A result on fractional ID-[a,b]-factor-critical graphs*

Sizhong Zhou ${ }^{\dagger}$
School of Mathematics and Physics
Jiangsu University of Science and Technology
Mengxi Road 2, Zhenjiang, Jiangsu 212003
P. R. China
zsz_cumt@163.com

Jie Wu
Department of Science and Technology Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003
P. R. China

Quanru Pan

School of Mathematics and Physics
Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003
P. R. China

Abstract

A graph G is fractional ID-[a,b]-factor-critical if $G-I$ includes a fractional $[a, b]$-factor for every independent set I of G. In this paper, it is proved that if $\alpha(G) \leq \frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b}$, then G is fractional ID-[$\left.a, b\right]$-factor-critical. Furthermore, it is shown that the result is best possible in some sense.

1 Introduction

We only consider finite undirected graphs without loops or multiple edges. Let $G=(V(G), E(G))$ be a graph, where $V(G)$ and $E(G)$ denote its vertex set and edge

[^0]set, respectively. For $x \in V(G)$, the set of vertices adjacent to x in G is said to be the neighborhood of x, denoted by $N_{G}(x)$, and $\left|N_{G}(x)\right|$ is said to be the degree of x in G, denoted by $d_{G}(x)$. We write $N_{G}[x]=N_{G}(x) \cup\{x\}$. We use $\alpha(G)$ and $\delta(G)$ to denote the independence number and the minimum degree of G, respectively. For a subset $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S]$ and $G-S=G[V(G) \backslash S]$. Let A and B be disjoint subsets of $V(G)$. Then we use $e_{G}(A, B)$ to denote the number of edges that join a vertex in A and a vertex in B. Let r be a real number. Recall that $\lfloor r\rfloor$ is the greatest integer such that $\lfloor r\rfloor \leq r$.

Let a and b be two integers such that $1 \leq a \leq b$. A spanning subgraph F of G with $a \leq d_{F}(x) \leq b$ for any $x \in V(G)$ is an $[a, b]$-factor of G. Suppose that $a=b$. Then F is called a k-factor of G. Let $h: E(G) \rightarrow[0,1]$ be a function. Then we call $G\left[F_{h}\right]$ a fractional $[a, b]$-factor of G with indicator function h if $a \leq \sum_{e \ni x} h(e) \leq b$ holds for every $x \in V(G)$, where $F_{h}=\{e \in E(G): h(e)>0\}$. A graph G is fractional ID- $[a, b]$-factor-critical if $G-I$ has a fractional $[a, b]$-factor for every independent set I of G. A fractional ID- $[k, k]$-factor-critical graph is a fractional ID- k-factor-critical graph. Notation and definitions not given here can be found in [1,2].

Graph factors and fractional factors have attracted a great deal of attention [37]. Sufficient conditions for a graph to be fractional ID- k-factor-critical can be found in [8-10]. The following result is a sufficient condition for a graph to be fractional ID-[a, $b]$-factor-critical.

Theorem 1 ([2]). Let G be a graph of order n, and let a and b be two integers with $1 \leq a \leq b$. If $n \geq \frac{(a+2 b)(a+b-2)+1}{b}$ and $\delta(G) \geq \frac{(a+b) n}{a+2 b}$, then G is fractional ID-[a, b]-factor-critical.

Now we proceed to investigate fractional ID-[$a, b]$-factor-critical graphs, and obtain an independence number and minimum degree condition on the existence of fractional ID- $[a, b]$-factor-critical graphs. The main result of the paper is the following theorem, which is a generalization of a result presented in [8].

Theorem 2 Let G be a graph, and let $1 \leq a \leq b$ be two integers. If

$$
\alpha(G) \leq \frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b}
$$

then G is fractional ID-[a, b]-factor-critical.
If $a=b=k$ in Theorem 2, then we obtain the following corollary.
Corollary 1 ([8]). Let G be a graph, and let k be an integer with $k \geq 1$. If

$$
\alpha(G) \leq \frac{4 k(\delta(G)-k+1)}{k^{2}+6 k+1}
$$

then G is fractional ID-k-factor-critical.

2 The Proof of Theorem 2

In order to prove Theorem 2, we rely heavily on the following lemma.
Lemma 2.1 ([11]). Let G be a graph. Then G has a fractional $[a, b]$-factor if and only if for every subset S of $V(G)$,

$$
\delta_{G}(S, T)=b|S|+d_{G-S}(T)-a|T| \geq 0
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq a\right\}$ and $d_{G-S}(T)=\sum_{x \in T} d_{G-S}(x)$.
Proof of Theorem 2. Let X be an independent set of G and $H=G-X$. Obviously, $\delta(H) \geq \delta(G)-|X|$. Theorem 2 holds if and only if H has a fractional $[a, b]$-factor. Suppose, to the contrary, that H has no fractional $[a, b]$-factor. Then by using Lemma 2.1, there exists some subset $S \subseteq V(H)$ satisfying

$$
\begin{equation*}
\delta_{H}(S, T)=b|S|+d_{H-S}(T)-a|T| \leq-1, \tag{1}
\end{equation*}
$$

where $T=\left\{x: x \in V(H) \backslash S, d_{H-S}(x) \leq a\right\}$. Clearly, $T \neq \emptyset$ by (1). Set

$$
h=\min \left\{d_{H-S}(x): x \in T\right\} .
$$

From the definition of T, we obtain

$$
0 \leq h \leq a
$$

Claim 1. $|S| \geq \delta(G)-\alpha(G)-h$.
Proof. We choose $x_{1} \in T$ with $d_{H-S}\left(x_{1}\right)=h$. Thus, we have

$$
\delta(H) \leq d_{H}\left(x_{1}\right) \leq d_{H-S}\left(x_{1}\right)+|S|=h+|S|
$$

that is,

$$
\begin{equation*}
|S| \geq \delta(H)-h \tag{2}
\end{equation*}
$$

Note that $\delta(H) \geq \delta(G)-|X|$. Combining this with (2), we have

$$
\begin{equation*}
|S| \geq \delta(G)-|X|-h \tag{3}
\end{equation*}
$$

Note that $|X| \leq \alpha(G)$. Then, using (3) we obtain

$$
|S| \geq \delta(G)-\alpha(G)-h
$$

This completes the proof of Claim 1.
In the following, we consider the subgraph $H[T]$ of H induced by T. We write $T_{1}=H[T]$. Assume $d_{T_{1}}\left(t_{1}\right)$ is the minimum value of $d_{T_{1}}(t)$ for any $t \in T_{1}$ and $M_{1}=N_{T_{1}}\left[t_{1}\right]$. Let $T_{i}=H[T]-\bigcup_{1 \leq j<i} M_{j}$. Moreover, for $i \geq 2$, suppose $d_{T_{i}}\left(t_{i}\right)$ is the minimum value of $d_{T_{i}}(t)$ for any $t \in T_{i}$ and $M_{i}=N_{T_{i}}\left[t_{i}\right]$. We denote the order of M_{i} by m_{i}. We continue these processing until we reach the situation in which $T_{i}=\emptyset$
for some i, say for $i=r+1$. It is obvious that $\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}$ is an independent set of H, and $r \geq 1$ by $T \neq \emptyset$.

We easily prove the following properties.

$$
\begin{align*}
& \alpha(H[T]) \geq r \tag{4}\\
& |T|=\sum_{1 \leq i \leq r} m_{i} \tag{5}
\end{align*}
$$

Note that $\alpha(G) \geq \alpha(G[T])=\alpha(H[T])$. Combining this with (4), we obtain

$$
\begin{equation*}
\alpha(G) \geq r . \tag{6}
\end{equation*}
$$

Now, we prove the following claim.
Claim 2. $\quad d_{H-S}(T) \geq \sum_{1 \leq i \leq r}\left(m_{i}^{2}-m_{i}\right)$.
Proof. Since our choice of t_{i} implies that all vertices in M_{i} have degree at least $m_{i}-1$ in T_{i}, we have

$$
\begin{equation*}
\sum_{1 \leq i \leq r}\left(\sum_{x \in M_{i}} d_{T_{i}}(x)\right) \geq \sum_{1 \leq i \leq r}\left(m_{i}^{2}-m_{i}\right) \tag{7}
\end{equation*}
$$

So (7) yields

$$
d_{H-S}(T) \geq \sum_{1 \leq i \leq r}\left(m_{i}^{2}-m_{i}\right)+\sum_{1 \leq i<j \leq r} e_{H}\left(M_{i}, M_{j}\right) \geq \sum_{1 \leq i \leq r}\left(m_{i}^{2}-m_{i}\right) .
$$

This completes the proof of Claim 2.
In the following, we shall consider various cases for the value of h and derive a contradiction in each case.
Case 1. $0 \leq h \leq a-1$.
It is easy to see that

$$
\begin{equation*}
m_{i}^{2}-(a+1) m_{i} \geq-\frac{(a+1)^{2}}{4} \tag{8}
\end{equation*}
$$

According to Claim 1, Claim 2, (5), (6), (8), $0 \leq h \leq a-1$ and the condition $\alpha(G) \leq \frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b}$ of Theorem 2, we have

$$
\begin{aligned}
\delta_{H}(S, T) & =b|S|+d_{H-S}(T)-a|T| \\
& \geq b(\delta(G)-\alpha(G)-h)+\sum_{1 \leq i \leq r}\left(m_{i}^{2}-m_{i}\right)-a \sum_{1 \leq i \leq r} m_{i} \\
& =b(\delta(G)-\alpha(G)-h)+\sum_{1 \leq i \leq r}\left(m_{i}^{2}-(a+1) m_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq b(\delta(G)-\alpha(G)-h)-\sum_{1 \leq i \leq r} \frac{(a+1)^{2}}{4} \\
& =b(\delta(G)-\alpha(G)-h)-\frac{(a+1)^{2}}{4} r \\
& \geq b(\delta(G)-\alpha(G)-h)-\frac{(a+1)^{2}}{4} \alpha(G) \\
& =b(\delta(G)-h)-\frac{(a+1)^{2}+4 b}{4} \alpha(G) \\
& \geq b(\delta(G)-a+1)-\frac{(a+1)^{2}+4 b}{4} \alpha(G) \\
& \geq b(\delta(G)-a+1)-\frac{(a+1)^{2}+4 b}{4} \cdot \frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b} \\
& =0,
\end{aligned}
$$

which contradicts (1).
Case 2. $h=a$.
By using (1), we obtain

$$
\begin{aligned}
-1 & \geq \delta_{H}(S, T)=b|S|+d_{H-S}(T)-a|T| \\
& \geq b|S|+h|T|-a|T|=b|S| \geq 0,
\end{aligned}
$$

which is a contradiction. The proof of Theorem 2 is complete. It is obvious that

$$
\begin{aligned}
\frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b} & <\alpha(G) \\
& =t+1 \\
& =\left\lfloor\frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b}\right\rfloor+1 \\
& \leq \frac{4 b(\delta(G)-a+1)}{(a+1)^{2}+4 b}+1
\end{aligned}
$$

We take a vertex $x_{i}(1 \leq i \leq t+1)$ in every K_{a+1}. Set $X=\left\{x_{1}, x_{2}, \ldots, x_{t+1}\right\}$. Apparently, X is an independent set of G. We write $H=G-X=K_{t} \vee(t+1) K_{a}$, $S=V\left(K_{t}\right)$ and $T=V\left((t+1) K_{a}\right)$. Then we obtain $|S|=t,|T|=(t+1) a$, $d_{H-S}(T)=a(a-1)(t+1)$. Note that $(b-a) t \leq a-1$. Thus, we have

$$
\begin{aligned}
\delta_{H}(S, T) & =b|S|+d_{H-S}(T)-a|T| \\
& =b t+a(a-1)(t+1)-(t+1) a^{2}=(b-a) t-a \leq-1<0 .
\end{aligned}
$$

In view of Lemma 2.1, H has no fractional $[a, b]$-factor, and so the result in Theorem 2 is sharp.

Acknowledgments

The authors would like to thank the anonymous referees and the editor for their helpful comments and valuable suggestions in improving the quality of this paper.

References

[1] L. Lovasz and M. D. Plummer, Matching Theory, Elsevier Science Publishers, B.V. North Holland, 1986.
[2] S. Zhou, Z. Sun and H. Liu, A minimum degree condition for fractional ID-[a, b]-factor-critical graphs, Bull. Austral. Math. Soc. 86(2) (2012), 177-183.
[3] O. Fourtounelli and P. Katerinis, The existence of k-factors in squares of graphs, Discrete Math. 310(23) (2010), 3351-3358.
[4] T. Niessen, Minimum degree, independence number and regular factors, Graphs Combin. 11 (1995), 367-378.
[5] J. Cai and G. Liu, Stability number and fractional f-factors in graphs, Ars Combin. 80 (2006), 141-146.
[6] S. Zhou, A new neighborhood condition for graphs to be fractional (k, m)-deleted graphs, Applied Math. Letters 25(3) (2012), 509-513.
[7] J. Ekstein, P. Holub, T. Kaiser, L. Xiong and S. Zhang, Star subdivisions and connected even factors in the square of a graph, Discrete Math. 312(17) (2012), 2574-2578.
[8] S. Zhou, L. Xu and Z. Sun, Independence number and minimum degree for fractional ID- k-factor-critical graphs, Aequationes Mathematicae 84(1-2) (2012), 71-76.
[9] S. Zhou, Binding numbers for fractional ID-k-factor-critical graphs, Acta Mathematica Sinica, English Series, in press.
[10] R. Chang, G. Liu and Y. Zhu, Degree conditions of fractional ID- k-factor-critical graphs, Bulletin of the Malaysian Mathematical Sciences Society 33(3)(2010), 355-360.
[11] G. Liu and L. Zhang, Fractional (g, f)-factors of graphs, Acta Mathematica Scientia 21B(4) (2001), 541-545.

[^0]: * Supported by the National Natural Science Foundation of China (Grant No. 11371009) and the National Social Science Foundation of China (Grant No.11BGL039).
 \dagger Corresponding author.

