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Abstract

On a weighted graph G, a total acquisition move transfers weight from
a vertex u to a neighbor v provided that the weight on v is at least as
much as the weight on u. Starting with all vertices having weight 1, the
total acquisition number of G, denoted at(G), is the minimum number of
vertices with positive weight after a sequence of total acquisition moves.
In [D. Lampert and P. Slater, Congr. Numer. 109 (1995), 203–210] it
is shown that at(G) ≥

⌈
|V (G)|/2Δ(G)

⌉
for all G, and P5�P5 is given as

an example where this bound is not sharp. In this paper, we determine
at(Pn�Pm) exactly when n and m are not 5 and give nontrivial upper
and lower bounds on at(Pn�P5).
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1 Introduction

Consider a collection of military bases, some of which are joined by roads. If there
are troops at each of the bases, we consider the following model for withdrawing the
troops. If two bases, u and v are joined by a road, then the troops at u can move
to v only if there are at least as many troops at v as there are at u. Furthermore, if
troops move from u to v, then all of the troops at u must move to v simultaneously.
The obvious goal in such a withdrawal model is to minimize the number of bases
that have troops.

Let G be a graph with weights assigned to its vertices. A total acquisition move
on G moves all of the weight from a vertex u to a vertex v provided that u and v are
adjacent and the weight on v is at least the weight on u. The total acquisition number
of G, denoted at(G), is the minimum number of vertices with positive weight after a
sequence of total acquisition moves, beginning with the weight assignment where all
vertices have weight 1. A sequence of total acquisition moves on G that realizes at(G)
is optimal. More generally, an acquisition move on a vertex-weighted graph moves
weight from u to a neighbor v provided that the weight on v is at least the weight
on u. If the moves permitted allow only integer amounts of weight to move, they
are called unit acquisition moves, and if any positive amount of weight is allowed to
move, then they are called fractional acquisition moves. The unit acquisition number
and fractional acquisition number of a graph are defined analogously to the total
acquisition number.

Lampert and Slater introduced acquisition parameters in [1], in which they es-
tablished a sharp upper bound on the total acquisition number of an n-vertex graph.
LeSaulnier, et al. [2] obtained further results on total acquisition numbers, including
bounds on the total acquisition number of trees based on their diameter, sufficient
conditions for a graph to have total acquisition number 1, and bounds on the total
acquisition numbers of graphs with diameter 2. LeSaulnier and West [3] then char-
acterized the trees that realize the upper bound from [1]. Unit acquisition numbers
are explored in [6]. Surprisingly, the case of fractional acquisition is much more
tractable. Wenger [5] proved that every connected graph with maximum degree at
least 3 has fractional acquisition number 1. In contrast, Slater and Wang [4] proved
that for a given graph G, the question “Is at(G) = 1?” is NP-complete.

Lampert and Slater observed that the maximum weight that a vertex of degree d
can acquire via total acquisition moves is 2d. Consequently, at(G) ≥

⌈
|V (G)|/2Δ(G)

⌉
for all graphs G, where Δ(G) denotes the maximum degree of G. As shown in [1],
this bound is sharp on the 4 × 4 grid and not sharp on the 5 × 5 grid.

Let G�H denote the Cartesian product of two graphs. Thus Pn�Pm is the n×m-
grid. In this paper, we determine at(Pn�Pm) when n and m are not 5. We also prove
nontrivial upper and lower bounds on at(Pn�P5).

Throughout this paper we adopt the convention that m ≤ n in Pn�Pm. We
represent Pn�Pm as a portion of the integer lattice, with vertices lying at the points
(x, y) satisfying x ∈ {1, . . . , n} and y ∈ {1, . . . , m}; we let vx,y denote the vertex
at the point (x, y). Two vertices are adjacent if their positions differ in exactly one
coordinate by exactly 1. When convenient, we refer to the vertices vi,j with small
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values of i as the left side of Pn�Pm and the vertices vi,j with large values of i as the
right side of Pn�Pm. Similarly we refer to the set of vertices {vi,1 : 1 ≤ i ≤ n} as
the bottom row of Pn�Pm and the set of vertices {vi,m : 1 ≤ i ≤ n} as the top row
of Pn�Pm. The total acquisition move transferring weight from u to v is denoted by
u → v. Furthermore, since this paper is concerned only with total acquisition, we
will refer to total acquisition moves simply as acquisition moves.

Given a graph G satisfying at(G) = 1, there may be several optimal sequences of
acquisition moves on G. If v → u is the last acquisition move in an optimal sequence
of acquisition moves on G, then we refer to u as a terminal vertex of G with terminal
edge uv.

Section 2 contains preliminary results and lemmas that are used throughout the
paper. The main results are in Section 3 with large grids discussed in Section 3.1,
Pn�P6 discussed in Section 3.2, Pn�P3 discussed in Section 3.3, and Pn�P5 discussed
in Section 3.4. Throughout, we follow the terminology and notation of [7].

2 Preliminary results, acquisition trees, and acquisition
tilings

We begin with a formal statement of the bound on the maximum amount of weight
that a vertex of degree d can acquire and the corresponding lower bound on the total
acquisition number from [1].

Lemma 1 (Lampert and Slater). If a vertex v has degree d, then the maximum
weight that v can acquire is 2d.

Theorem 2 (Lampert and Slater). For all graphs G,

at(G) ≥
⌈
|V (G)|
2Δ(G)

⌉
.

It is clear that the set of edges used in a sequence of acquisition moves on a graph
G corresponds to the edge set of a spanning forest of G. We call a tree an acquisition
tree if it has total acquisition number 1. Thus, each component of the spanning forest
of G corresponding to a sequence of total acquisition moves is an acquisition tree.
It follows that at(G) is equal to the minimum number of components in a spanning
forest of G consisting only of acquisition trees.

Let T be an acquisition tree satisfying Δ(T ) ≤ 4, and let T ′ be an embedding of
T in the integer lattice. By definition, it is possible to move the weight from exactly
those vertices in T ′ to a single vertex using acquisition moves. We choose to think
of T ′ as a tile in the plane, and call T ′ an acquisition tile. An example is in Figure 1.
We also say that the tile T ′ covers the vertices in the embedding of T . Throughout
the paper, many different tiles are used, but it is straightforward to prove that each
is an acquisition tile.

By studying acquisition tiles in the integer lattice, we are able to translate the
problem of finding an optimal sequence of acquisition moves on Pn�Pm to that of
finding a tiling of the n × m grid using acquisition tiles. We call such a tiling an
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Figure 1: An acquisition tree, an embedding in the integer lattice, and the corre-
sponding acquisition tile.

acquisition tiling. An acquisition tiling of Pn�Pm is optimal if it uses at(Pn�Pm)
tiles, and efficient if every tile in the tiling covers 16 vertices.

Frequently it is informative to study acquisition parameters by keeping track of a
particular unit of weight as it moves about the graph. We model this by considering
each unit of weight to be a chip that is labeled by its initial vertex.

Lemma 3. Let cx be the chip corresponding to the initial unit of weight at vertex x
in an acquisition tree T , and assume that a sequence of acquisition moves transfers
cx to the vertex u, with x �= u. If x = x1, x2, . . . , xn = u is the path that cx moves
along to reach the vertex u, then

1. the weight at u is at least 2n−1 when cx reaches u, and

2. d(xi) ≥ i for all i ∈ {1, . . . , n − 1}.

A corollary of Lemma 3 is that if an acquisition tree has diameter 7, then it must
contain at least 16 vertices.

Proof. We prove both results by induction on n. If x2 = u, both results hold trivially.
Now assume that n ≥ 3. Since cx reaches xn−1 along the path x = x1, x2, . . . , xn−1,
we conclude that the move xn−1 → u transfers weight at least 2n−2. Therefore, u has
weight at least 2n−2 prior to the move xn−1 → u, and thus u has weight at least 2n−1

when cx reaches u. Since xn−1 transfers weight at least 2n−2 to u, it follows from
Lemma 1 that xn−1 acquires weight from at least n − 2 neighbors prior to the move
xn−1 → u. Hence d(xn−1) ≥ n − 1.

Lemma 4. Let u be the terminal vertex of an acquisition tree T . If d(u) = k, then
there is at most one vertex x in T such that d(x, u) ≥ k.

Proof. Since d(u) = k, the maximum amount of weight that u can acquire is 2k. It
follows from Lemma 3 that there is no vertex x in T such that d(x, u) > k. Suppose
that there are two vertices x and y that are distance k from u. Let z be the first
vertex that acquires the chips from x and y in an optimal sequence of acquisition
moves on T . Since d(x, u) = d(y, u), it follows that d(x, z) = d(y, z). Therefore the
chips from x and y reach z via acquisition moves on two distinct edges. Without loss
of generality, assume that cx reaches z before cy. Letting d(x, z) = d(y, z) = �, it
follows from Lemma 3, that z has weight at least 2� + 2�−1 when cy reaches z. Thus
u will acquire weight at least (2� + 2�−1) · 2k−� = 2k + 2k−1, a contradiction.
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Lemma 5. Let T be an acquisition tree with maximum degree 4 and 16 vertices, and
let u be a terminal vertex of T with terminal edge uv. The following hold:

1. d(u) = d(v) = 4;

2. diam(T ) ≤ 7;

3. there is at most one pair of vertices x, y ∈ V (T ) such that d(x, y) = 7.

Proof. 1) Since u acquires weight 16, it must have degree 4 and the terminal edge
transfers weight 8 from v to u. Thus v acquires weight 8 without using the edge uv,
and v must also have degree 4.

2) This statement follows immediately from Lemma 4.
3) If there are two vertices x and y in T such that d(x, y) = 7, then d(x, u) = 4,

or d(y, u) = 4. Assume without loss of generality that d(x, u) = 4. Thus any pair
of vertices at distance 7 in T includes x. Suppose that there are vertices y and z
such that d(x, y) = d(x, z) = 7. Hence d(u, y) = d(u, z) = 3. Let x′ be the neighbor
of u on the unique u, x-path in T . Consequently, u must acquire the weight from y
and z without using the edge ux′. However, this requires u to acquire weight from
two vertices at distance 3 using at most three of its incident edges, contradicting
Lemma 4.

Lemma 6. Let T be an acquisition tree with maximum degree 4, terminal vertex
u, and terminal edge uv. If there is a vertex x in T such that d(x, u) = 3 and
d(x, v) = 4, then N(u) − v has degree sum at least 6.

Proof. Let x′ be the neighbor of u on the unique x, u-path in T . By Lemma 3, x′ has
degree at least 3. Furthermore, since the move x′ → u transfers weight at least 4, it
follows that u acquires weight at least 4 from the vertices in the set N(u) \ {x′, v}.
Since u has degree at most 4, it follows that N(u) \ {x′, v} contains two vertices and
u acquires weight 1 from one of the vertices and 2 from the other. Thus one vertex
in N(u) \ {x′, v} has degree at least 2.

We conclude this section with the following result, which is included for comple-
tion.

Theorem 7. For all positive integers n,

at(Pn�P1) = at(Pn�P2) = at(Pn�P4) =
⌈n

4

⌉
.

Proof. Theorem 2 implies that at(Pn�Pm) ≥
⌈

n
4

⌉
for all m ∈ {1, 2, 4}. Observe that

at(Pn′�Pm) = 1 for all m ∈ {1, 2, 4} and n′ ∈ {1, 2, 3, 4}. Equality is obtained for
each m ∈ {1, 2, 4} by covering the vertices of Pn�Pm with

⌊
n
4

⌋
vertex-disjoint copies

of P4�Pm and one copy of Pn′�Pm where n′ ≡ n (mod 4) and 0 ≤ n′ ≤ 3.
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Figure 2: The partition of Pn�Pm.

3 Main Results

3.1 Large grids

Applying Theorem 2 to grids whose dimensions are both at least 3 yields the bound
at(Pn�Pm) ≥ 	nm/16
. In [1], P5�P5 is given as an example where this bound is
not sharp. However, this bound is sharp for most grids.

Theorem 8. If n ≥ 7 and m ≥ 7, then at(Pn�Pm) =
⌈

nm
16

⌉
.

Proof. By Theorem 2, it suffices to demonstrate an optimal acquisition tiling of
Pn�Pm. Let G = Pn�Pm. We divide G into four subgraphs, G1, G2, G3, and
G4, based on the congruence classes of n and m modulo 16. Let n = 16qn + rn

and m = 16qm + rm where qn, qm, rn, and rm are integers and 0 ≤ rn ≤ 15 and
0 ≤ rm ≤ 15. Let

r′n =

{
rn if rn ∈ {0, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15}
rn + 16 if rn ∈ {1, 2, 3, 5, 6}

.

Define r′m similarly. Note that r′n ≤ n and r′m ≤ m. Partition G as follows (see
Figure 2):

G1 = G[{vi,j : i ≤ r′n, j ≤ r′m}];
G2 = G[{vi,j : r′n + 1 ≤ i ≤ n, j ≤ r′m}];
G3 = G[{vi,j : i ≤ r′n, r′m + 1 ≤ j ≤ m}];
G4 = G[{vi,j : r′n + 1 ≤ i ≤ n, r′m + 1 ≤ j ≤ m}].

Note that there are cases in which G2, G3, or G4 will contain zero vertices.
We build an optimal acquisition tiling of G by exhibiting efficient tilings of G2,

G3, and G4, in addition to an optimal tiling of G1. In these four tilings, there is at
most one tile covering fewer than 16 vertices (such a tile would belong to the tiling
of G1), and thus together they form an optimal tiling of G.

Since the dimensions of G4 are both divisible by 16, G4 can be covered efficiently
using the tile that covers P4�P4. Since n − r′n and m − r′m are both divisible by 16,
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there are efficient tilings of G2 and G3 provided there are efficient tilings of P16×Pr′m
and Pr′n × P16, respectively. Such tilings (up to symmetry) for all possible values
of r′n and r′m can be found in Appendix 3.4. It remains to demonstrate an optimal
tiling of Pr′n�Pr′m ; such tilings can be found in Appendix 3.4 for all values of r′n and
r′m.

3.2 Pn�P6

In this section we determine at(Pn�P6). While there are cases when the bound from
Theorem 2 is not sharp, it is asymptotically sharp.

Theorem 9. If n ≥ 6, then

at(Pn�P6) =

{⌈
6n
16

⌉
if n ≡ 1, 3, 4, 6 (mod 8)⌈

6n
16

⌉
+ 1 if n ≡ 0, 2, 5, 7 (mod 8).

Proof. To construct optimal tilings, we use an arrangement of three tiles that we
collectively refer to as the tI-tile (see Figure 3). All three tiles in the tI-tile cover 16

Figure 3: The tI-tile.

vertices; any portion of a tiling consisting of tI-tiles is efficient. The minimum tilings
consist of a collection of tiles on the left side of Pn�P6, an appropriate number of
tI-tiles, and then a collection of tiles on the right side of the graph. These tilings
appear in Figure 4.

It remains to show that these tilings are optimal for all values of n. It suffices to
show for each n that

at(Pn�P6) ≥
6n + 8

16
.

This results from the following claim.

Claim 1. In a minimum tiling of Pn�P6, there is a set of k tiles whose union covers
at most 16k − 8 vertices.

The claim holds if there is any tile covering at most eight vertices; we assume that
every tile covers at least nine vertices. Thus every tile contains a vertex of degree 4.

First assume that v1,1 and v1,6 lie in the same tile; call this tile T1. Since the
terminal vertex of T1 has degree 4, it follows that dT1(v1,1, v1,6) ≥ 7. Hence |T1| = 16.
By Lemmas 4 and 5, we conclude that the terminal vertex of T1 is a vertex x of degree
4 in T1 such that (without loss of generality) dT1(x, v1,1) ≤ 4 and dT1(x, v1,6) ≤ 3.
The only such vertex is v2,4; thus v2,4 has degree 4 and is a terminal vertex of T1. By
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n ≡ 6 (mod 8)

n ≡ 1 (mod 8)

n ≡ 3 (mod 8)

n ≡ 4 (mod 8)

n ≡ 0 (mod 8)

n ≡ 2 (mod 8)

n ≡ 5 (mod 8)

n ≡ 7 (mod 8)

Figure 4: Minimum tilings of P6�Pn. Arrows indicate the placement of tI-tiles.

Lemma 5, v2,3v2,4 is the terminal edge of T1, and v2,3 also has degree 4 in T1. Since
v1,1 and v1,6 form the unique pair of vertices in T1 that are at distance 7, we conclude
that vi,j /∈ T1 if i + j > 8 or if i > j + 1. Finally, T1 covers at least two vertices
from the set {v2,1, v3,2, v4,3}, as otherwise the neighbors of v2,2 have degree sum at
most 9, contradicting Lemma 6. Similarly T1 covers at least two vertices from the
set {v2,6, v3,5, v4,4}.

We claim that v3,1 and v3,6, which are not in T1, lie in distinct tiles. Since
v3,3, v3,4 ∈ T1, it follows that v4,3 and v4,4 cannot have degree 4 in their respective tiles.
Thus there is no vertex x that can have degree 4 in its tile and satisfy d(x, v3,1) ≤ 4
and d(x, v3,6) ≤ 4. Thus v3,1 and v3,6 lie in distinct tiles. Let T2 be the tile covering
v3,1 and let T3 be the tile covering v3,6.

Since T2 and T3 both cover at least nine vertices, they both contain a vertex of
degree 4. Furthermore, there is a vertex of degree 4 within distance 3 of v3,1 in T2.
Since T1 covers at least two vertices from {v2,1, v3,2, v4,3}, it follows that v4,2 cannot
be a vertex of degree 4 in T2. Thus v5,2 has degree 4 in T2. Similarly, v5,5 has degree
4 in T3.

If T2 and T3 each cover at most 12 vertices, then the claim holds. Thus we
may assume without loss of generality that T2 covers at least 13 vertices. Hence
the terminal edge in T2 joins two vertices of degree 4, so v6,2 also has degree 4 in
T2 and v5,2v6,2 is the terminal edge. By Lemma 3, v3,1 must be distance at most 2
from a vertex of degree 3 in T2. Since v5,1 is not adjacent to v6,1 in T2, it follows
that v5,1 cannot have degree 3 in T2. Thus v4,2 has degree 3, and v1,4v2,4 ∈ E(T2)
since v4 can only have one neighbor in {v2,1, v3,2, v4,3}. Hence v5,1 has degree 1 in T2.
Furthermore, since v5,4 ∈ T3, and the only vertex in {v2,1, v3,2, v4,3}∩T1 is adjacent to
v4,2, it follows that v5,3 also has degree 1 in T2. However, this contradicts Lemma 6.
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Thus T2 and T3 cover a total of at most 24 vertices and the claim holds.
Now we assume that v1,1 and v1,6 lie in distinct tiles. Using symmetry and the

fact that n ≥ 6, we actually may assume that v1,1, v1,6, vn,1 and vn,6 all lie in distinct
tiles. Let T1 and T2 be the tiles that cover v1,1 and v1,6 respectively. We claim that
either T1 ∪ T2 covers at most 28 vertices, or there is a tile that covers at most eight
vertices.

Assume that T1 and T2 cover at least 29 vertices; hence T1 and T2 both cover at
least 13 vertices. Thus the terminal edge of T1 joins two vertices of degree 4 that
are both distance at most 4 from v1,1. Similarly, the terminal edge of T2 joins two
vertices of degree 4 that are both distance at most 4 from v1,6. Depending on the
choice of the terminal edges in T1 and T2, there are (up to symmetry) four cases to
consider.

Case 1: v2,2v3,2 is the terminal edge in T1 and v2,5v3,5 is the terminal edge in T2.
Observe that T1 covers at most one vertex that is distance 4 from v2,2, and T2 covers
at most one vertex that is distance 4 from v2,5. Therefore T1 ∪T2 covers at most two
vertices from the set {v5,1, v6,2, v5,3, v5,4, v6,5, v5,6}, and all other vertices vi,j ∈ T1 ∪T2

satisfy i ≤ 5. Therefore T1 and T2 cover at most 28 vertices.
Case 2: v2,2v3,2 is the terminal edge in T1 and v3,5v4,5 is the terminal edge in T2.

In this case, Lemma 4 implies that v1,6 is the unique vertex in T2 that is distance
4 from v4,5, and hence v1,4 /∈ T2. Thus v1,4 ∈ T1 since otherwise v1,4 lies in a tile
covering at most four vertices. Therefore both T1 and T2 contain a vertex that is
distance 3 from the terminal edge.

By Lemma 6, we conclude that the degree sum of {v2,1, v1,2, v2,3, v3,4, v2,5, v3,6} in
T1 and T2 is at least 12. Thus N({v2,1, v1,2, v2,3, v3,4, v2,5, v3,6}) must contain at least
six vertices from the set {v1,1, v1,3, v2,4, v1,5, v2,6}, a contradiction.

Case 3: v2,2v2,3 is the terminal edge in T1 and v3,5v4,5 is the terminal edge in T2.
As in Case 2, v2,5 must have degree 3 in T2. Therefore both v3,4 and v3,6 have degree
1, contradicting Lemma 4.

Case 4: v3,2v4,2 is the terminal edge in T1 and v3,5v4,5 is the terminal edge in T2.
In this case, v1,3 /∈ T1 since v1,1 is the unique vertex in T1 that is distance 4 from v4,2.
Furthermore, v1,3 /∈ T2 since v1,3 is distance 4 from the terminal edge of T2. Thus
the tile covering v1,3 covers at most six vertices.

Under the assumption that all tiles cover at least nine vertices, we conclude that
T1 and T2 cover a total of at most 28 vertices. Similarly, the distinct tiles that contain
vn,1 and vn,6 also contain a total of at most 28 vertices. Therefore there is a set of
four tiles in T whose union covers at most 56 vertices, and the claim holds.

3.3 Pn�P3

In this section we determine at(Pn�P3), proving that the bound from Theorem 2 is
not asymptotically sharp.

Theorem 10. at(Pn�P3) =
⌈

n
4

⌉
.

Proof. Following the argument from Theorem 7, we conclude that at(Pn�P3) ≤
⌈

n
4

⌉
,

.



L. MACDONALD ET AL. /AUSTRALAS. J. COMBIN. 58 (1) (2014), 137–156 146

Figure 5: Two reducible tiles and their reduction.

To prove equality, we consider a minimum counterexample. Let m be the min-
imum value for which at(Pn�P3) <

⌈
n
4

⌉
. Let T be a minimum tiling of Pn�P3. If

there is a tile T ∈ T such that {vi,1, vi,2, vi,3} ∈ T and {vi+1,1, vi+1,2, vi+1,3} /∈ T
for some i ∈ {1, . . . , n − 1}, then we say that T has a vertical cut. Observe that if
T has a vertical cut, then T consists of a tiling of Pi�P3 and Pn−i�P3. However,
	i/4
 + 	(n − i)/4
 ≥ 	n/4
, contradicting the minimality of n. Thus we assume
that T does not have a vertical cut.

We now introduce a collection of tiles that we may assume do not appear in T .
A tile T is reducible if removing T from T yields two partial tilings of Pn�P3 (one to
the left of T and one to the right of T ) that can be joined to form a tiling of Pn−��P3

for some positive integer �.
First, for � ∈ {3, 4}, any tile covering exactly � vertices in each row is reducible.

Removing such a tile and joining the two partial tilings yields a tiling of Pn−��P3

using fewer than 	(n − �)/4
 tiles, contradicting the minimality of n.
The 12-vertex tile covering {vi,1} ∪ {vi+�,j|1 ≤ � ≤ 3, 1 ≤ j ≤ 3} ∪ {vi+4,1, vi+4,2}

and the 9-vertex tile covering {vi,1} ∪ {vi+�,j|1 ≤ � ≤ 2, 1 ≤ j ≤ 3} ∪ {vi+3,1, vi+3,2}
(see Figure 5) are both reducible. If such a tile is removed and one of the remaining
partial tilings is reflected vertically, then the partial tilings may be joined to form a
tiling of Pn−4�P3 or Pn−3�P3. However, these tilings use fewer than 	(n − 4)/4
 or
	(n − 3)/4
 tiles, respectively, contradicting the minimality of n.

Suppose that a tile covers the vertices vi,2 and vi+1,2, but does not contain vi,1,
vi+1,1, vi+1,3, and vi+2,2. It follows that vi+1,2 is a leaf in T and is joined to vi,2.
Similarly, either vi,1 is a leaf in its tile and its neighbor is vi+1,1 or vi,1 is in a tile of
order 1. Therefore we may exchange vi,1 and vi+1,2 in their respective tiles to obtain
a new tiling. We refer to this process as a tab exchange. We may assume that T has
no tiles on which we can perform a tab exchange.

Now we consider the possible shapes of tiles covering at least 13 vertices that
may be in T . Let T be a tile in T that covers at least 13 vertices. Since the terminal
move in such a tile moves weight at lest 5, it follows that the terminal edge in T joins
two vertices of degree 4, say vi−1,2 and vi,2. Therefore T contains an acquisition tree
T ′ with root vi,2 that contains a vertex in T if an only if the first index of the vertex
is at least i. Furthermore, T ′ contains at least five vertices and no more than eight
vertices.

Operating under the assumption that there are no tiles in T that permit a tab
exchange, there are (up to symmetry) four possible shapes for T ′; these shapes are
in Figure 6. By combining two of the possible T ′ tiles, we generate all possibilities
for T . In particular, up to symmetry, for i ∈ {16, 14} there are two possible tiles
covering i vertices, there is one tile covering 15 vertices, and there are three possible
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Figure 6: Possible shapes of T ′.

Figure 7: Possible tiles containing at least 13 vertices with terminal edges shown.

tiles covering 13 vertices. These tiles appear in Figure 7.
Label the tiles in T in order by their leftmost point (if multiple tiles have an equal

leftmost coordinate, label them in order from bottom to top). Consider the sum∑k
i=1 |Ti|. Since at(Pn�P3) <

⌈
n
4

⌉
, there is a minimum value k such that

∑k
i=1 |Ti| >

12k and
∑k′

i=1 |Ti| > 12k′ for all k′ > k. It follows that −3 ≤
∑k−1

i=1 |Ti|−12(k−1) ≤ 0

and Tk contains at least 13 vertices. Furthermore
∑k

i=1 |Ti| − 12k ≤ 4.
If k = at(Pn�P3), then Tk covers vn,1, vn,2, and vn,3. It follows that Tk contains

either 13 or 14 vertices (see Figure 7). Consequently |Tk|+
∑k−1

i=1 |Ti| ≤ 12k+2. Since

|Tk| +
∑k−1

i=1 |Ti| = 3n, it follows that |Tk| +
∑k−1

i=1 |Ti| = 12k and k = at(Pn�P3) =
	n/4
, a contradiction.

Henceforth we assume that k �= at(Pn�P3), and therefore Tk+1 exists. By as-
sumption, the right edge of Tk is not a vertical cut. Furthermore, Tk+1 contains at
least 9 vertices. Inspection of the tiles in Figure 7 shows that no two tiles covering
at least 13 vertices can appear consecutively in T ; hence |Tk+1| ≤ 12. Therefore, up
to vertical reflection, there are two possibilities for the right edge of Tk. We show in
both cases that T covers a reducible tile.

Case 1: vi−1,1, vi,2, vi−1,3 ∈ Tk and vi,1, vi+1,2, vi,3 /∈ Tk. In this case, v1,1 ∈ Tk+1.
Since Tk+1 covers at least 9 vertices, the terminal vertex has degree 4. As |Tk+1| ≤ 12,
the terminal vertex of Tk+1 is within distance 3 of vi,1. Thus vi+2,2 is the terminal

vertex of Tk+1. If vi,3 /∈ Tk+1, then |Tk+2| ≤ 2, and
∑k+2

i=1 |Ti| ≤ 12(k + 2), a
contradiction. Therefore vi,3 ∈ Tk+1. It follows from Lemma 4 that if an acquisition
tree T contains two vertices that are distance 3 from the terminal vertex, then |T | ≥
12. Thus |Tk+1| = 12. Lemma 4 also implies that a 12-vertex acquisition tree
contains at most two vertices that are distance 3 from the terminal vertex. Thus
vi+4,1, vi+5,2, vi+4,3 /∈ Tk+1. Consequently Tk+1 contains four vertices from each row
and is a reducible tile.
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Case 2: vi−1,1, vi,2, vi,3 ∈ Tk and vi,1, vi+1,2, vi+1,3 /∈ Tk. In this case, vi+2,2 is the

terminal vertex of Tk+1. If vi+1,3 /∈ Tk+1, then |Tk+2| = 1 and
∑k+2

i=1 |Ti| ≤ 12(k+2), a
contradiction. Therefore vi+1,3 ∈ Tk+1. Furthermore, Tk+1 covers at most one vertex
from {vi+4,1, vi+5,2, vi+4,3} since since vi,1 is distance 3 from vi+2,2. If |Tk+1| ≤ 11,
then Tk+1 cannot cover any vertex from {vi+4,1, vi+5,2, vi+4,3}. Finally, Tk+1 covers no
vertex that is distance 4 from vi+2,2.

We break this case into subcases depending on the order of Tk+1. We classify
Tk+1 using an ordered triple (a1, a2, a3) where ai indicates the number of vertices in
Tk+1 that lie in row i.

Case 2.1: |Tk+1| = 12. In this case, Tk+1 has one of the following three forms:
(5, 4, 3), (4, 5, 3), or (4, 4, 4). If Tk+1 has the form (4, 5, 3), Tk+1 permits a tab ex-
change, a contradiction. If Tk+1 has either the form (5, 4, 3) or the form (4, 4, 4), then
Tk+1 is reducible.

Case 2.2: |Tk+1| = 11. In this case, Tk+1 has the form (4, 4, 3). It follows that
Tk+1 is not the final tile in T , and the analysis of Tk+2 follows Case 1, and therefore
Tk+2 is reducible.

Case 2.3: |Tk+1| = 10. In this case, Tk+1 has one of the following three forms:
(4, 4, 2), (4, 3, 3), or (3, 4, 3). Observe that |Tk| ≥ 15, as otherwise

∑k+1
i=1 |Ti| ≤

12(k + 1). Thus 25 ≤ |Tk| + |Tk+1| ≤ 26. If Tk+1 is of the form (4, 3, 3), then it is
possible that Tk+1 is the final tile in T . If Tk+1 is the final tile, then

∑k+1
i=1 |Ti| ≡ 0

mod 3. Since 12(k− 1)− 3 ≤
∑k−1

i=1 |Ti| ≤ 12(k− 1), there are two cases to consider:∑k−1
i=1 |Ti| = 12(k − 1)− 2 and |Tk| = 16, or

∑k−1
i=1 |Ti| = 12(k − 1)− 1 and |Tk| = 15.

In both cases, 3n = 12(k − 1) + 24, and at(Pn�P3) = k + 1 = 	n/4
.
Now we assume that Tk+1 is not the final tile in T . In this case, if Tk+1 is of the

form (4, 3, 3), then the right edge of Tk+1 is a vertical cut, a contradiction. Otherwise,
Tk+1 is of the form (4, 4, 2) or (3, 4, 3), both of which permit a tab exchange, a
contradiction.

Case 2.4: |Tk+1| = 9. In this case, Tk+1 has one of the following three forms:
(4, 3, 2), (3, 4, 2), or (3, 3, 3). If Tk+1 has the form (3, 4, 2), then it permits a tab
exchange, a contradiction. Otherwise, Tk+1 is reducible.

3.4 Pn�P5

In this section, we provide nontrivial upper and lower bounds on at(Pn�P5).

Theorem 11. 	n/3
 ≤ at(Pn�P5) ≤ 11 
n/32� + 16.

Proof. To establish the upper bound, we demonstrate a tiling of P32�P5 that uses
11 tiles (see Figure 8). If a ≡ n mod 32 and 0 ≤ a ≤ 31, then

at(Pn�P5) ≤ 
n/32� at(P32�P5) + at(Pa�P5)

≤ 
n/32� at(P32�P5) + at(Pa�P3) + at(Pa�P2)

≤ 11 
n/32� + 16.

To prove the lower bound, we consider the number of vertices from the top and
bottom rows of Pn�P5 that may be covered by a single acquisition tile.
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Figure 8: An 11-tile tiling of P32�P5.

Let T be an acquisition tile in Pn�P5 and let vi,1 ∈ T . If vi+6,1 ∈ T , then the
path between vi,1 and vi+6,1 in T must contain a vertex of degree 4. Therefore vi+6,1

is distance at least 8 from vi,1 in T , a contradiction. Thus an acquisition tile contains
at most six vertices from the bottom (or, by symmetry, top) row of Pn�P5.

Assume that T covers vi+j,1 for all j ∈ {0, 1, 2, 3, 4, 5}. If u is a vertex in the
top row, then either d(u, vi,1) > 7, d(u, vi+5,1) > 7, or d(u, vi,1) = d(u, vi+5,1) = 7.
By Lemma 5, u /∈ T and consequently T contains only six vertices from the top or
bottom rows.

Now assume that T covers vi+j,1 for all j ∈ {0, 1, 2, 3, 4}. If T covers two vertices
from the top row, then since T contains at most one pair of vertices of distance 7, we
may assume without loss of generality that vi+2,5, vi+3,5 ∈ T . Since d(vi,1, vi+3,5) = 7,
it follows that |T | = 16. Thus we may assume that the terminal vertex of T is a
vertex of degree 4 that is distance at most 4 from at most one of vi,1, vi+4,1, vi+2,5,
and vi+3,5. It follows that the only possible terminal vertex of T is vi+2,2. However,
since |T | = 16, there must be two possible terminal vertices in T , a contradiction.

Now assume that T covers vi+j,1 for all j ∈ {0, 1, 2, 3} and three vertices in the
top row. Since T contains at most one pair of vertices of distance 7, we may assume
without loss of generality that vi+1,5, vi+2,5, vi+3,5 ∈ T . Again |T | = 16 and T must
contain two possible terminal vertices. Each terminal vertex is distance 4 from at
most one of vi,1, vi+3,1, vi+1,5, and vi+3,5. However, vi+2,3 is the only such vertex, a
contradiction.

We now conclude that each tile covers at most six vertices from the top and
bottom rows of Pn�P5. Since there are 2n such vertices, it follows that at(Pn�P5) ≥
	n/3
.

An argument similar to that in the proof of Theorem 10 could show that in fact
the upper bound in Theorem 11 is asymptotically sharp. However, the potential
shapes of tiles increases dramatically when considering Pn�P5 rather than Pn�P3,
indicating that such a proof would be very long and complicated without providing
much insight. We leave the following conjecture that the upper bound of Theorem 11
is asymptotically sharp.

Conjecture 12. There is a constant c such that

11 
n/32� − c ≤ at(Pn�P5).
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Figure 9: Efficient tilings of P7�P16, P9�P16, and P10�P16.
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Appendix:
Efficient tilings of Pr′n�P16 and optimal tilings of Pr′n × Pr′m

To construct an efficient tiling of Pr′n�P16 (and by symmetry, P16�Pr′m), first note
that Pr′n�P16 may be efficiently tiled using P4�P4 whenever r′n is a multiple of 4.
For all remaining values of r′n, it suffices to use an efficient tiling of P��P16 where �
is an appropriate multiple of 4 and an efficient tiling of P7�P16, P9�P16, or P10�P16

depending on the value of r′n modulo 4. Efficient tilings of P7�P16, P9�P16, and
P10�P16 are in Figure 9.

Table 1 indicates the number of tiles in an optimal tiling of Pr′n�Pr′m . Without loss
of generality, we assume that r′n ≥ r′m. In many cases, an optimal tiling of Pr′n ×Pr′m
can be constructed using efficient tilings of Pk�Pr′m and P��Pr′m where k + � = r′n.
Those instances are listed in Tables 2 and 3, where the notation Pk||P� indicates a
construction of an optimal tiling of Pr′n × Pr′m using optimal tilings of Pk�Pr′m and
P��Pr′m . The necessary specific constructions can be found in Figures 10 through 17.
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rn′\rm′ 7 8 9 10 11 12 13 14 15 17 18 19 21 22
7 4 4 4 5 5 6 6 7 7 8 8 9 10 10
8 4 4 5 5 6 6 7 7 8 9 9 10 11 11
9 4 5 6 6 7 7 8 8 9 10 11 11 12 13
10 5 5 6 7 7 8 9 9 10 11 12 12 14 14
11 5 6 7 7 8 9 9 10 11 12 13 14 15 16
12 6 6 7 8 9 9 10 11 12 13 14 15 16 17
13 6 7 8 9 9 10 11 12 13 14 15 16 18 18
14 7 7 8 9 10 11 12 13 14 15 16 17 19 20
15 7 8 9 10 11 12 13 14 15 16 17 18 20 21
17 8 9 10 11 12 13 14 15 16 19 20 21 23 24
18 8 9 11 12 13 14 15 16 17 20 21 22 24 25
19 9 10 11 12 14 15 16 17 18 21 22 23 25 27
21 10 11 12 14 15 16 18 19 20 23 24 25 28 29
22 10 11 13 14 16 17 18 20 21 24 25 27 29 31

Table 1: Number of tiles in an optimal tiling of Prn′�Prm′ .

rn′\rm′ 7 8 9 10 11 12 13 14
7 Fig. 10
8 Fig. 10 P4||P4

9 Fig. 10 Fig. 11 Fig. 12
10 Fig. 10 Fig. 11 Fig. 12 Fig. 13
11 Fig. 10 P4||P7 Fig. 12 Fig. 13 P4||P7

12 Fig. 10 P4||P8 Fig. 12 P4||P8 P4||P8 P4||P8

13 P4||P9 P4||P9 Fig. 12 P4||P9 Fig. 14 P4||P9 Fig. 15
14 P4||P10 P4||P10 P7||P7 Fig. 13 P4||P10 P4||P10 P7||P7 P4||P10

15 P4||P11 P4||P11 P7||P8 P8||P7 P4||P11 P4||P11 P4||P11 P4||P11

17 P4||P13 P4||P13 P7||P10 P8||P9 P4||P13 P4||P13 Fig. 15 P8||P9

18 P9||P9 P4||P14 P7||P11 P8||P10 P4||P14 P4||P14 P7||P11 P8||P10

19 P4||P15 P4||P15 P7||P12 P8||P11 P4||P15 P4||P15 P7||P12 P8||P11

21 P4||P17 P4||P17 P7||P14 P8||P13 P4||P17 P4||P17 P7||P14 P8||P13

22 P4||P18 P4||P18 P7||P15 P8||P14 P4||P18 P4||P18 P11||P11 P8||P14

Table 2: Constructions of efficient tilings of Prn′�Prm′ for rm′ ≤ 14. The notation
Pk||P� indicates use of optimal tilings of Pk�Prm′ and P��Prm′ .
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rn′\rm′ 15 17 18 19 21 22
15 P4||P11

17 Fig. 16 P4||P13

18 Fig. 16 P4||P14 P8||P10

19 Fig. 16 P4||P15 P8||P11 P4||P15

21 P4||P17 P7||P14 P8||P13 Fig. 17 P9||P12

22 P4||P18 P7||P15 P8||P14 P4||P18 Fig. 17 P8||P14

Table 3: Constructions of efficient tilings of Prn′�Prm′ for rm′ ≥ 15. The notation
Pk||P� indicates use of optimal tilings of Pk�Prm′ and P��Prm′ .

Figure 10: Optimal tilings of P7�P7, P8�P7, P9�P7, P10�P7, P11�P7, and P12�P7.

Figure 11: Optimal tilings of P9�P8 and P10�P8.
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Figure 12: Optimal tilings of P9�P9, P10�P9, P11�P9, P12�P9, and P13�P9.

Figure 13: Optimal tilings of P10�P10, P11�P10, and P14�P10.

Figure 14: Optimal tiling of P13�P11.
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Figure 15: Optimal tilings of P13�P13 and P17�P13.

9 X 7

8 X 8 10 X 8 8 X 8

18 X 7

10 X 8

Figure 16: Optimal tilings of P17�P15, P18�P15, and P19�P15. Here larger tiles are
used to simplify the tiling.
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12 X 12

22 X 8

22 X 13

Figure 17: Optimal tilings of P21�P19 and P22�P21. Here larger tiles are used to
simplify the tiling.
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