t − a ≤ −1 < 0.

In view of Lemma 2.1, H has no fractional [a, b]-factor, and so the result in Theorem 2
is sharp.
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