Roman bondage numbers of some graphs^{*}

Fu-Tao Hu

School of Mathematical Sciences Anhui University Hefei, Anhui, 230601 P.R. China hufu@mail.ustc.edu.cn

Jun-Ming Xu^{\dagger}

School of Mathematical Sciences University of Science and Technology of China Wentsun Wu Key Laboratory of CAS Hefei, Anhui, 230026 P.R. China xujm@ustc.edu.cn

Abstract

A Roman dominating function on a graph G = (V, E) is a function $f : V \to \{0, 1, 2\}$ satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value $f(G) = \sum_{u \in V} f(u)$. The Roman domination number of G is the minimum weight of a Roman dominating function on G. The Roman bondage number of a nonempty graph G is the minimum number of edges whose removal results in a graph with the Roman domination number of the Roman bondage numbers of two classes of graphs, complete t-partite graphs and (n-3)-regular graphs with order n for any $n \geq 5$.

1 Introduction

In this paper, a graph G = (V, E) is considered as an undirected graph without loops and multi-edges, where V = V(G) is the vertex set and E = E(G) is the edge set. For

^{*} This work was supported by the doctoral scientific research startup fund of Anhui University and NNSF of China (No. 11071233, No. 61272008).

[†] Corresponding author.

each vertex $x \in V(G)$, let $N_G(x) = \{y \in V(G) : xy \in E(G)\}, N_G[x] = N_G(x) \cup \{x\}$, and $E_G(x) = \{xy : y \in N_G(x)\}$. The cardinality $|E_G(x)|$ is the degree of x, denoted by $d_G(x)$. For two disjoint nonempty and proper subsets S and T in V(G), we use $E_G(S,T)$ to denote the set of edges between S and T in G, and G[S] to denote a subgraph of G induced by S.

A subset $D \subseteq V$ is a dominating set of G if $N_G(x) \cap D \neq \emptyset$ for every vertex x in G - D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of all dominating sets of G. To measure the vulnerability or the stability of the domination in an interconnection network under edge failure, Fink et at. [8] proposed the concept of the bondage number in 1990. The bondage number, denoted by b(G), of G is the minimum number of edges whose removal from G results in a graph with larger domination number of G. For over twenty years, bondage numbers have received considerable research attention. The recent paper by Xu [21] surveys some progress, variations, and generalizations of bondage numbers.

One of generalizations of bondage numbers is the Roman bondage number. The Roman dominating function on G, proposed by Stewart [18], is a function $f: V \to \{0, 1, 2\}$ such that each vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. For $S \subseteq V$ let $f(S) = \sum_{u \in S} f(u)$. The value f(V(G)) is called the weight of f, denoted by f(G). The Roman domination number, denoted by $\gamma_{\mathrm{R}}(G)$, is defined as the minimum weight of all Roman dominating functions, that is,

 $\gamma_{\rm R}(G) = \min\{f(G) : f \text{ is a Roman dominating function on } G\}.$

A Roman dominating function f is called a $\gamma_{\rm R}$ -function if $f(G) = \gamma_{\rm R}(G)$. Roman domination numbers have been studied in, for example [2–4, 7, 9, 12–19].

The Roman bondage number, denoted by $b_{\rm R}(G)$ and proposed first by Rad and Volkmann [10], of a nonempty graph G is the minimum number of edges whose removal from G results in a graph with larger Roman domination number. Precisely speaking, the Roman bondage number is

$$b_{\mathcal{R}}(G) = \min\{|B| : B \subseteq E(G), \gamma_{\mathcal{R}}(G-B) > \gamma_{\mathcal{R}}(G)\}.$$

An edge set B for which $\gamma_{\rm R}(G-B) > \gamma_{\rm R}(G)$ is called the *Roman bondage set* and the minimum one the *minimum Roman bondage set*. In [2], the authors showed that the decision problem for $b_{\rm R}(G)$ is NP-hard even for bipartite graphs. The Roman bondage number has been further studied for example in [1,2,5,6,10,11].

For a complete t-partite graph K_{m_1,m_2,\ldots,m_t} , its bondage number was determined by Fink et al. [8] for the undirected case and by Zhang et al. [22] for the directed case. Motivated by these results, in this paper we consider its Roman bondage number. Let K_{m_1,m_2,\ldots,m_t} be a complete t-partite undirected graph with $m_1 = m_2 = \cdots =$ $m_i < m_{i+1} \le \cdots \le m_t$ and $n = \sum_{j=1}^t m_j$. When t = 2, Jafari Rad and Volkmann [10] determined that $b_{\rm R}(K_{m_1,m_2}) = m_1$, with the exception of $K_{3,3}$, for which $b_{\rm R}(K_{3,3}) = 4$. In this paper, we determine that for $t \geq 3$,

$$b_{\mathrm{R}}(K_{m_1,m_2,\dots,m_t}) = \begin{cases} \lfloor \frac{i}{2} \rfloor, & \text{if } m_i = 1 \text{ and } n \ge 3; \\ 2 & \text{if } m_i = 2 \text{ and } i = 1; \\ i & \text{if } m_i = 2 \text{ and } i \ge 2; \\ n-1 & \text{if } m_i = 3 \text{ and } i = t \ge 3; \\ n-m_t, & \text{if } m_i \ge 3 \text{ and } m_t \ge 4. \end{cases}$$

Consider $K_{3,3,\dots,3}$ of order $n \geq 9$, which is an (n-3)-regular graph. The above result means that $b_{\rm R}(K_{3,3,\dots,3}) = n-1$. In this paper, we further determine that $b_{\rm R}(G) = n-2$ for any (n-3)-regular graph G of order $n \geq 5$ and $G \neq K_{3,3,\dots,3}$.

In the proofs of our results, when a Roman dominating function of a graph is constructed, we only give its nonzero value of some vertices.

For terminology and notation on graph theory not given here, the reader is referred to Xu [20].

2 Preliminary results

Lemma 2.1 (Cockayne et al. [4]) For a complete t-partite graph $K_{m_1,m_2,...,m_t}$ with $1 \le m_1 \le m_2 \le \cdots \le m_t$ and $t \ge 2$,

$$\gamma_{\mathrm{R}}(K_{m_1,m_2,\dots,m_t}) = \begin{cases} 2, & \text{if } m_1 = 1; \\ 3, & \text{if } m_1 = 2; \\ 4, & \text{if } m_1 \ge 3. \end{cases}$$

Lemma 2.2 (Jafari Rad and Volkmann [10]) Let G be a graph of order $n \ge 3$ and t be the number of vertices of degree n - 1 in G. If $t \ge 1$, then $b_{\rm R}(G) = \lceil \frac{t}{2} \rceil$.

Lemma 2.3 (Sheikholeslami and Volkmann [17]) For a nonempty graph G of order $n \geq 3$, $\gamma_{\rm R}(G) = 3$ if and only if $\Delta(G) = n - 2$.

Lemma 2.4 (Sheikholeslami and Volkmann [17]) If G is a graph with order $n \ge 4$ and $\Delta(G) = n - 3$, then $\gamma_{\rm R}(G) = 4$.

Lemma 2.5 Let G be an (n-3)-regular graph of order $n \ge 5$ and B be a Roman bondage set of G. Then $E_G(x) \cap B \neq \emptyset$ for any $x \in V(G)$.

Proof. By Lemma 2.4, $\gamma_{\mathrm{R}}(G) = 4$. Let G' = G - B. Since B is a Roman bondage set in G, $\gamma_{\mathrm{R}}(G') > 4$. By contradiction, assume $E_G(x) \cap B = \emptyset$ for some $x \in V(G)$. Suppose that $V(G) \setminus N_G[x] = \{y, z\}$. Define $f = (V_0, V_1, V_2)$, where $V_1 = \{y, z\}$, $V_2 = \{x\}, V_0 = V(G) \setminus (V_1 \cup V_2)$. Since every $u \notin \{x, y, z\}$ is adjacent to x in G', f is a Roman dominating function of G' with f(G') = 4. Thus, $\gamma_{\mathrm{R}}(G') \leq f(G') = 4 < \gamma_{\mathrm{R}}(G')$, a contradiction.

Lemma 2.6 Let G be an (n-3)-regular graph of order $n \ge 5$, let B be a Roman bondage set of G, and let x be any vertex, with $V(G) \setminus N_G[x] = \{y, z\}$. If $E_G(x) \cap B = \{xw\}$, then $|E_G(\{y, z, w\}, x') \cap B| \ge 1$ for any vertex $x' \in V(G) \setminus \{x, y, z, w\}$ that is adjacent to each vertex in $\{y, z, w\}$ in G.

Proof. Let G' = G - B. By Lemma 2.4, $\gamma_{\rm R}(G') > 4$. By contradiction, suppose $E_G(\{y, z, w\}, x') \cap B = \emptyset$ for some vertex $x' \in V(G) \setminus \{x, y, z, w\}$ that is adjacent to each vertex in $\{y, z, w\}$ in G. Set f(x) = f(x') = 2. Then, f is a Roman dominating function of G' with f(G') = 4 since $N_{G'}[x] \cup N_{G'}[x'] = V(G)$, a contradiction.

Lemma 2.7 Let G be an (n-3)-regular graph of order $n \ge 7$ and B be a Roman bondage set of G. For three vertices x, y and z that are pairwise non-adjacent in G, if each of them is incident with exact one edge in B, then $|B| \ge n-2$ and, moreover, $|B| \ge n-1$ if $G = K_{3,3,\dots,3}$.

Proof. By the hypothesis, for any $v \in \{x, y, z\}$, $|E_G(v) \cap B| = 1$ and v is adjacent to every vertex in $V(G \setminus \{x, y, z\})$ in G. Let $xu \in E_G(x) \cap B$. We claim $yu \in E_G(y) \cap B$ and $zu \in E_G(z) \cap B$. In fact, by contradiction, without loss of generality suppose $yv \in E_G(y) \cap B$ and $zw \in E_G(z) \cap B$ with $u \neq v$ and $u \neq w$. The vertex u is adjacent to y and z in G - B. Set f(x) = f(u) = 2. The function f is a Roman dominating function of G with f(G - B) = 4, which contradicts $\gamma_R(G - B) > 4$ by Lemma 2.4.

Let $V(G) \setminus N_G[u] = \{s, t\}$, and let $V' = V(G) \setminus \{x, y, z, u, s, t\}$. By the hypothesis, each vertex in $\{y, z, u\}$ is adjacent to all vertices in V' in G. By Lemma 2.6, for any vertex $x' \in V'$, if such a vertex exists, $|E_G(\{u, y, z\}, x') \cap B| \ge 1$, and so

$$|E_G(\{u, y, z\}, V') \cap B| \ge |V'| = n - 6.$$
(2.1)

By Lemma 2.5, $|E_G(s) \cap B| \ge 1$ and $|E_G(t) \cap B| \ge 1$, and so we have that

$$|(E_G(s) \cup E_G(t)) \cap B| \ge \begin{cases} 1 & \text{if } st \in E(G); \\ 2 & \text{if } st \notin E(G). \end{cases}$$
(2.2)

It follows from (2.1) and (2.2) that

$$|B| \geq |\{xu, yu, zu\}| + |(E_G(s) \cup E_G(t)) \cap B| + |E_G(\{u, y, z\}, V') \cap B| \\ \geq \begin{cases} n-2 & \text{if } st \in E(G); \\ n-1 & \text{if } st \notin E(G). \end{cases}$$

If $G = K_{3,3,\dots,3}$, then $st \notin E(G)$ and, hence, $|B| \ge n - 1$.

Lemma 2.8 Let G be an (n-3)-regular graph of order $n \ge 5$ and B be a Roman bondage set of G. Let $x \in V(G)$, $V(G) \setminus N_G[x] = \{y, z\}$. If $E_G(x) \cap B = \{xw\}$ and G' = G - B, then $|E(G'[\{y, z, w\}])| \le 1$. In fact,

$$|E(G[\{y, z, w\}]) \cap B| \ge \begin{cases} 1 & \text{if } |E(G[\{y, z, w\}])| = 2; \\ 2 & \text{if } |E(G[\{y, z, w\}])| = 3. \end{cases}$$

Proof. Suppose to the contrary that $|E(G'[\{y, z, w\}])| \ge 2$. Without loss of generality, let $yw, zw \in E(G')$. Denote f(x) = f(w) = 2. Note that x is adjacent to every vertex except w, y and z in G'. Thus, f is a Roman dominating function of G' with f(G') = 4, a contradiction with $\gamma_{\mathbf{R}}(G') > 4$ by Lemma 2.4.

3 Results on complete *t*-partite graphs

For a complete bipartite graph $K_{m,n}$ with $1 \le m \le n$ and $n \ge 2$, Jafari Rad and Volkmann [10] proved that $b_{\rm R}(K_{m,n}) = m$, with the exception of the case m = n = 3, for which $b_{\rm R}(K_{3,3}) = 4$. In the following, we determine the Roman bondage number of a complete *t*-partite graph for $t \ge 3$.

Theorem 3.1 Let $G = K_{m_1,m_2,\dots,m_t}$ be a complete t-partite graph with $m_1 = m_2 = \dots = m_i < m_{i+1} \le \dots \le m_t$ and $n = \sum_{j=1}^t m_j$. If $t \ge 3$, then $b_{\mathrm{R}}(G) = \begin{cases} \left\lceil \frac{i}{2} \right\rceil & \text{if } m_i = 1 \text{ and } n \ge 3; \\ 2 & \text{if } m_i = 2 \text{ and } i = 1; \\ i & \text{if } m_i = 2 \text{ and } i \ge 2; \\ n-1 & \text{if } m_i = 3 \text{ and } i = t \ge 3; \\ n-m_t & \text{if } m_i \ge 3 \text{ and } m_t \ge 4. \end{cases}$

Proof. Let $\{X_1, X_2, \ldots, X_t\}$ be the corresponding *t*-partitions of V(G), where $X_i = m_i$.

(1) If $m_i = 1$ and $n \ge 3$, then G has i vertices of degree n - 1. So by Lemma 2.2, $b_{\rm R}(G) = \lceil \frac{i}{2} \rceil$.

(2) If $m_i = 2$, then $\Delta(G) = n-2$. By Lemma 2.1, $\gamma_{\rm R}(G) = 3$. Let $B \subseteq E(G)$ be a Roman bondage set of G with $|B| = b_{\rm R}(G)$ and G' = G - B. So $\gamma_{\rm R}(G') > \gamma_{\rm R}(G) = 3$, and by Lemma 2.3, $\Delta(G') \leq n-3$. Thus, $|B \cap E_G(x)| \geq 1$ for every vertex in X_j $(1 \leq j \leq i)$, that is, $|B| \geq 2$ if i = 1 and $|B| \geq i$ if i > 1.

If i = 1, then the only two vertices of degree n - 2 are in X_1 , and the removal of any two edges incident with distinct vertices in X_1 implies that a graph G'' with $\Delta(G'') \leq n - 3$, and hence $\gamma_{\rm R}(G'') \neq 3$ by Lemma 2.3. Since $\gamma_{\rm R}(G'') \geq \gamma_{\rm R}(G) = 3$, $\gamma_{\rm R}(G'') \geq 4$. Thus, $b_{\rm R}(G) \leq 2$ and hence $b_{\rm R}(G) = 2$.

If i > 1, then the subgraph H induced by $\bigcup_{j=1}^{i} X_j$ of G is a complete *i*-partite graph with each partition consisting of two vertices, which is 2-edge-connected and 2(i-1)-regular, and so has a perfect matching M with |M| = i. Thus, G - M has the maximum degree n - 3. Similar before, $b_{\rm R}(G) = i$.

(3) Assume $m_i = 3$ and i = t. The graph G is (n-3)-regular. Let $x \in V(G)$ and $H = G - E_G(x)$, then $\gamma_{\rm R}(H) = 1 + \gamma_R(K_{2,3,\dots,3}) = 4$ by Lemma 2.1. By the conclusion (2), $b_{\rm R}(K_{2,3,\dots,3}) = 2$. And hence

$$b_{\mathrm{R}}(G) \le |E_G(x)| + b_{\mathrm{R}}(K_{2,3,\dots,3}) = (n-3) + 2 = n-1.$$

Now, we prove that $b_{\mathbb{R}}(G) \geq n-1$. By contradiction, assume that there is a Roman bondage set B of G such that $|B| \leq n-2$. Let G' = G - B. By Lemma 2.1, $\gamma_{\mathbb{R}}(G') > \gamma_{\mathbb{R}}(G) = 4$ and by Lemma 2.5, for any vertex $x \in V(G)$, $|E_G(x) \cap B| \geq 1$. If $|E_G(x) \cap B| \geq 2$ for any vertex $x \in V(G)$, then the subgraph induced by B has the minimum degree at least two, and so $|B| \geq n$, a contradiction. Thus, there exists a vertex x_1 in G such that $|E_G(x_1) \cap B| = 1$. Let $x_1y_1 \in B$ and, without loss of generality, let $X_1 = \{x_1, x_2, x_3\}$ and $X_2 = \{y_1, y_2, y_3\}$. By Lemma 2.8,

$$|E(G[\{y_1, x_2, x_3\}]) \cap B| \ge 1, \tag{3.1}$$

and by Lemma 2.5,

$$|E_G(y_2) \cap B| \ge 1$$
 and $|E_G(y_3) \cap B| \ge 1.$ (3.2)

Let $V_1 = V(G) \setminus (X_1 \cup X_2)$. By Lemma 2.6,

$$|E_G(\{y_1, x_2, x_3\}, x') \cap B| \ge 1 \text{ for any } x' \in V_1,$$
(3.3)

and so

$$|E_G(\{y_1, x_2, x_3\}, V_1) \cap B| \ge n - 6.$$
(3.4)

It follows from (3.1), (3.2) and (3.4) that

$$n-2 \ge |B| \ge |\{x_1y_1\}| + |E(G[\{y_1, x_2, x_3\}]) \cap B| +|E_G(\{y_1, x_2, x_3\}, V_1) \cap B| + |E_G(y_2) \cap B| +|E_G(y_3) \cap B| + |E(G[V_1]) \cap B| \ge 1+1+(n-6)+1+1+0 \ge n-2.$$
(3.5)

Thus, all the equalities in (3.5) hold, which implies that all the equalities in (3.1), (3.2) and (3.3) hold, and $|E(G[V_1]) \cap B| = 0$.

Let $E_G(y_2) \cap B = \{y_2u\}$ and $E_G(y_3) \cap B = \{y_3v\}$. Assume that $t \ge 5$. There exists some *i* with $3 \le i \le t$ such that neither of *u* and *v* belongs to X_i . Thus, each vertex in X_i is incident with exact one edge in *B*. By Lemma 2.7, $|B| \ge n - 1$, a contradiction. Now, we consider the remaining case t = 3 or 4.

By Lemma 2.7, if there exists some i with $3 \le i \le t$ such that neither u nor v belongs to X_i , then $|B| \ge n - 1$, a contradiction. Thus, if t = 3, then at least one of u and v belongs to X_3 ; if t = 4, then one of u and v belongs to X_3 and the other belongs to X_4 . Let $X_3 = \{z_1, z_2, z_3\}$. Without loss of generality, assume $u = z_1$. By (3.1), without loss of generality, assume $x_2y_1 \in B$. By (3.1), (3.2) and (3.3), we have

$$B = \{x_1y_1, x_2y_1, y_2z_1, y_3v\} \cup (E_G(\{y_1, x_2, x_3\}, V_1) \cap B).$$
(3.6)

Since $E_G(y_2) \cap B = \{y_2z_1\}$, by Lemma 2.8, $|\{y_1z_1, y_3z_1\} \cap B| \ge 1$. By Lemma 2.6, $|E_G(\{y_1, y_3, z_1\}, x_3) \cap B| \ge 1$. By (3.6), $x_3y_1 \notin B$, and hence

$$|E_G(\{y_3, z_1\}, x_3) \cap B| \ge 1. \tag{3.7}$$

If $u \neq v$, then $y_1z_1 \in B$ since $E_G(y_3) \cap B = \{y_3v\} \neq \{y_3z_1\}$. By (3.3), $|E_G(\{y_1, x_2, x_3\}, z_1) \cap B| = 1$. Since $y_1z_1 \in B$, $x_3z_1 \notin B$. By (3.7), $y_3x_3 \in B$, which implies $x_3 = v$ and $E_G(y_3) \cap B = \{y_3x_3\}$. And then, by Lemma 2.8, $|\{x_3y_1, x_3y_2\} \cap B| \geq 1$, a contradiction with (3.6).

Now, assume u = v. If t = 4, then one of u and v belongs to X_3 and the other belongs to X_4 , a contradiction. The only remaining case is t = 3 and u = v. Since $E_G(y_3) \cap B = \{y_3 z_1\}$ and by (3.7), $x_3 z_1 \in B$. By (3.6), we have

$$B = \{x_1y_1, x_2y_1, y_2z_1, y_3z_1, x_3z_1\} \cup (E_G(z_2) \cap B) \cup (E_G(z_3) \cap B),$$
(3.8)

where $E_G(z_2) \cap B \in \{x_2z_2, x_3z_2, y_1z_2\}$ and $E_G(z_3) \cap B \in \{x_2z_3, x_3z_3, y_1z_3\}$. By (3.3), $|E_G(z_2) \cap B| = |E_G(z_3) \cap B| = 1$.

If $E_G(\{x_2, x_3\}, \{z_2, z_3\}) \cap B = \emptyset$, then $|E_G(x) \cap B| = 1$ for each $x \in X_1 = \{x_1, x_2, x_3\}$. By Lemma 2.7, $|B| \ge n - 1 = 8$, a contradiction. Suppose without loss of generality that $z_2x' \in B$, where $x' \in \{x_2, x_3\}$. Assume $x' = x_2$. Then by (3.8), $E_G(z_2) \cap B = \{x_2z_2\}$. By Lemma 2.8, $|\{x_2z_1, x_2z_3\} \cap B| \ge 1$. By (3.8), the only possible is $x_2z_3 \in B$. Thus, $B = \{x_1y_1, x_2y_1, y_2z_1, y_3z_1, x_3z_1, x_2z_2, x_2z_3\}$. Since $E_G(x_3) \cap B = \{x_3z_1\}$, by Lemma 2.8, $|\{x_1z_1, x_2z_1\} \cap B| \ge 1$, a contradiction. Now, assume $x' = x_3$. Then $E_G(z_2) \cap B = \{x_3z_2\}$. By Lemma 2.6, $|E_G(\{x_3, z_1, z_3\}, y_1) \cap B| \ge 1$. By (3.8), $y_1z_3 \in B$. Thus, $B = \{x_1y_1, x_2y_1, y_2z_1, y_3z_1, x_3z_2, y_1z_3\}$. Since $E_G(z_3) \cap B = \{y_1z_3\}$, by Lemma 2.8, $|\{y_1z_1, y_1z_2\} \cap B| \ge 1$, a contradiction.

Thus, $b_{\rm R}(K_{3,3,\dots,3}) = n - 1$.

(4) We now assume $m_i \geq 3$ and $m_t \geq 4$. By Lemma 2.1, we have $\gamma_{\rm R}(G) = 4$. Let u be a vertex in X_t and f be a $\gamma_{\rm R}$ -function of $G - E_G(u)$. Then u is an isolated vertex. Thus f(u) = 1. Since G - u is a complete t-partite graph with at least 3 vertices in every partition, by Lemma 2.1, f(G-u) = 4. Thus $\gamma_{\rm R}(G - E_G(u)) = 5 > 4 = \gamma_{\rm R}(G)$, and hence $b_{\rm R}(G) \leq |E_G(u)| = n - m_t$.

Now, we show $b_{\mathcal{R}}(G) \ge n - m_t$. Let B be a Roman bondage set of minimum size of G, and let G' = G - B.

Assume that there is a vertex x in G such that $E_G(x) \cap B = \emptyset$. For some $j, 1 \leq j \leq t$, we have $x \in X_j$. If there exists some $y \in V(G - X_j)$ such that $E_G(y, X_j) \cap B = \emptyset$. Set f(x) = f(y) = 2. Then f is a Roman dominating function of G' with f(G') = 4, a contradiction. Thus,

$$E_G(y, X_j) \cap B \neq \emptyset$$
 for any $y \in V(G - X_j)$.

It follows that

$$|B| \ge |V(G) \setminus X_j| = n - m_j \ge n - m_t.$$

Now, we assume that

$$|E_G(x) \cap B| \ge 1 \quad \text{for any } x \in V(G). \tag{3.9}$$

If $|E_G(x) \cap B| \ge 2$ for any $x \in V(G)$, then the subgraph induced by B has the minimum degree at least two, from which we have $|B| \ge n > n - m_t$.

We suppose that there exists a vertex $x_1 \in V(G)$ such that $|E_G(x_1) \cap B| = 1$. Let $x_1 \in X_j$ and $x_2, x_3, \ldots, x_{m_j}$ be the other vertices of X_j . Let y_1 be the unique neighbor of x_1 in $E_G(x_1) \cap B$, and let X_k contains y_1 . Let $V' = V(G) \setminus (X_j \cup X_k)$ and $V'' = \{y_1, x_2, x_3, \ldots, x_{m_j}\}$. If there is some $x' \in V'$ such that $|E_G(x', V'') \cap B| = 0$, set f(x) = f(x') = 2, then f is a Roman dominating function of G' with f(G') = 4, a contradiction. Thus,

$$|E_G(x', V'') \cap B| \ge 1 \quad \text{for any } x' \in V'. \tag{3.10}$$

It follows from (3.9) and (3.10) that

$$b_{\rm R}(G) = |B| \ge |V'| + |X_k| \ge n - m_t.$$

Thus, $b_{\mathrm{R}}(G) = n - m_t$.

The theorem follows.

4 Results on (n-3)-regular graphs

By Theorem 3.1, we immediately have $b_{\rm R}(K_{3,3,\dots,3}) = n-1$ if its order is n. The graph $K_{3,3,\dots,3}$ is an (n-3)-regular graph if its order n satisfies $n \ge 9$. In this section, we show that the Roman bondage number of any (n-3)-regular graph G of order n is equal to n-2, if $G \ne K_{3,3,\dots,3}$.

Lemma 4.1 Let G be an (n-3)-regular graph of order $n \ge 7$ and B be a Roman bondage set of G. Let $x, w \in V(G)$ and $xw \in E(G)$. Let $V(G) \setminus N_G[x] = \{y, z\}$ and $V(G) \setminus N_G[w] = \{p, q\}$. If $E_G(x) \cap B = \{xw\}$ and $\{y, z\} \cap \{p, q\} \neq \emptyset$, then $|B| \ge n-2$.

Proof. By Lemma 2.4, $\gamma_{\rm R}(G) = 4$. Let G' = G - B. Then $\gamma_{\rm R}(G') > 4$. By Lemma 2.5, $E_G(y') \cap B \neq \emptyset$ for any $y' \in V(G)$. By contradiction, assume $|B| \leq n-3$. We have two cases.

Case 1 $\{y, z\} = \{p, q\}.$

In this case, $yz \in E(G)$ since G is (n-3)-regular. Let $U_1 = V(G) \setminus \{x, y, z, w\}$. Then any vertex in U_1 is adjacent to each in $\{w, y, z\}$. By Lemma 2.6, for each $x' \in U_1$, we have $|E_G(\{w, y, z\}, x') \cap B| \ge 1$, and so $|E_G(\{w, y, z\}, U_1) \cap B| \ge |U_1| = n - 4$. It follows that

$$n-3 \ge |B| \ge |\{xw\}| + |E_G(\{w, y, z\}, U_1) \cap B| + |E(G[U_1]) \cap B| \ge 1 + (n-4) + 0$$

$$= n-3.$$
(4.1)

This means that all equalities in (4.1) hold, that is, $yz \notin B$, $E(G[U_1]) \cap B = \emptyset$, $|E_G(\{w, y, z\}, x') \cap B| = 1$ and then, $|E_G(x') \cap B| = 1$ for any vertex $x' \in U_1$. Let $yr \in B$ for some $r \in U_1$ since $E_G(y) \cap B \neq \emptyset$, and let $V(G) \setminus N_G[r] = \{s, t\}$.

Assume $st \notin E(G)$. Then r, s, t are three vertices not adjacent to each other in G, and each one of them is incident with exact one edge in B. By Lemma 2.7, $|B| \ge n-2$, a contradiction.

Now, assume $st \in E(G)$. We claim that $ys, yt \in B$. By contradiction, assume $ys \notin B$. Denote f(r) = f(s) = 2. Then, f is a Roman dominating function of G' with f(G') = 4, a contradiction. Also, $yt \in B$ by replacing t with s. Then zs and zt do not belong to B. Denote f(r) = f(z) = 2. Then, f is a Roman dominating function of G' with f(G') = 4, a contradiction.

Case 2 $|\{y, z\} \cap \{p, q\}| = 1$. Without loss of generality, let p = y.

In this case, $yz, wz \in E(G)$ and hence $|E(G[\{y, z, w\}]) \cap B| \ge 1$ by Lemma 2.8. Let r be the only vertex except x not adjacent to z in G. By Lemma 2.6, $|E_G(\{w, y, z\}, x') \cap B| \ge 1$ for any vertex $x' \in U_2 = V(G) \setminus \{x, y, z, w, q, r\}$.

If q = r, then $|E_G(\{w, y, z\}, U_2) \cap B| \ge |U_2| = n - 5$. Then we can deduce a contradiction as follows.

$$n-3 \ge |B| \ge |\{xw\}| + |E_G(\{w, y, z\}, U_2) \cap B| + E(G[\{y, z, w\}]) \cap B| + |E_G(q) \cap B| \\\ge 1 + (n-5) + 1 + 1 \\= n-2.$$

If $q \neq r$, then $wr, zq \in E(G)$ and $|E_G(\{w, y, z\}, U_2) \cap B| \geq |U_2| = n - 6$. Then,

$$n-3 \ge |B| \ge |\{xw\}| + |E_G(\{w, y, z\}, U_2) \cap B| + |E(G[U_2]) \cap B| + E(G[\{y, z, w\}]) \cap B| + |(E_G(q) \cup E_G(r)) \cap B| \\ \ge 1 + (n-6) + 0 + 1 + 1 \\ = n-3.$$

$$(4.2)$$

It follows that the equalities in (4.2) hold, which implies that $|(E_G(q) \cup E_G(r)) \cap B| = 1$, $E(G[U_2]) \cap B = \emptyset$, $|E_G(\{w, y, z\}, x') \cap B| = 1$ and then, $|E_G(x') \cap B| = 1$ for any vertex $x' \in U_2$. Then $(E_G(q) \cup E_G(r)) \cap B = \{qr\}$, and hence $wr \notin B$, $zq \notin B$.

Let s be the only vertex except w not adjacent to q in G. Then neither of rs and ws belong to G', otherwise denote f(q) = f(r) = 2 or f(q) = f(w) = 2. Then f is a Roman dominating function of G' with f(G') = 4, a contradiction. Now $rs, ws \notin E(G')$ imply that $ws \in B$ and $rs \notin E(G)$. Then $zs \in E(G)$ and $zs \notin B$ since $|E_G(\{w, y, z\}, s) \cap B| = 1$. Denote f(r) = f(z) = 2. Then f is a Roman dominating function of G' with f(G') = 4, a contradiction. Thus, $|B| \ge n-2$.

The lemma follows.

Lemma 4.2 let G be an (n-3)-regular graph of order $n \ge 7$ and B be a Roman bondage set of G. Let $x, w \in V(G)$ and $xw \in E(G)$. If $E_G(x) \cap B = E_G(w) \cap B = \{xw\}$, then $|B| \ge n-2$.

Proof. Let $V(G) \setminus N_G[x] = \{y, z\}$ and $V(G) \setminus N_G[w] = \{p, q\}$.

We claim that $\{y, z\} \cap \{p, q\} \neq \emptyset$. By contradiction, suppose $\{y, z\} \cap \{p, q\} = \emptyset$. Then $wy, wz \in E(G)$, and $wy, wz \notin B$ since $E_G(w) \cap B = \{xw\}$. Denote f(x) = f(w) = 2. Then f is a Roman dominating function of G' with f(G') = 4, a contradiction. Thus $\{y, z\} \cap \{p, q\} \neq \emptyset$, and hence $|B| \ge n-2$ by Lemma 4.1.

Theorem 4.1 Let G be an (n-3)-regular graph of order $n \ge 5$. If G is not $K_{3,3,\dots,3}$, then $b_{\mathbf{R}}(G) = n-2$.

Proof. If n = 5, then $G = C_5$, and so $b_R(G) = 3$. Now, we assume $n \ge 6$.

By Lemma 2.4, $\gamma_{\mathrm{R}}(G) = 4$. Since $G \neq K_{3,3,\dots,3}$, there exist $x_0, y_0, z_0 \in V(G)$ such that $y_0 z_0 \in E(G)$ and $V(G) \setminus N_G[x_0] = \{y_0, z_0\}$. We consider the Roman domination number of $H = G - x_0 - y_0 z_0$. Since H is (|V(H)| - 3)-regular and $|V(H)| \ge 4$, $\gamma_{\mathrm{R}}(H) = 4$ by Lemma 2.4. Thus $\gamma_{\mathrm{R}}(G - E_G(x_0) - y_0 z_0) \ge 5$ and hence $b_{\mathrm{R}}(G) \le |E_G(x_0)| + 1 = n - 2$. Next, we prove that $b_{\mathrm{R}}(G) \ge n - 2$.

If n = 6, then G is the Cartesian product of a complete graph K_2 and a cycle C_3 , that is, $G = K_2 \times C_3$. Suppose to the contrary that M is a Roman bondage set of G and |M| = n - 3 = 3. By Lemma 2.5, $E_G(y') \cap M \neq \emptyset$ for each $y' \in V(G)$. Therefore, M is a perfect matching in G. It is easy to verify that either G - M is a 6-cycle or consists of two 3-cycles. Thus $\gamma_{\rm R}(G - M) = \gamma_{\rm R}(G) = 4$, a contradiction. So $b_{\rm R}(G) \ge n - 2 = 4$.

Now, we assume $n \geq 7$. Let *B* be a minimum Roman bondage set of *G* and G' = G - B. Then $|B| \leq n - 2$ and $\gamma_{\rm R}(G') > 4$. We now prove $|B| \geq n - 2$. By contradiction, assume $|B| \leq n - 3$. By Lemma 2.5, $E_G(y') \cap B \neq \emptyset$ for any $y' \in V(G)$. Then there exists a vertex *x* such that $|E_G(x) \cap B| = 1$. Let $xw \in B$, $V(G) \setminus N_G[x] = \{y, z\}$ and $V(G) \setminus N_G[w] = \{p, q\}$. If $\{y, z\} \cap \{p, q\} \neq \emptyset$, then $|B| \geq n - 2$ by Lemma 4.1. Thus, we only need to consider the case of $\{y, z\} \cap \{p, q\} = \emptyset$. In this case, $wy, wz \in E(G)$. We now deduce a contradiction by considering the following two cases.

Case 1 $yz \notin E(G)$.

By Lemma 2.8, $|E(G[\{y, z, w\}]) \cap B| \ge 1$. By Lemma 2.6, $|E_G(\{w, y, z\}, x') \cap B| \ge 1$ for any vertex $x' \in X_1 = V(G) \setminus \{x, y, z, w, p, q\}$, and so $|E_G(\{w, y, z\}, X_1) \cap B| \ge |X_1| = n - 6$. Then,

$$n-3 \ge |B| \ge |\{xw\}| + |E_G(\{w, y, z\}, X_1) \cap B| + |E(G[\{y, z, w\}]) \cap B| + |(E_G(p) \cup E_G(q)) \cap B| \\ \ge 1 + (n-6) + 1 + 1 \\ = n-3.$$

$$(4.3)$$

It follows that the equalities in (4.3) hold, which implies that $|E_G(\{p,q\}) \cap B| = 1$. Then $(E_G(p) \cup E_G(q)) \cap B = \{pq\}$ and then, $E_G(p) \cap B = E_G(q) \cap B = \{pq\}$. By Lemma 4.2, $|B| \ge n-2$, a contradiction. Case 2 $yz \in E(G)$.

Let r and s be the only vertices except x not adjacent to y and z in G, respectively. By Lemma 2.8, $|E(G[\{w, y, z\}]) \cap B| \ge 2$. By Lemma 2.6, $|E_G(\{w, y, z\}, x') \cap B| \ge 1$ for any vertex $x' \in X_2 = V(G) \setminus \{x, y, z, w, p, q, r, s\}$. Thus, we have

$$|E_G(\{w, y, z\}, X_2) \cap B| \ge |X_2| \ge \begin{cases} n-6 & \text{if } |\{r, s\} \cup \{p, q\}| \le 2; \\ n-7 & \text{if } |\{r, s\} \cup \{p, q\}| = 3; \\ n-8 & \text{if } |\{r, s\} \cup \{p, q\}| = 4; \end{cases}$$
(4.4)

and

$$|(E_G(p) \cup E_G(q) \cup E_G(r) \cup E_G(s)) \cap B| \ge \begin{cases} 1 & \text{if } |\{r,s\} \cup \{p,q\}| \le 2; \\ 2 & \text{if } |\{r,s\} \cup \{p,q\}| = 3; \\ 2 & \text{if } |\{r,s\} \cup \{p,q\}| = 4. \end{cases}$$
(4.5)

It follows from (4.4) and (4.5) that

$$n-3 \ge |B| \ge |\{xw\}| + |E_G(\{w, y, z\}, X_2) \cap B| + |E(G[\{w, y, z\}]) \cap B| + |(E_G(p) \cup E_G(q) \cup E_G(r) \cup E_G(s)) \cap B| \\ \ge \begin{cases} n-2 & \text{if } |\{r, s\} \cup \{p, q\}| \le 3; \\ n-3 & \text{if } |\{r, s\} \cup \{p, q\}| = 4. \end{cases}$$

$$(4.6)$$

The equation (4.6) implies that $|\{r, s\} \cup \{p, q\}| = 4$, |B| = n - 3 and $|(E_G(p) \cup E_G(q) \cup E_G(r) \cup E_G(s)) \cap B| = 2$. Then there exist two vertices u, v in $\{p, q, r, s\}$ such that $E_G(u) \cap B = E_G(v) \cap B = \{uv\}$. By Lemma 4.2, $|B| \ge n - 2$, a contradiction.

Thus, $b_{\rm R}(G) = n - 2$, and so the theorem follows.

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their kind suggestions and comments on the original manuscript, which resulted in this version.

References

- S. Akbari, M. Khatirinejadand S. Qajar, A note on Roman bondage number of planar graphs. *Graphs and Combinatorics* 29 (2013), 327–331.
- [2] A. Bahremandpour, F.-T. Hu, S.M. Sheikholeslami, J.-M. Xu, On the Roman bondage number of a graph. *Discrete Mathematics, Algorithms and Applications* 5 (1) (2013), 1350001 (15 pages).
- [3] E.W. Chambers, B. Kinnersley, N. Prince, D.B. West, Extremal problems for Roman domination. SIAM J. Discrete Math. 23 (2009), 1575–1586.

- [4] E.J. Cockayne, P.A. Dreyer, Jr., S.M. Hedetniemi, S.T. Hedetniemi, A.A. McRae, Roman domination in graphs. *Discrete Mathematics* 278 (1-3) (2004), 11–22.
- [5] N. Dehgardi, S.M. Sheikholeslami and L. Volkman, On the Roman k-bondage number of a graph. AKCE International Journal of Graphs and Combinatorics 8 (2011), 169–180.
- [6] K. Ebadi and L. PushpaLatha, Roman bondage and Roman reinforcement numbers of a graph. International Journal of Contemporary Mathematics 5 (2010), 1487–1497.
- [7] O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman domination number of a graph. *Discrete Mathematics* **309** (2009), 3447–3451.
- [8] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph. Discrete Mathematics 86 (1990), 47–57.
- [9] X.L. Fu, Y.S. Yang and B.Q. Jiang, Roman domination in regular graphs. Discrete Mathematics 309 (2009), 1528–1537.
- [10] N. Jafari Rad and L. Volkmann, Roman bondage in graphs. Discussiones Mathematicae Graph Theory 31(4) (2011), 763–773.
- [11] N. Jafari Rad and L. Volkmann, On the Roman bondage number of planar graphs. *Graphs and Combinatorics* 27 (4) (2011), 531–538.
- [12] M. Liedloff, T. Kloks, J.P. Liu and S.L. Peng, Efficient algorithms for Roman domination on some classes of graphs, *Discrete Applied Mathematics* 156 (2008), 3400–3415.
- [13] M. Liedloff, T. Kloks, J.P. Liu and S. L. Peng, Roman domination over some graph classes, *Graph-Theoretic Concepts in Computer Science* **3787** (2005), 103–114.
- [14] A. Pagourtzis, P. Penna, K. Schlude, K. Steinhofel, D. Taylor and P. Widmayer, Server placements, Roman domination and other dominating set variants, in Proc. Second International Conference on Theoretical Computer Science (2002), 280–291.
- [15] W.P. Shang and X.D. Hu, The roman domination problem in unit disk graphs, Computational Science - ICCS 2007, Pt 3, Proceedings 4489 (2007), 305–312.
- [16] W.P. Shang and X.D. Hu, Roman domination and its variants in unit disk graphs, Discrete Mathematics, Algorithms and Applications 2 (2010), 99–105.
- [17] S.M. Sheikholeslami, L. Volkmann, The Roman domination number of a digraph. Acta Universitatis Apulensis, 27 (2011), 77–86.

- [18] I. Stewart, Defend the Roman Empire. Scientific American 281 (1999), 136–139.
- [19] H.M. Xing, X. Chen and X.G. Chen, A note on Roman domination in graphs. Discrete Mathematics 306 (2006), 3338–3340.
- [20] J.-M. Xu, Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
- [21] J.-M. Xu, On bondage numbers of graphs a survey with some comments. International Journal of Combinatorics, vol. 2013, Article ID 595210, 34 pages, 2013. doi:10.1155/2013/595210.
- [22] X. Zhang, J. Liu and J.-X. Meng, The bondage number in complete t-partite digraphs. Information Processing Letters 109 (16) (2009), 997–1000.

(Received 6 Dec 2012; revised 20 July 2013)