Roman bondage numbers of some graphs*

Fu-Tao Hu
School of Mathematical Sciences
Anhui University
Hefei, Anhui, 230601
P. R. China
hufu@mail.ustc.edu.cn
Jun-Ming Xu ${ }^{\dagger}$
School of Mathematical Sciences
University of Science and Technology of China
Wentsun Wu Key Laboratory of CAS
Hefei, Anhui, 230026
P. R. China
xujm@ustc.edu.cn

Abstract

A Roman dominating function on a graph $G=(V, E)$ is a function $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u with $f(u)=0$ is adjacent to at least one vertex v with $f(v)=2$. The weight of a Roman dominating function is the value $f(G)=\sum_{u \in V} f(u)$. The Roman domination number of G is the minimum weight of a Roman dominating function on G. The Roman bondage number of a nonempty graph G is the minimum number of edges whose removal results in a graph with the Roman domination number larger than that of G. This paper determines the exact value of the Roman bondage numbers of two classes of graphs, complete t-partite graphs and ($n-3$)-regular graphs with order n for any $n \geq 5$.

1 Introduction

In this paper, a graph $G=(V, E)$ is considered as an undirected graph without loops and multi-edges, where $V=V(G)$ is the vertex set and $E=E(G)$ is the edge set. For

[^0]each vertex $x \in V(G)$, let $N_{G}(x)=\{y \in V(G): x y \in E(G)\}, N_{G}[x]=N_{G}(x) \cup\{x\}$, and $E_{G}(x)=\left\{x y: y \in N_{G}(x)\right\}$. The cardinality $\left|E_{G}(x)\right|$ is the degree of x, denoted by $d_{G}(x)$. For two disjoint nonempty and proper subsets S and T in $V(G)$, we use $E_{G}(S, T)$ to denote the set of edges between S and T in G, and $G[S]$ to denote a subgraph of G induced by S.

A subset $D \subseteq V$ is a dominating set of G if $N_{G}(x) \cap D \neq \emptyset$ for every vertex x in $G-D$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of all dominating sets of G. To measure the vulnerability or the stability of the domination in an interconnection network under edge failure, Fink et at. [8] proposed the concept of the bondage number in 1990. The bondage number, denoted by $b(G)$, of G is the minimum number of edges whose removal from G results in a graph with larger domination number of G. For over twenty years, bondage numbers have received considerable research attention. The recent paper by Xu [21] surveys some progress, variations, and generalizations of bondage numbers.

One of generalizations of bondage numbers is the Roman bondage number. The Roman dominating function on G, proposed by Stewart [18], is a function $f: V \rightarrow$ $\{0,1,2\}$ such that each vertex x with $f(x)=0$ is adjacent to at least one vertex y with $f(y)=2$. For $S \subseteq V$ let $f(S)=\sum_{u \in S} f(u)$. The value $f(V(G))$ is called the weight of f, denoted by $f(G)$. The Roman domination number, denoted by $\gamma_{\mathrm{R}}(G)$, is defined as the minimum weight of all Roman dominating functions, that is,

$$
\gamma_{\mathrm{R}}(G)=\min \{f(G): f \text { is a Roman dominating function on } G\} .
$$

A Roman dominating function f is called a γ_{R}-function if $f(G)=\gamma_{\mathrm{R}}(G)$. Roman domination numbers have been studied in, for example [2-4, 7, 9, 12-19].

The Roman bondage number, denoted by $b_{\mathrm{R}}(G)$ and proposed first by Rad and Volkmann [10], of a nonempty graph G is the minimum number of edges whose removal from G results in a graph with larger Roman domination number. Precisely speaking, the Roman bondage number is

$$
b_{\mathrm{R}}(G)=\min \left\{|B|: B \subseteq E(G), \gamma_{\mathrm{R}}(G-B)>\gamma_{\mathrm{R}}(G)\right\}
$$

An edge set B for which $\gamma_{\mathrm{R}}(G-B)>\gamma_{\mathrm{R}}(G)$ is called the Roman bondage set and the minimum one the minimum Roman bondage set. In [2], the authors showed that the decision problem for $b_{\mathrm{R}}(G)$ is NP-hard even for bipartite graphs. The Roman bondage number has been further studied for example in $[1,2,5,6,10,11]$.

For a complete t-partite graph $K_{m_{1}, m_{2}, \ldots, m_{t}}$, its bondage number was determined by Fink et al. [8] for the undirected case and by Zhang et al. [22] for the directed case. Motivated by these results, in this paper we consider its Roman bondage number. Let $K_{m_{1}, m_{2}, \ldots, m_{t}}$ be a complete t-partite undirected graph with $m_{1}=m_{2}=\cdots=$ $m_{i}<m_{i+1} \leq \cdots \leq m_{t}$ and $n=\sum_{j=1}^{t} m_{j}$. When $t=2$, Jafari Rad and Volkmann [10] determined that $b_{\mathrm{R}}\left(K_{m_{1}, m_{2}}\right)=m_{1}$, with the exception of $K_{3,3}$, for which $b_{R}\left(K_{3,3}\right)=4$.

In this paper, we determine that for $t \geq 3$,

$$
b_{\mathrm{R}}\left(K_{m_{1}, m_{2}, \ldots, m_{t}}\right)= \begin{cases}\left\lfloor\frac{i}{2}\right\rfloor, & \text { if } m_{i}=1 \text { and } n \geq 3 \\ 2 & \text { if } m_{i}=2 \text { and } i=1 \\ i & \text { if } m_{i}=2 \text { and } i \geq 2 \\ n-1 & \text { if } m_{i}=3 \text { and } i=t \geq 3 \\ n-m_{t}, & \text { if } m_{i} \geq 3 \text { and } m_{t} \geq 4\end{cases}
$$

Consider $K_{3,3, \ldots, 3}$ of order $n \geq 9$, which is an $(n-3)$-regular graph. The above result means that $b_{\mathrm{R}}\left(K_{3,3, \ldots, 3}\right)=n-1$. In this paper, we further determine that $b_{\mathrm{R}}(G)=n-2$ for any $(n-3)$-regular graph G of order $n \geq 5$ and $G \neq K_{3,3, \ldots, 3}$.

In the proofs of our results, when a Roman dominating function of a graph is constructed, we only give its nonzero value of some vertices.

For terminology and notation on graph theory not given here, the reader is referred to Xu [20].

2 Preliminary results

Lemma 2.1 (Cockayne et al. [4]) For a complete t-partite graph $K_{m_{1}, m_{2}, \ldots, m_{t}}$ with $1 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{t}$ and $t \geq 2$,

$$
\gamma_{\mathrm{R}}\left(K_{m_{1}, m_{2}, \ldots, m_{t}}\right)= \begin{cases}2, & \text { if } m_{1}=1 \\ 3, & \text { if } m_{1}=2 \\ 4, & \text { if } m_{1} \geq 3\end{cases}
$$

Lemma 2.2 (Jafari Rad and Volkmann [10]) Let G be a graph of order $n \geq 3$ and t be the number of vertices of degree $n-1$ in G. If $t \geq 1$, then $b_{\mathrm{R}}(G)=\left\lceil\frac{t}{2}\right\rceil$.

Lemma 2.3 (Sheikholeslami and Volkmann [17]) For a nonempty graph G of order $n \geq 3, \gamma_{\mathrm{R}}(G)=3$ if and only if $\Delta(G)=n-2$.

Lemma 2.4 (Sheikholeslami and Volkmann [17]) If G is a graph with order $n \geq 4$ and $\Delta(G)=n-3$, then $\gamma_{\mathrm{R}}(G)=4$.

Lemma 2.5 Let G be an $(n-3)$-regular graph of order $n \geq 5$ and B be a Roman bondage set of G. Then $E_{G}(x) \cap B \neq \emptyset$ for any $x \in V(G)$.

Proof. By Lemma 2.4, $\gamma_{\mathrm{R}}(G)=4$. Let $G^{\prime}=G-B$. Since B is a Roman bondage set in $G, \gamma_{\mathrm{R}}\left(G^{\prime}\right)>4$. By contradiction, assume $E_{G}(x) \cap B=\emptyset$ for some $x \in V(G)$. Suppose that $V(G) \backslash N_{G}[x]=\{y, z\}$. Define $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{1}=\{y, z\}$, $\left.V_{2}=\{x\}, V_{0}=V(G) \backslash\left(V_{1} \cup V_{2}\right)\right)$. Since every $u \notin\{x, y, z\}$ is adjacent to x in G^{\prime}, f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$. Thus, $\gamma_{\mathrm{R}}\left(G^{\prime}\right) \leq f\left(G^{\prime}\right)=4<$ $\gamma_{\mathrm{R}}\left(G^{\prime}\right)$, a contradiction.

Lemma 2.6 Let G be an $(n-3)$-regular graph of order $n \geq 5$, let B be a Roman bondage set of G, and let x be any vertex, with $V(G) \backslash N_{G}[x]=\{y, z\}$. If $E_{G}(x) \cap B=$ $\{x w\}$, then $\left|E_{G}\left(\{y, z, w\}, x^{\prime}\right) \cap B\right| \geq 1$ for any vertex $x^{\prime} \in V(G) \backslash\{x, y, z, w\}$ that is adjacent to each vertex in $\{y, z, w\}$ in G.

Proof. Let $G^{\prime}=G-B$. By Lemma 2.4, $\gamma_{\mathrm{R}}\left(G^{\prime}\right)>4$. By contradiction, suppose $E_{G}\left(\{y, z, w\}, x^{\prime}\right) \cap B=\emptyset$ for some vertex $x^{\prime} \in V(G) \backslash\{x, y, z, w\}$ that is adjacent to each vertex in $\{y, z, w\}$ in G. Set $f(x)=f\left(x^{\prime}\right)=2$. Then, f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$ since $N_{G^{\prime}}[x] \cup N_{G^{\prime}}\left[x^{\prime}\right]=V(G)$, a contradiction.

Lemma 2.7 Let G be an $(n-3)$-regular graph of order $n \geq 7$ and B be a Roman bondage set of G. For three vertices x, y and z that are pairwise non-adjacent in G, if each of them is incident with exact one edge in B, then $|B| \geq n-2$ and, moreover, $|B| \geq n-1$ if $G=K_{3,3, \ldots, 3}$.

Proof. By the hypothesis, for any $v \in\{x, y, z\},\left|E_{G}(v) \cap B\right|=1$ and v is adjacent to every vertex in $V(G \backslash\{x, y, z\})$ in G. Let $x u \in E_{G}(x) \cap B$. We claim $y u \in E_{G}(y) \cap B$ and $z u \in E_{G}(z) \cap B$. In fact, by contradiction, without loss of generality suppose $y v \in E_{G}(y) \cap B$ and $z w \in E_{G}(z) \cap B$ with $u \neq v$ and $u \neq w$. The vertex u is adjacent to y and z in $G-B$. Set $f(x)=f(u)=2$. The function f is a Roman dominating function of G with $f(G-B)=4$, which contradicts $\gamma_{R}(G-B)>4$ by Lemma 2.4.

Let $V(G) \backslash N_{G}[u]=\{s, t\}$, and let $V^{\prime}=V(G) \backslash\{x, y, z, u, s, t\}$. By the hypothesis, each vertex in $\{y, z, u\}$ is adjacent to all vertices in V^{\prime} in G. By Lemma 2.6, for any vertex $x^{\prime} \in V^{\prime}$, if such a vertex exists, $\left|E_{G}\left(\{u, y, z\}, x^{\prime}\right) \cap B\right| \geq 1$, and so

$$
\begin{equation*}
\left|E_{G}\left(\{u, y, z\}, V^{\prime}\right) \cap B\right| \geq\left|V^{\prime}\right|=n-6 \tag{2.1}
\end{equation*}
$$

By Lemma 2.5, $\left|E_{G}(s) \cap B\right| \geq 1$ and $\left|E_{G}(t) \cap B\right| \geq 1$, and so we have that

$$
\left|\left(E_{G}(s) \cup E_{G}(t)\right) \cap B\right| \geq \begin{cases}1 & \text { if } s t \in E(G) \tag{2.2}\\ 2 & \text { if } s t \notin E(G)\end{cases}
$$

It follows from (2.1) and (2.2) that

$$
\begin{aligned}
|B| & \geq|\{x u, y u, z u\}|+\left|\left(E_{G}(s) \cup E_{G}(t)\right) \cap B\right| \\
& +\left|E_{G}\left(\{u, y, z\}, V^{\prime}\right) \cap B\right| \\
& \geq\left\{\begin{array}{lll}
n-2 & \text { if } & \text { st } \in E(G) ; \\
n-1 & \text { if } & \text { st } \notin E(G) .
\end{array}\right.
\end{aligned}
$$

If $G=K_{3,3, \ldots, 3}$, then $s t \notin E(G)$ and, hence, $|B| \geq n-1$.
Lemma 2.8 Let G be an $(n-3)$-regular graph of order $n \geq 5$ and B be a Roman bondage set of G. Let $x \in V(G), V(G) \backslash N_{G}[x]=\{y, z\}$. If $E_{G}(x) \cap B=\{x w\}$ and $G^{\prime}=G-B$, then $\left|E\left(G^{\prime}[\{y, z, w\}]\right)\right| \leq 1$. In fact,

$$
|E(G[\{y, z, w\}]) \cap B| \geq \begin{cases}1 & \text { if }|E(G[\{y, z, w\}])|=2 \\ 2 & \text { if }|E(G[\{y, z, w\}])|=3\end{cases}
$$

Proof. Suppose to the contrary that $\left|E\left(G^{\prime}[\{y, z, w\}]\right)\right| \geq 2$. Without loss of generality, let $y w, z w \in E\left(G^{\prime}\right)$. Denote $f(x)=f(w)=2$. Note that x is adjacent to every vertex except w, y and z in G^{\prime}. Thus, f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction with $\gamma_{\mathrm{R}}\left(G^{\prime}\right)>4$ by Lemma 2.4.

3 Results on complete t-partite graphs

For a complete bipartite graph $K_{m, n}$ with $1 \leq m \leq n$ and $n \geq 2$, Jafari Rad and Volkmann [10] proved that $b_{\mathrm{R}}\left(K_{m, n}\right)=m$, with the exception of the case $m=n=3$, for which $b_{R}\left(K_{3,3}\right)=4$. In the following, we determine the Roman bondage number of a complete t-partite graph for $t \geq 3$.

Theorem 3.1 Let $G=K_{m_{1}, m_{2}, \ldots, m_{t}}$ be a complete t-partite graph with $m_{1}=m_{2}=$ $\cdots=m_{i}<m_{i+1} \leq \cdots \leq m_{t}$ and $n=\sum_{j=1}^{t} m_{j}$. If $t \geq 3$, then

$$
b_{\mathrm{R}}(G)= \begin{cases}\left\lceil\frac{i}{2}\right\rceil & \text { if } m_{i}=1 \text { and } n \geq 3 \\ 2 & \text { if } m_{i}=2 \text { and } i=1 \\ i & \text { if } m_{i}=2 \text { and } i \geq 2 \\ n-1 & \text { if } m_{i}=3 \text { and } i=t \geq 3 \\ n-m_{t} & \text { if } m_{i} \geq 3 \text { and } m_{t} \geq 4\end{cases}
$$

Proof. Let $\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$ be the corresponding t-partitions of $V(G)$, where $X_{i}=$ m_{i}.
(1) If $m_{i}=1$ and $n \geq 3$, then G has i vertices of degree $n-1$. So by Lemma 2.2, $b_{\mathrm{R}}(G)=\left\lceil\frac{i}{2}\right\rceil$.
(2) If $m_{i}=2$, then $\Delta(G)=n-2$. By Lemma 2.1, $\gamma_{\mathrm{R}}(G)=3$. Let $B \subseteq E(G)$ be a Roman bondage set of G with $|B|=b_{\mathrm{R}}(G)$ and $G^{\prime}=G-B$. So $\gamma_{\mathrm{R}}\left(G^{\prime}\right)>\gamma_{\mathrm{R}}(G)=3$, and by Lemma 2.3, $\Delta\left(G^{\prime}\right) \leq n-3$. Thus, $\left|B \cap E_{G}(x)\right| \geq 1$ for every vertex in X_{j} $(1 \leq j \leq i)$, that is, $|B| \geq 2$ if $i=1$ and $|B| \geq i$ if $i>1$.

If $i=1$, then the only two vertices of degree $n-2$ are in X_{1}, and the removal of any two edges incident with distinct vertices in X_{1} implies that a graph $G^{\prime \prime}$ with $\Delta\left(G^{\prime \prime}\right) \leq n-3$, and hence $\gamma_{\mathrm{R}}\left(G^{\prime \prime}\right) \neq 3$ by Lemma 2.3. Since $\gamma_{\mathrm{R}}\left(G^{\prime \prime}\right) \geq \gamma_{\mathrm{R}}(G)=3$, $\gamma_{\mathrm{R}}\left(G^{\prime \prime}\right) \geq 4$. Thus, $b_{\mathrm{R}}(G) \leq 2$ and hence $b_{\mathrm{R}}(G)=2$.

If $i>1$, then the subgraph H induced by $\bigcup_{j=1}^{i} X_{j}$ of G is a complete i-partite graph with each partition consisting of two vertices, which is 2-edge-connected and $2(i-1)$-regular, and so has a perfect matching M with $|M|=i$. Thus, $G-M$ has the maximum degree $n-3$. Similar before, $b_{\mathrm{R}}(G)=i$.
(3) Assume $m_{i}=3$ and $i=t$. The graph G is $(n-3)$-regular. Let $x \in V(G)$ and $H=G-E_{G}(x)$, then $\gamma_{\mathrm{R}}(H)=1+\gamma_{R}\left(K_{2,3, \ldots, 3}\right)=4$ by Lemma 2.1. By the conclusion (2), $b_{\mathrm{R}}\left(K_{2,3, \ldots, 3}\right)=2$. And hence

$$
b_{\mathrm{R}}(G) \leq\left|E_{G}(x)\right|+b_{\mathrm{R}}\left(K_{2,3, \ldots, 3}\right)=(n-3)+2=n-1 .
$$

Now, we prove that $b_{\mathrm{R}}(G) \geq n-1$. By contradiction, assume that there is a Roman bondage set B of G such that $|B| \leq n-2$. Let $G^{\prime}=G-B$. By Lemma 2.1, $\gamma_{\mathrm{R}}\left(G^{\prime}\right)>\gamma_{\mathrm{R}}(G)=4$ and by Lemma 2.5, for any vertex $x \in V(G),\left|E_{G}(x) \cap B\right| \geq 1$. If $\left|E_{G}(x) \cap B\right| \geq 2$ for any vertex $x \in V(G)$, then the subgraph induced by B has the minimum degree at least two, and so $|B| \geq n$, a contradiction. Thus, there exists a vertex x_{1} in G such that $\left|E_{G}\left(x_{1}\right) \cap B\right|=1$. Let $x_{1} y_{1} \in B$ and, without loss of generality, let $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $X_{2}=\left\{y_{1}, y_{2}, y_{3}\right\}$. By Lemma 2.8,

$$
\begin{equation*}
\left|E\left(G\left[\left\{y_{1}, x_{2}, x_{3}\right\}\right]\right) \cap B\right| \geq 1 \tag{3.1}
\end{equation*}
$$

and by Lemma 2.5,

$$
\begin{equation*}
\left|E_{G}\left(y_{2}\right) \cap B\right| \geq 1 \text { and }\left|E_{G}\left(y_{3}\right) \cap B\right| \geq 1 \tag{3.2}
\end{equation*}
$$

Let $V_{1}=V(G) \backslash\left(X_{1} \cup X_{2}\right)$. By Lemma 2.6,

$$
\begin{equation*}
\left|E_{G}\left(\left\{y_{1}, x_{2}, x_{3}\right\}, x^{\prime}\right) \cap B\right| \geq 1 \text { for any } x^{\prime} \in V_{1} \tag{3.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|E_{G}\left(\left\{y_{1}, x_{2}, x_{3}\right\}, V_{1}\right) \cap B\right| \geq n-6 . \tag{3.4}
\end{equation*}
$$

It follows from (3.1), (3.2) and (3.4) that

$$
\begin{align*}
n-2 \geq|B| \geq & \left|\left\{x_{1} y_{1}\right\}\right|+\left|E\left(G\left[\left\{y_{1}, x_{2}, x_{3}\right\}\right]\right) \cap B\right| \\
& +\left|E_{G}\left(\left\{y_{1}, x_{2}, x_{3}\right\}, V_{1}\right) \cap B\right|+\left|E_{G}\left(y_{2}\right) \cap B\right| \\
& +\left|E_{G}\left(y_{3}\right) \cap B\right|+\left|E\left(G\left[V_{1}\right]\right) \cap B\right| \tag{3.5}\\
\geq & 1+1+(n-6)+1+1+0 \\
\geq & n-2 .
\end{align*}
$$

Thus, all the equalities in (3.5) hold, which implies that all the equalities in (3.1), (3.2) and (3.3) hold, and $\left|E\left(G\left[V_{1}\right]\right) \cap B\right|=0$.

Let $E_{G}\left(y_{2}\right) \cap B=\left\{y_{2} u\right\}$ and $E_{G}\left(y_{3}\right) \cap B=\left\{y_{3} v\right\}$. Assume that $t \geq 5$. There exists some i with $3 \leq i \leq t$ such that neither of u and v belongs to X_{i}. Thus, each vertex in X_{i} is incident with exact one edge in B. By Lemma $2.7,|B| \geq n-1$, a contradiction. Now, we consider the remaining case $t=3$ or 4 .

By Lemma 2.7, if there exists some i with $3 \leq i \leq t$ such that neither u nor v belongs to X_{i}, then $|B| \geq n-1$, a contradiction. Thus, if $t=3$, then at least one of u and v belongs to X_{3}; if $t=4$, then one of u and v belongs to X_{3} and the other belongs to X_{4}. Let $X_{3}=\left\{z_{1}, z_{2}, z_{3}\right\}$. Without loss of generality, assume $u=z_{1}$. By (3.1), without loss of generality, assume $x_{2} y_{1} \in B$. By (3.1), (3.2) and (3.3), we have

$$
\begin{equation*}
B=\left\{x_{1} y_{1}, x_{2} y_{1}, y_{2} z_{1}, y_{3} v\right\} \cup\left(E_{G}\left(\left\{y_{1}, x_{2}, x_{3}\right\}, V_{1}\right) \cap B\right) . \tag{3.6}
\end{equation*}
$$

Since $E_{G}\left(y_{2}\right) \cap B=\left\{y_{2} z_{1}\right\}$, by Lemma 2.8, $\left|\left\{y_{1} z_{1}, y_{3} z_{1}\right\} \cap B\right| \geq 1$. By Lemma 2.6, $\left|E_{G}\left(\left\{y_{1}, y_{3}, z_{1}\right\}, x_{3}\right) \cap B\right| \geq 1$. By (3.6), $x_{3} y_{1} \notin B$, and hence

$$
\begin{equation*}
\left|E_{G}\left(\left\{y_{3}, z_{1}\right\}, x_{3}\right) \cap B\right| \geq 1 \tag{3.7}
\end{equation*}
$$

If $u \neq v$, then $y_{1} z_{1} \in B$ since $E_{G}\left(y_{3}\right) \cap B=\left\{y_{3} v\right\} \neq\left\{y_{3} z_{1}\right\}$. By (3.3), $\left|E_{G}\left(\left\{y_{1}, x_{2}, x_{3}\right\}, z_{1}\right) \cap B\right|=1$. Since $y_{1} z_{1} \in B, x_{3} z_{1} \notin B$. By (3.7), $y_{3} x_{3} \in B$, which implies $x_{3}=v$ and $E_{G}\left(y_{3}\right) \cap B=\left\{y_{3} x_{3}\right\}$. And then, by Lemma 2.8, $\left|\left\{x_{3} y_{1}, x_{3} y_{2}\right\} \cap B\right| \geq 1$, a contradiction with (3.6).

Now, assume $u=v$. If $t=4$, then one of u and v belongs to X_{3} and the other belongs to X_{4}, a contradiction. The only remaining case is $t=3$ and $u=v$. Since $E_{G}\left(y_{3}\right) \cap B=\left\{y_{3} z_{1}\right\}$ and by (3.7), $x_{3} z_{1} \in B$. By (3.6), we have

$$
\begin{equation*}
B=\left\{x_{1} y_{1}, x_{2} y_{1}, y_{2} z_{1}, y_{3} z_{1}, x_{3} z_{1}\right\} \cup\left(E_{G}\left(z_{2}\right) \cap B\right) \cup\left(E_{G}\left(z_{3}\right) \cap B\right) \tag{3.8}
\end{equation*}
$$

where $E_{G}\left(z_{2}\right) \cap B \in\left\{x_{2} z_{2}, x_{3} z_{2}, y_{1} z_{2}\right\}$ and $E_{G}\left(z_{3}\right) \cap B \in\left\{x_{2} z_{3}, x_{3} z_{3}, y_{1} z_{3}\right\}$. By (3.3), $\left|E_{G}\left(z_{2}\right) \cap B\right|=\left|E_{G}\left(z_{3}\right) \cap B\right|=1$.

If $E_{G}\left(\left\{x_{2}, x_{3}\right\},\left\{z_{2}, z_{3}\right\}\right) \cap B=\emptyset$, then $\left|E_{G}(x) \cap B\right|=1$ for each $x \in X_{1}=$ $\left\{x_{1}, x_{2}, x_{3}\right\}$. By Lemma 2.7, $|B| \geq n-1=8$, a contradiction. Suppose without loss of generality that $z_{2} x^{\prime} \in B$, where $x^{\prime} \in\left\{x_{2}, x_{3}\right\}$. Assume $x^{\prime}=x_{2}$. Then by (3.8), $E_{G}\left(z_{2}\right) \cap B=\left\{x_{2} z_{2}\right\}$. By Lemma 2.8, $\left|\left\{x_{2} z_{1}, x_{2} z_{3}\right\} \cap B\right| \geq 1$. By (3.8), the only possible is $x_{2} z_{3} \in B$. Thus, $B=\left\{x_{1} y_{1}, x_{2} y_{1}, y_{2} z_{1}, y_{3} z_{1}, x_{3} z_{1}, x_{2} z_{2}, x_{2} z_{3}\right\}$. Since $E_{G}\left(x_{3}\right) \cap B=\left\{x_{3} z_{1}\right\}$, by Lemma 2.8, $\left|\left\{x_{1} z_{1}, x_{2} z_{1}\right\} \cap B\right| \geq 1$, a contradiction. Now, assume $x^{\prime}=x_{3}$. Then $E_{G}\left(z_{2}\right) \cap B=\left\{x_{3} z_{2}\right\}$. By Lemma 2.6, $\mid E_{G}\left(\left\{x_{3}, z_{1}, z_{3}\right\}, y_{1}\right) \cap$ $B \mid \geq 1$. By (3.8), $y_{1} z_{3} \in B$. Thus, $B=\left\{x_{1} y_{1}, x_{2} y_{1}, y_{2} z_{1}, y_{3} z_{1}, x_{3} z_{1}, x_{3} z_{2}, y_{1} z_{3}\right\}$. Since $E_{G}\left(z_{3}\right) \cap B=\left\{y_{1} z_{3}\right\}$, by Lemma 2.8, $\left|\left\{y_{1} z_{1}, y_{1} z_{2}\right\} \cap B\right| \geq 1$, a contradiction.

Thus, $b_{\mathrm{R}}\left(K_{3,3, \ldots, 3}\right)=n-1$.
(4) We now assume $m_{i} \geq 3$ and $m_{t} \geq 4$. By Lemma 2.1, we have $\gamma_{\mathrm{R}}(G)=4$. Let u be a vertex in X_{t} and f be a γ_{R}-function of $G-E_{G}(u)$. Then u is an isolated vertex. Thus $f(u)=1$. Since $G-u$ is a complete t-partite graph with at least 3 vertices in every partition, by Lemma 2.1, $f(G-u)=4$. Thus $\gamma_{\mathrm{R}}\left(G-E_{G}(u)\right)=5>4=\gamma_{\mathrm{R}}(G)$, and hence $b_{\mathrm{R}}(G) \leq\left|E_{G}(u)\right|=n-m_{t}$.

Now, we show $b_{\mathrm{R}}(G) \geq n-m_{t}$. Let B be a Roman bondage set of minimum size of G, and let $G^{\prime}=G-B$.

Assume that there is a vertex x in G such that $E_{G}(x) \cap B=\emptyset$. For some $j, 1 \leq j \leq t$, we have $x \in X_{j}$. If there exists some $y \in V\left(G-X_{j}\right)$ such that $E_{G}\left(y, X_{j}\right) \cap B=\emptyset$. Set $f(x)=f(y)=2$. Then f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction. Thus,

$$
E_{G}\left(y, X_{j}\right) \cap B \neq \emptyset \text { for any } y \in V\left(G-X_{j}\right)
$$

It follows that

$$
|B| \geq\left|V(G) \backslash X_{j}\right|=n-m_{j} \geq n-m_{t}
$$

Now, we assume that

$$
\begin{equation*}
\left|E_{G}(x) \cap B\right| \geq 1 \text { for any } x \in V(G) \tag{3.9}
\end{equation*}
$$

If $\left|E_{G}(x) \cap B\right| \geq 2$ for any $x \in V(G)$, then the subgraph induced by B has the minimum degree at least two, from which we have $|B| \geq n>n-m_{t}$.

We suppose that there exists a vertex $x_{1} \in V(G)$ such that $\left|E_{G}\left(x_{1}\right) \cap B\right|=1$. Let $x_{1} \in X_{j}$ and $x_{2}, x_{3}, \ldots, x_{m_{j}}$ be the other vertices of X_{j}. Let y_{1} be the unique neighbor of x_{1} in $E_{G}\left(x_{1}\right) \cap B$, and let X_{k} contains y_{1}. Let $V^{\prime}=V(G) \backslash\left(X_{j} \cup X_{k}\right)$ and $V^{\prime \prime}=\left\{y_{1}, x_{2}, x_{3}, \ldots, x_{m_{j}}\right\}$. If there is some $x^{\prime} \in V^{\prime}$ such that $\left|E_{G}\left(x^{\prime}, V^{\prime \prime}\right) \cap B\right|=0$, set $f(x)=f\left(x^{\prime}\right)=2$, then f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction. Thus,

$$
\begin{equation*}
\left|E_{G}\left(x^{\prime}, V^{\prime \prime}\right) \cap B\right| \geq 1 \text { for any } x^{\prime} \in V^{\prime} \tag{3.10}
\end{equation*}
$$

It follows from (3.9) and (3.10) that

$$
b_{\mathrm{R}}(G)=|B| \geq\left|V^{\prime}\right|+\left|X_{k}\right| \geq n-m_{t}
$$

Thus, $b_{\mathrm{R}}(G)=n-m_{t}$.
The theorem follows.

4 Results on ($n-3$)-regular graphs

By Theorem 3.1, we immediately have $b_{\mathrm{R}}\left(K_{3,3, \ldots, 3}\right)=n-1$ if its order is n. The graph $K_{3,3, \ldots, 3}$ is an $(n-3)$-regular graph if its order n satisfies $n \geq 9$. In this section, we show that the Roman bondage number of any $(n-3)$-regular graph G of order n is equal to $n-2$, if $G \neq K_{3,3, \ldots, 3}$.

Lemma 4.1 Let G be an ($n-3$)-regular graph of order $n \geq 7$ and B be a Roman bondage set of G. Let $x, w \in V(G)$ and $x w \in E(G)$. Let $V(G) \backslash N_{G}[x]=\{y, z\}$ and $V(G) \backslash N_{G}[w]=\{p, q\}$. If $E_{G}(x) \cap B=\{x w\}$ and $\{y, z\} \cap\{p, q\} \neq \emptyset$, then $|B| \geq n-2$.

Proof. By Lemma 2.4, $\gamma_{\mathrm{R}}(G)=4$. Let $G^{\prime}=G-B$. Then $\gamma_{\mathrm{R}}\left(G^{\prime}\right)>4$. By Lemma 2.5, $E_{G}\left(y^{\prime}\right) \cap B \neq \emptyset$ for any $y^{\prime} \in V(G)$. By contradiction, assume $|B| \leq n-3$. We have two cases.

Case $1\{y, z\}=\{p, q\}$.
In this case, $y z \in E(G)$ since G is $(n-3)$-regular. Let $U_{1}=V(G) \backslash\{x, y, z, w\}$. Then any vertex in U_{1} is adjacent to each in $\{w, y, z\}$. By Lemma 2.6, for each $x^{\prime} \in U_{1}$, we have $\left|E_{G}\left(\{w, y, z\}, x^{\prime}\right) \cap B\right| \geq 1$, and so $\left|E_{G}\left(\{w, y, z\}, U_{1}\right) \cap B\right| \geq$ $\left|U_{1}\right|=n-4$. It follows that

$$
\begin{align*}
n-3 \geq|B| & \geq|\{x w\}|+\left|E_{G}\left(\{w, y, z\}, U_{1}\right) \cap B\right|+\left|E\left(G\left[U_{1}\right]\right) \cap B\right| \\
& \geq 1+(n-4)+0 \tag{4.1}\\
& =n-3 .
\end{align*}
$$

This means that all equalities in (4.1) hold, that is, $y z \notin B, E\left(G\left[U_{1}\right]\right) \cap B=\emptyset$, $\left|E_{G}\left(\{w, y, z\}, x^{\prime}\right) \cap B\right|=1$ and then, $\left|E_{G}\left(x^{\prime}\right) \cap B\right|=1$ for any vertex $x^{\prime} \in U_{1}$. Let $y r \in B$ for some $r \in U_{1}$ since $E_{G}(y) \cap B \neq \emptyset$, and let $V(G) \backslash N_{G}[r]=\{s, t\}$.

Assume st $\notin E(G)$. Then r, s, t are three vertices not adjacent to each other in G, and each one of them is incident with exact one edge in B. By Lemma 2.7, $|B| \geq n-2$, a contradiction.
Now, assume st $\in E(G)$. We claim that $y s, y t \in B$. By contradiction, assume ys $\notin B$. Denote $f(r)=f(s)=2$. Then, f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction. Also, yt $\in B$ by replacing t with s. Then $z s$ and $z t$ do not belong to B. Denote $f(r)=f(z)=2$. Then, f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction.

Case $2|\{y, z\} \cap\{p, q\}|=1$. Without loss of generality, let $p=y$.
In this case, $y z, w z \in E(G)$ and hence $|E(G[\{y, z, w\}]) \cap B| \geq 1$ by Lemma 2.8. Let r be the only vertex except x not adjacent to z in G. By Lemma 2.6, $\left|E_{G}\left(\{w, y, z\}, x^{\prime}\right) \cap B\right| \geq 1$ for any vertex $x^{\prime} \in U_{2}=V(G) \backslash\{x, y, z, w, q, r\}$.
If $q=r$, then $\left|E_{G}\left(\{w, y, z\}, U_{2}\right) \cap B\right| \geq\left|U_{2}\right|=n-5$. Then we can deduce a contradiction as follows.

$$
\begin{aligned}
n-3 \geq|B| \geq & |\{x w\}|+\left|E_{G}\left(\{w, y, z\}, U_{2}\right) \cap B\right| \\
& +E(G[\{y, z, w\}]) \cap B\left|+\left|E_{G}(q) \cap B\right|\right. \\
\geq & 1+(n-5)+1+1 \\
= & n-2 .
\end{aligned}
$$

If $q \neq r$, then $w r, z q \in E(G)$ and $\left|E_{G}\left(\{w, y, z\}, U_{2}\right) \cap B\right| \geq\left|U_{2}\right|=n-6$. Then,

$$
\begin{align*}
n-3 \geq|B| \geq & |\{x w\}|+\left|E_{G}\left(\{w, y, z\}, U_{2}\right) \cap B\right|+\left|E\left(G\left[U_{2}\right]\right) \cap B\right| \\
& +E(G[\{y, z, w\}]) \cap B\left|+\left|\left(E_{G}(q) \cup E_{G}(r)\right) \cap B\right|\right. \\
\geq & 1+(n-6)+0+1+1 \tag{4.2}\\
= & n-3 .
\end{align*}
$$

It follows that the equalities in (4.2) hold, which implies that $\mid\left(E_{G}(q) \cup E_{G}(r)\right) \cap$ $B\left|=1, E\left(G\left[U_{2}\right]\right) \cap B=\emptyset,\left|E_{G}\left(\{w, y, z\}, x^{\prime}\right) \cap B\right|=1\right.$ and then, $| E_{G}\left(x^{\prime}\right) \cap B \mid=1$ for any vertex $x^{\prime} \in U_{2}$. Then $\left(E_{G}(q) \cup E_{G}(r)\right) \cap B=\{q r\}$, and hence wr $\notin B$, $z q \notin B$.
Let s be the only vertex except w not adjacent to q in G. Then neither of $r s$ and $w s$ belong to G^{\prime}, otherwise denote $f(q)=f(r)=2$ or $f(q)=f(w)=2$. Then f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction. Now $r s$, ws $\notin E\left(G^{\prime}\right)$ imply that $w s \in B$ and $r s \notin E(G)$. Then $z s \in E(G)$ and $z s \notin B$ since $\left|E_{G}(\{w, y, z\}, s) \cap B\right|=1$. Denote $f(r)=f(z)=2$. Then f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction. Thus, $|B| \geq n-2$.

The lemma follows.
Lemma 4.2 let G be an $(n-3)$-regular graph of order $n \geq 7$ and B be a Roman bondage set of G. Let $x, w \in V(G)$ and $x w \in E(G)$. If $E_{G}(x) \cap B=E_{G}(w) \cap B=$ $\{x w\}$, then $|B| \geq n-2$.

Proof. Let $V(G) \backslash N_{G}[x]=\{y, z\}$ and $V(G) \backslash N_{G}[w]=\{p, q\}$.
We claim that $\{y, z\} \cap\{p, q\} \neq \emptyset$. By contradiction, suppose $\{y, z\} \cap\{p, q\}=$ \emptyset. Then $w y, w z \in E(G)$, and $w y, w z \notin B$ since $E_{G}(w) \cap B=\{x w\}$. Denote $f(x)=f(w)=2$. Then f is a Roman dominating function of G^{\prime} with $f\left(G^{\prime}\right)=4$, a contradiction. Thus $\{y, z\} \cap\{p, q\} \neq \emptyset$, and hence $|B| \geq n-2$ by Lemma 4.1.

Theorem 4.1 Let G be an $(n-3)$-regular graph of order $n \geq 5$. If G is not $K_{3,3, \ldots, 3}$, then $b_{\mathrm{R}}(G)=n-2$.

Proof. If $n=5$, then $G=C_{5}$, and so $b_{\mathrm{R}}(G)=3$. Now, we assume $n \geq 6$.
By Lemma 2.4, $\gamma_{\mathrm{R}}(G)=4$. Since $G \neq K_{3,3, \ldots, 3}$, there exist $x_{0}, y_{0}, z_{0} \in V(G)$ such that $y_{0} z_{0} \in E(G)$ and $V(G) \backslash N_{G}\left[x_{0}\right]=\left\{y_{0}, z_{0}\right\}$. We consider the Roman domination number of $H=G-x_{0}-y_{0} z_{0}$. Since H is $(|V(H)|-3)$-regular and $|V(H)| \geq 4, \gamma_{\mathrm{R}}(H)=4$ by Lemma 2.4. Thus $\gamma_{\mathrm{R}}\left(G-E_{G}\left(x_{0}\right)-y_{0} z_{0}\right) \geq 5$ and hence $b_{\mathrm{R}}(G) \leq\left|E_{G}\left(x_{0}\right)\right|+1=n-2$. Next, we prove that $b_{\mathrm{R}}(G) \geq n-2$.

If $n=6$, then G is the Cartesian product of a complete graph K_{2} and a cycle C_{3}, that is, $G=K_{2} \times C_{3}$. Suppose to the contrary that M is a Roman bondage set of G and $|M|=n-3=3$. By Lemma 2.5, $E_{G}\left(y^{\prime}\right) \cap M \neq \emptyset$ for each $y^{\prime} \in V(G)$. Therefore, M is a perfect matching in G. It is easy to verify that either $G-M$ is a 6 -cycle or consists of two 3-cycles. Thus $\gamma_{\mathrm{R}}(G-M)=\gamma_{\mathrm{R}}(G)=4$, a contradiction. So $b_{\mathrm{R}}(G) \geq n-2=4$.

Now, we assume $n \geq 7$. Let B be a minimum Roman bondage set of G and $G^{\prime}=G-B$. Then $|B| \leq n-2$ and $\gamma_{\mathrm{R}}\left(G^{\prime}\right)>4$. We now prove $|B| \geq n-2$. By contradiction, assume $|B| \leq n-3$. By Lemma 2.5, $E_{G}\left(y^{\prime}\right) \cap B \neq \emptyset$ for any $y^{\prime} \in V(G)$. Then there exists a vertex x such that $\left|E_{G}(x) \cap B\right|=1$. Let $x w \in B$, $V(G) \backslash N_{G}[x]=\{y, z\}$ and $V(G) \backslash N_{G}[w]=\{p, q\}$. If $\{y, z\} \cap\{p, q\} \neq \emptyset$, then $|B| \geq$ $n-2$ by Lemma 4.1. Thus, we only need to consider the case of $\{y, z\} \cap\{p, q\}=\emptyset$. In this case, $w y, w z \in E(G)$. We now deduce a contradiction by considering the following two cases.

Case $1 y z \notin E(G)$.
By Lemma 2.8, $|E(G[\{y, z, w\}]) \cap B| \geq 1$. By Lemma 2.6, $\left|E_{G}\left(\{w, y, z\}, x^{\prime}\right) \cap B\right| \geq 1$ for any vertex $x^{\prime} \in X_{1}=V(G) \backslash\{x, y, z, w, p, q\}$, and so $\left|E_{G}\left(\{w, y, z\}, X_{1}\right) \cap B\right| \geq$ $\left|X_{1}\right|=n-6$. Then,

$$
\begin{align*}
n-3 \geq|B| \geq & |\{x w\}|+\left|E_{G}\left(\{w, y, z\}, X_{1}\right) \cap B\right| \\
& +|E(G[\{y, z, w\}]) \cap B|+\left|\left(E_{G}(p) \cup E_{G}(q)\right) \cap B\right| \tag{4.3}\\
\geq & 1+(n-6)+1+1 \\
= & n-3 .
\end{align*}
$$

It follows that the equalities in (4.3) hold, which implies that $\left|E_{G}(\{p, q\}) \cap B\right|=1$. Then $\left(E_{G}(p) \cup E_{G}(q)\right) \cap B=\{p q\}$ and then, $E_{G}(p) \cap B=E_{G}(q) \cap B=\{p q\}$. By Lemma 4.2, $|B| \geq n-2$, a contradiction.

Case $2 y z \in E(G)$.
Let r and s be the only vertices except x not adjacent to y and z in G, respectively. By Lemma 2.8, $|E(G[\{w, y, z\}]) \cap B| \geq 2$. By Lemma 2.6, $\left|E_{G}\left(\{w, y, z\}, x^{\prime}\right) \cap B\right| \geq 1$ for any vertex $x^{\prime} \in X_{2}=V(G) \backslash\{x, y, z, w, p, q, r, s\}$. Thus, we have

$$
\left|E_{G}\left(\{w, y, z\}, X_{2}\right) \cap B\right| \geq\left|X_{2}\right| \geq \begin{cases}n-6 & \text { if }|\{r, s\} \cup\{p, q\}| \leq 2 \tag{4.4}\\ n-7 & \text { if }|\{r, s\} \cup\{p, q\}|=3 \\ n-8 & \text { if }|\{r, s\} \cup\{p, q\}|=4\end{cases}
$$

and

$$
\left|\left(E_{G}(p) \cup E_{G}(q) \cup E_{G}(r) \cup E_{G}(s)\right) \cap B\right| \geq \begin{cases}1 & \text { if }|\{r, s\} \cup\{p, q\}| \leq 2 \tag{4.5}\\ 2 & \text { if }|\{r, s\} \cup\{p, q\}|=3 \\ 2 & \text { if }|\{r, s\} \cup\{p, q\}|=4\end{cases}
$$

It follows from (4.4) and (4.5) that

$$
\begin{align*}
n-3 \geq|B| & \geq|\{x w\}|+\left|E_{G}\left(\{w, y, z\}, X_{2}\right) \cap B\right|+|E(G[\{w, y, z\}]) \cap B| \\
& \geq \begin{cases}n-2 & \text { if } \left.\mid\{r, s\} \cup E_{G}(r) \cup E_{G}(s)\right) \cap B \mid \\
n-3 & \text { if }|\{r, s\} \cup\{p, q\}| \leq 3 ;\end{cases} \\
& +\left(E_{G}(p) \cup E_{G}\left(q \cup E^{2}\right)=4 .\right. \tag{4.6}
\end{align*}
$$

The equation (4.6) implies that $|\{r, s\} \cup\{p, q\}|=4,|B|=n-3$ and $\mid\left(E_{G}(p) \cup\right.$ $\left.E_{G}(q) \cup E_{G}(r) \cup E_{G}(s)\right) \cap B \mid=2$. Then there exist two vertices u, v in $\{p, q, r, s\}$ such that $E_{G}(u) \cap B=E_{G}(v) \cap B=\{u v\}$. By Lemma $4.2,|B| \geq n-2$, a contradiction. Thus, $b_{\mathrm{R}}(G)=n-2$, and so the theorem follows.

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their kind suggestions and comments on the original manuscript, which resulted in this version.

References

[1] S. Akbari, M. Khatirinejadand S. Qajar, A note on Roman bondage number of planar graphs. Graphs and Combinatorics 29 (2013), 327-331.
[2] A. Bahremandpour, F.-T. Hu, S.M. Sheikholeslami, J.-M. Xu, On the Roman bondage number of a graph. Discrete Mathematics, Algorithms and Applications 5 (1) (2013), 1350001 (15 pages).
[3] E.W. Chambers, B. Kinnersley, N. Prince, D.B. West, Extremal problems for Roman domination. SIAM J. Discrete Math. 23 (2009), 1575-1586.
[4] E.J. Cockayne, P.A. Dreyer, Jr., S.M. Hedetniemi, S.T. Hedetniemi, A.A. McRae, Roman domination in graphs. Discrete Mathematics 278 (1-3) (2004), 11-22.
[5] N. Dehgardi, S.M. Sheikholeslami and L. Volkman, On the Roman k-bondage number of a graph. AKCE International Journal of Graphs and Combinatorics 8 (2011), 169-180.
[6] K. Ebadi and L. PushpaLatha, Roman bondage and Roman reinforcement numbers of a graph. International Journal of Contemporary Mathematics 5 (2010), 1487-1497.
[7] O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman domination number of a graph. Discrete Mathematics 309 (2009), 3447-3451.
[8] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph. Discrete Mathematics 86 (1990), 47-57.
[9] X.L. Fu, Y.S. Yang and B.Q. Jiang, Roman domination in regular graphs. Discrete Mathematics 309 (2009), 1528-1537.
[10] N. Jafari Rad and L. Volkmann, Roman bondage in graphs. Discussiones Mathematicae Graph Theory 31(4) (2011), 763-773.
[11] N. Jafari Rad and L. Volkmann, On the Roman bondage number of planar graphs. Graphs and Combinatorics 27 (4) (2011), 531-538.
[12] M. Liedloff, T. Kloks, J.P. Liu and S.L. Peng, Efficient algorithms for Roman domination on some classes of graphs, Discrete Applied Mathematics 156 (2008), 3400-3415.
[13] M. Liedloff, T. Kloks, J.P. Liu and S. L. Peng, Roman domination over some graph classes, Graph-Theoretic Concepts in Computer Science 3787 (2005), 103-114.
[14] A. Pagourtzis, P. Penna, K. Schlude, K. Steinhofel, D. Taylor and P. Widmayer, Server placements, Roman domination and other dominating set variants, in Proc. Second International Conference on Theoretical Computer Science (2002), 280-291.
[15] W.P. Shang and X.D. Hu, The roman domination problem in unit disk graphs, Computational Science - ICCS 2007, Pt 3, Proceedings 4489 (2007), 305-312.
[16] W.P. Shang and X.D. Hu, Roman domination and its variants in unit disk graphs, Discrete Mathematics, Algorithms and Applications 2 (2010), 99-105.
[17] S.M. Sheikholeslami, L. Volkmann, The Roman domination number of a digraph. Acta Universitatis Apulensis, 27 (2011), 77-86.
[18] I. Stewart, Defend the Roman Empire. Scientific American 281 (1999), 136-139.
[19] H.M. Xing, X. Chen and X.G. Chen, A note on Roman domination in graphs. Discrete Mathematics 306 (2006), 3338-3340.
[20] J.-M. Xu, Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[21] J.-M. Xu, On bondage numbers of graphs - a survey with some comments. International Journal of Combinatorics, vol. 2013, Article ID 595210, 34 pages, 2013. doi:10.1155/2013/595210.
[22] X. Zhang, J. Liu and J.-X. Meng, The bondage number in complete t-partite digraphs. Information Processing Letters 109 (16) (2009), 997-1000.
(Received 6 Dec 2012; revised 20 July 2013)

[^0]: * This work was supported by the doctoral scientific research startup fund of Anhui University and NNSF of China (No.11071233, No. 61272008).
 \dagger Corresponding author.

