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Abstract

Computer memory systems using high-density RAM chips are vulnerable
to m-spotty byte errors when they are exposed to high-energy particles.
These errors can be effectively detected or corrected using (m-spotty)
byte error-control codes. In order to study the properties of these codes
and to measure their error-detection and error-correction performance,
m-spotty weight enumerators are introduced and studied. In this paper,
we extend notions of m-spotty weight enumerator, split m-spotty weight
enumerator, r-fold joint m-spotty weight enumerator, complete m-spotty
weight enumerator and byte-weight enumerator (with respect to both m-
spotty Hamming and m-spotty Lee metrics) for byte error-control codes
over the finite chain ring Fq + uFq + u2Fq + · · · + ue−1Fq (ue = 0) or the
ring Fq +uFq +vFq +uvFq (u2 = 0, v2 = 0, uv = vu), where Fq is the finite
field of order q. We also discuss some of their applications and establish
MacWilliams identities for each of the above-mentioned enumerators.

1 Introduction

Nowadays, high-density RAM chips with wide I/O data (called a byte) are being
widely used in computer memory systems, as they ensure faster communication and
storage of data in computers, mobile phones, etc. However, these chips are highly
susceptible to multiple random bit errors when exposed to high energy particles. In
order to detect or correct these errors, Reed-Solomon codes were used initially, but
these codes require a large number of parity-check bits leading to a low information
rate of the code. To overcome this problem, these errors are modeled as spotty
[21] and multiple spotty [19] (m-spotty) byte errors. Further, to quantify these
spotty byte errors, the m-spotty Hamming and the m-spotty Lee metrics (weights)
are introduced and studied extensively. Several constructions of the codes that can
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detect or correct multiple spotty byte errors have been proposed and their (m-spotty)
byte error-detecting and byte error-correcting properties are also studied [2, 20, 21].
It is also shown that these codes have higher information rate as compared to the
previously used Reed-Solomon codes [2, 19, 20, 21].

In order to study properties of (m-spotty) byte error-control codes and to measure
their error-performance, some special type of polynomials, called m-spotty weight
enumerators, have been introduced and studied with respect to both the m-spotty
Hamming and m-spotty Lee metrics [6, 8, 9, 10, 11, 13, 18]. If a byte error-control
code C contains a large number of codewords, then it is generally very hard to
determine m-spotty weight enumerators of the code. However, the dual code of C is
of comparatively smaller size, so it is easier to determine the weight enumerator of
the dual code. An identity relating the weight enumerator of a code with that of its
dual code is called the MacWilliams identity, and it serves as a tool to determine the
weight enumerator of a code from its dual code.

Recently, the m-spotty Hamming and m-spotty Lee metrics have attracted a lot
of attention. A brief survey of the results known on m-spotty weight enumerators is
as follows:

Suzuki et al. [18] introduced the notion of m-spotty Hamming weight enumerator
for binary byte error-control codes and derived a MacWilliams identity for the same.
Ozen and Siap [6], Siap [12] and Siap and Ozen [15] further extended this work
to arbitrary finite fields, to the rings F2 + uF2 (u2 = 0) and F2 + uF2 (u2 = u),
respectively. We introduced split m-spotty Hamming weight enumerator and r-fold
joint m-spotty Hamming weight enumerator of byte error-control codes over R, where
R is either a finite field or an integer residue class ring [8, 9]. In the same work, we
also derived MacWilliams identities for these two enumerators and also discussed
their applications.

The above mentioned enumerators are defined relative to the Hamming metric,
which is more suitable for orthogonal modulated channels. However for the trans-
mission of non-binary signals over noisy phase modulated and amplitude modulated
channels, it is observed that the Lee metric is more suitable ([1], pp. 3-4). Siap
[13] introduced the notions of m-spotty Lee weight and m-spotty Lee weight enu-
merator for byte error-control codes over the ring of integers modulo 4 and derived
a MacWilliams type identity for the same. While extending this work to byte error-
control codes over R (R is either a finite field or an integer residue class ring), we
also introduced the notions of split m-spotty Lee weight enumerator and r-fold joint
m-spotty Lee weight enumerator for codes over R, derived MacWilliams identities
for each of these enumerators and discussed their applications [10, 11].

On the other hand, Suzuki and Fujiwara [17] introduced the complete m-spotty
weight enumerator for a binary byte error-control code and derived a MacWilliams
identity for the same. In another work, Suzuki [16] related complete m-spotty weight
enumerators of binary Type II codes with the Jacobi forms.

In another direction, Wadayama et al. [22] introduced the byte-weight enumerator
for a binary byte error-control code and derived a MacWilliams identity for the same.
Recently, Ozen and Siap [7] introduced the notion of m-spotty Rosenbloom-Tsfasman
metric and defined the corresponding m-spotty Rosenbloom-Tsfasman weight enu-



A. SHARMA ET AL. /AUSTRALAS. J. COMBIN. 58 (1) (2014), 67–105 69

merator of a binary byte error-control code. They also derived a MacWilliams iden-
tity for the m-spotty Rosenbloom-Tsfasman weight enumerator of a binary byte
error-control code.

Throughout this paper, let the ring R be either the finite chain ring R1 = Fq +
uFq + u2Fq + · · · + ue−1Fq (ue = 0) or the ring R2 = Fq + uFq + vFq + uvFq (u2 =
0, v2 = 0, uv = vu), where Fq is the finite field with q elements. The aim of this paper
is to extend the earlier work [8, 9, 10, 11, 17] to byte error-control codes over R.

This paper is organized as follows: In Section 2, we state some preliminary results
that we need to derive our main results. In Section 3, we define the m-spotty Ham-
ming weight enumerator, split m-spotty Hamming weight enumerator, r-fold joint
m-spotty Hamming weight enumerator and complete m-spotty Hamming weight enu-
merator for byte error-control codes over R. We also derive MacWilliams identities
for each of these enumerators and discuss their applications. In Section 4, we define
the m-spotty Lee weight enumerator, split m-spotty Lee weight enumerator, r-fold
joint m-spotty Lee weight enumerator and complete m-spotty Lee weight enumerator
for byte error-control codes over R. We also derive MacWilliams identities for each
of these enumerators and discuss some of their applications. In Section 5, we derive
a MacWilliams identity for the byte-weight enumerator of a byte error-control code
over R. In Section 6, we mention a brief conclusion and discuss a few interesting
open problems.

2 Some preliminaries

If Fq is the finite field of order q and having characteristic p, then R1 = Fq +uFq +
u2Fq + · · ·+ ue−1Fq with ue = 0, is a finite commutative ring with unity. Also every
element r ∈ R1 can be uniquely written as r = a0+ua1+· · ·+ue−1ae−1, where ai’s are
in Fq. It is easy to see that the only ideals of R1 are {0}, R1 and 〈uk〉 = ukR1 = uk

Fq+
uk+1Fq + · · ·+ ue−1Fq = {ukak + uk+1ak+1 + · · ·+ ue−1ae−1 | ak, ak+1, . . . , ae−1 ∈ Fq}
for 1 ≤ k ≤ e − 1, and they satisfy

{0} ⊆ 〈ue−1〉 ⊆ 〈ue−2〉 · · · ⊆ 〈u2〉 ⊆ 〈u〉 ⊆ R1.

Therefore R1 is a finite chain ring. If ζp is a complex primitive pth root of unity and
Trq/p is the trace function from Fq to Fp, then the map χ1 : R1 → C defined as

χ1(r) = ζ
Trq/p(a0+a1+···+ae−1)
p for all r = a0 + ua1 + · · · + ue−1ae−1 ∈ R1, (1)

is a non-trivial additive character on R1. From this, we make the following observa-
tion.

Lemma 1. For any non-zero ideal H of R1, we have∑
h∈H

χ1(h) = 0.
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Proof. Since χ1 is a non-trivial additive character on R1, by Theorem 5.4 of [3], we
have

∑
r∈R1

χ1(r) = 0. So to prove this lemma, it is enough to prove that
∑

h∈H

χ1(h) = 0

for all H = 〈uk〉, where 1 ≤ k ≤ e− 1. Since every element h ∈ 〈uk〉 can be uniquely
written as h = ukak + uk+1ak+1 + · · ·+ ue−1ae−1 (ai’s in Fq), we have∑

r∈〈uk〉
χ1(r) =

∑
ai∈Fq

k≤i≤e−1

χ1(u
kak + uk+1ak+1 + · · ·+ ue−1ae−1).

As χ1 is an additive character on R1, the above sum can be rewritten as

∑
r∈〈uk〉

χ1(r) =

e−1∏
i=k

⎛⎝∑
ai∈Fq

χ1(u
iai)

⎞⎠=

e−1∏
i=k

⎛⎝∑
ai∈Fq

ζ
Trq/p(ai)
p

⎞⎠=

⎛⎝∑
a∈Fq

ζ
Trq/p(a)
p

⎞⎠e−k

.

It is easy to see that the map a 	→ ζ
Trq/p(a)
p is a non-trivial additive character on

Fq, which again by Theorem 5.4 of [3], gives
∑

a∈Fq

ζ
Trq/p(a)
p = 0. Therefore the sum∑

r∈〈uk〉
χ1(r) = 0, which completes the proof.

Next consider the ring R2 = Fq+uFq+vFq+uvFq with u2 = 0, v2 = 0 and uv = vu.
Note that R2 is a finite commutative ring with unity and every element r ∈ R2 can
be uniquely written as r = a + ub + vc + uvd, where a, b, c, d are in Fq. It is easy to
see that the only ideals of R2 are {0}, 〈u〉 = uR2 = uFq + uvFq = {ua + uvb | a, b ∈
Fq}, 〈v〉 = vR2 = vFq + uvFq = {va + uvb | a, b ∈ Fq}, 〈uv〉 = uvR2 = uvFq =
{uva | a ∈ Fq}, 〈u + v〉 = (u + v)R2 = (u + v)Fq + uvFq = {(u + v)a + uvb | a, b ∈
Fq}, 〈u, v〉 = uR2 + vR2 = uFq + vFq + uvFq = {ua + vb + uvc | a, b, c ∈ Fq} and R2.
Further, if ζp is a complex primitive pth root of unity and Trq/p is the trace function
from Fq to Fp, then the map χ2 : R2 → C defined as

χ2(r) = ζ
Trq/p(a+b+c+d)
p for all r = a + ub + vc + uvd ∈ R2, (2)

is a non-trivial additive character on R2. Here also, we observe the following:

Lemma 2. If H is any non-zero ideal of R2, then∑
h∈H

χ2(h) = 0.

Proof. Its proof is similar to that of Lemma 1.

Throughout this paper, let R be either the ring R1 or R2, and let b, n be fixed
positive integers. Let Rbn denote the R-module of all bn-tuples over R. Note
that every vector v ∈ Rbn can be written as v = (v1, v2, . . . , vn), where each vi =
(vi1, vi2, . . . , vib) ∈ Rb and is called the ith byte of v.

A byte error-control code C of length bn and byte length b over R is defined as an
R-submodule of Rbn. The byte error-control codes can be used to detect or correct
special type of byte errors called spotty byte errors, which are as defined below:
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Definition 1. [21] For a fixed positive integer t (1 ≤ t ≤ b), a byte error is said to
be a spotty byte error (or t/b-error) if t or fewer random bit errors occur in a b-bit
byte. If none of the bits in a b-bit byte are in error, then we say that no spotty byte
error (or t/b-error) has occurred.

When high energy particles hit high-density RAM chips, more than t bits of a
b-bit byte may be distorted by noise. This led to the notion of m-spotty (or multiple
spotty) byte errors, which are as defined below:

Definition 2. [19] A byte error is said to be an m-spotty byte error (or multiple
spotty byte error) if at least one spotty byte error (or t/b-error) occurs in a b-bit
byte.

In order to illustrate the above definitions, we let t = 3 and b = 12. If 8 random
bits in a 12-bit byte are in error, then we say that three spotty byte errors (or 3/12-
errors) have occurred. If 2 random bits of a 12-bit byte are in error, then we say that
one spotty byte error (or 3/12-error) has occurred.

In order to study the properties of byte error-control codes over R and to deter-
mine their (m-spotty) byte error-detecting and error-correcting capabilities relative
to various channels, several m-spotty weight enumerators have been introduced and
studied for byte error-control codes over various finite commutative rings. For each
of these enumerators, various MacWilliams identities have been derived, which relate
the m-spotty weight enumerator of a byte error-control code with that of its dual
code as defined below:

If C is a byte error-control code of length bn and byte length b over R, then the
dual code of C, denoted by C⊥, is defined as

C⊥ = {v ∈ Rbn : 〈u, v〉 = 0 for all u ∈ C},
where 〈·, ·〉 denotes the standard inner product in Rbn. One can easily observe that
C⊥ is also a byte error-control code of length bn and byte length b over R.

The following lemma is an important tool in deriving MacWilliams identities for
m-spotty weight enumerators of byte error-control codes over R.

Lemma 3. Let C be a byte error-control code of length bn and byte length b over
R and f be a function defined from Rbn into C[z], where C is the set of complex
numbers. For u ∈ Rbn, define

f̃(u) =
∑

v∈Rbn

χ(〈u, v〉)f(v),

where χ = χ1 if R = R1 and χ = χ2 if R = R2. Then we have∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u),

where C⊥ denotes the dual code of C. (Throughout this paper, |A| denotes the cardi-
nality of the set A.)

Proof. Its proof is similar to that of Lemma 2.8 of Siap [14].
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3 Weight enumerators with respect to the m-spotty Ham-
ming metric

In this section, we discuss various m-spotty weight enumerators defined with
respect to the m-spotty Hamming metric, which is as defined below:

Definition 3. [21] The m-spotty Hamming distance between any two vectors u, v in
Rbn, denoted by dM(u, v), is defined as

dM(u, v) =
n∑

i=1

⌈dH(ui, vi)

t

⌉
,

where dH(ui, vi) (1 ≤ i ≤ n) denotes the Hamming distance of ui and vi. (Here 
x�
denotes the ceiling of any real number x.)

When t = 1, the m-spotty Hamming distance is same as the Hamming distance
over R. When t = b, the m-spotty Hamming distance coincides with the Hamming
distance over Rb.

It is easy to see that dM is a metric on Rbn and is called the m-spotty Hamming
metric on Rbn.

Definition 4. [19] The m-spotty Hamming weight of a vector v ∈ Rbn, denoted by
wM(v), is defined as

wM(v) =
n∑

i=1

⌈wH(vi)

t

⌉
,

where wH(vi) denotes the Hamming weight of the ith byte vi of v. Note that
dM(u, v) = wM(u − v).

3.1 m-spotty Hamming weight enumerator

In this subsection, we define the m-spotty Hamming weight enumerator of a byte
error-control code over R, derive a MacWilliams identity for the same and discuss
its application.

Definition 5. [18] Let C be a byte error-control code of length bn and byte length
b over R. The m-spotty Hamming weight enumerator of C is given by

WC(z) =
∑
u∈C

zwM (u).

When t = 1, the m-spotty Hamming weight enumerator of a byte error-control
code C coincides with the Hamming weight enumerator of C.

For any vector v ∈ Rbn, let αi (1 ≤ i ≤ n) be the Hamming weight of the ith byte
vi of v. Then the vector (α1, α2, . . . , αn) is called the Hamming weight distribution
vector of v. Further, if A(α1,α2,...,αn) denotes the number of codewords in C having the
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Hamming weight distribution vector as (α1, α2, . . . , αn), then the m-spotty Hamming
weight enumerator can be rewritten as

WC(z) =
∑

(α1,α2,...,αn)
0≤α1,α2,...,αn≤b

A(α1,α2,...,αn)

n∏
i=1

z�αi/t�.

In the following theorem, we derive a MacWilliams identity for the m-spotty
Hamming weight enumerator of a byte error-control code over R.

Theorem 1. Let C be a byte error-control code of length bn and byte length b over
R and C⊥ be its dual code. Then the m-spotty Hamming weight enumerator of C is
given by

WC(z) =
1

|C⊥|
∑

(α1,α2,...,αn)
0≤α1,α2,...,αn≤b

A(α1,α2,...,αn)

n∏
i=1

g(t)
αi

(z),

where A(α1,α2,...,αn) is the number of codewords in C⊥ having the Hamming weight

distribution vector as (α1, α2, . . . , αn), and the polynomials g
(t)
αi (z)’s are defined as

g(t)
αi

(z) =

b∑
pi=0

Kpi
(αi)z

�pi/t� with Kp(X) =

p∑
a=0

(−1)a(|R| − 1)p−a

(
X

a

)(
b − X

p − a

)
,

assuming
(

j
�

)
= 0 for j < � and

(
0
0

)
= 0. (Note that Kp(X) is the well-known

Krawtchouk polynomial [4]).

Remark 1. (i) When t = 1, Theorem 1 provides the MacWilliams identity for Ham-
ming weight enumerator of a linear code of length bn over R.

(ii) When the code C is of large size, it is very hard (in general) to compute the
numbers A(α1,α2,...,αn) (and hence the m-spotty Hamming weight enumerator)
for the code C. However, the dual code C⊥ of C is of relatively smaller size and
so it is comparatively easier to compute the numbers A(α1,α2,...,αn) for the dual
code C⊥. Therefore by applying the MacWilliams identity (Theorem 1), one
can obtain the m-spotty Hamming weight enumerator of C.

Proof of Theorem 1. Let f(v) =
n∏

i=1

zwM (vi) for v = (v1, v2, . . . , vn) ∈ Rbn with each

vi ∈ Rb. Then by Lemma 3, for u = (u1, u2, . . . , un) ∈ Rbn, f̃(u) is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

zwM (vi) =

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zwM (vi)

⎞⎠ .

For each i (1 ≤ i ≤ n), if wH(ui) = αi, then working as in Lemma 27 of Sharma
et al. [8], we get ∑

vi∈Rb

χ(〈ui, vi〉)zwM (vi) = g(t)
αi

(z).
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This gives

f̃(u) =
n∏

i=1

g(t)
αi

(z),

where (α1, α2, . . . , αn) is the Hamming weight distribution vector of u.
Now if A(α1,α2,...,αn) is the number of codewords in C⊥ having (α1, α2, . . . , αn) as

the Hamming weight distribution vector, then

∑
u∈C⊥

f̃(u) =
∑

(α1,α2,...,αn)

A(α1,α2,...,αn)

n∏
i=1

g(t)
αi

(z), (3)

where the summation runs over all n-tuples (α1, α2, . . . , αn) satisfying 0 ≤ αi ≤ b.
Again applying Lemma 3 and using (3), we get

WC(z) =
∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u) =
1

|C⊥|
∑

(α1,α2,...,αn)

A(α1,α2,...,αn)

n∏
i=1

g(t)
αi

(z),

which proves the identity.

An application
Here we observe that the m-spotty Hamming weight enumerator is useful in

determining the (m-spotty) error-detecting and error-correcting properties of a byte
error-control code over R.

For this, let C be a byte error-control code of length bn and byte length b over R.
Then the m-spotty Hamming distance of the code C is defined as

dM(C) = min{dM(u, v) : u, v ∈ C, u �= v}.

It is easy to see that dM(C) = min{wM(u) : u ∈ C, u �= 0}. From this, it follows that
dM(C) equals the least positive integer d such that the coefficient of zd in WC(z) is
non-zero. Thus one can compute the m-spotty Hamming distance of a code knowing
its m-spotty Hamming weight enumerator.

In the following theorem, it is shown that the m-spotty Hamming distance dM(C)
of a code C measures its (m-spotty) error-detecting and error-correcting capabilities.

Theorem 2. Let C be a byte error-control code of length bn and byte length b over
R. Then we have the following:

(i) The code C can detect any m-spotty byte error e satisfying wM(e) < d if and only
if dM(C) ≥ d.

(ii) If dM(C) = d, then C can correct all m-spotty byte errors e satisfying wM(e) <
d/2, and C cannot correct any m-spotty byte error e satisfying wM(e) ≥ d/2.

Proof. Its proof is similar to that of Theorem 31 of Sharma et al. [8].
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3.2 Split m-spotty Hamming weight enumerator

In this subsection, we define the split m-spotty Hamming weight enumerator of
a byte error-control code over R, derive a MacWilliams identity for the same and
discuss some of its applications.

Definition 6. [8] Let C be a byte error-control code of length bn and byte length
b over R. Then the split m-spotty Hamming weight enumerator of the code C is
defined as

SC(zi : i = 1, 2, . . . , n) =
∑

(u1,u2,...,un)∈C

(
n∏

i=1

z
wM (ui)
i

)
.

If A(α1,α2,...,αn) is the number of codewords in C having the Hamming weight
distribution vector as (α1, α2, . . . , αn), then the split m-spotty Hamming weight enu-
merator of the code C can be rewritten as

SC(zi : i = 1, 2, . . . , n) =
∑

(α1,α2,...,αn)

A(α1,α2,...,αn)

n∏
i=1

z
�αi

t
�

i , (4)

where the summation runs over all n-tuples (α1, α2, . . . , αn) satisfying 0 ≤ αi ≤ b for
each i.

If we take z1 = z2 = · · · = zn = z, then the split m-spotty Hamming weight
enumerator of a byte error-control code coincides with the m-spotty Hamming weight
enumerator of the code. When t = 1, the split m-spotty Hamming weight enumerator
of a byte error-control code coincides with the split Hamming weight enumerator of
the code.

In the following theorem, we derive a MacWilliams identity for the split m-spotty
Hamming weight enumerator of a byte error-control code over R.

Theorem 3. [8] Let C be a byte error-control code of length bn and byte length b over
R and C⊥ be its dual code. Then the split m-spotty Hamming weight enumerator of
C over R is given by

SC(zi : i = 1, 2, . . . , n) =
1

|C⊥|
∑

(α1,α2,...,αn)
0≤α1,α2,...,αn≤b

A(α1,α2,...,αn)

n∏
i=1

g(t)
αi

(zi),

where A(α1,α2,...,αn) is the number of codewords in C⊥ having Hamming weight distri-

bution vector as (α1, α2, . . . , αn), and the polynomials g
(t)
αi (zi)’s are given by

g(t)
αi

(zi) =

b∑
pi=0

Kpi
(αi)z

�pi/t�
i , (5)

with each Kp(X) =
p∑

a=0

(−1)a(|R| − 1)p−a
(

X
a

)(
b−X
p−a

)
. (Here also, Kp(X) is the well-

known Krawtchouk polynomial [4].)
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Remark 2. (i) When z1 = z2 = · · · = zn = z, Theorem 3 provides a MacWilliams
identity for m-spotty Hamming weight enumerator.

(ii) When t = 1, Theorem 3 gives a MacWilliams identity for the split Hamming
weight enumerator of a code over R.

(iii) For a large code C, it is generally very hard to compute the numbers
A(α1,α2,...,αn), and hence the split m-spotty Hamming weight enumerator.
However by applying Theorem 3, one can compute the split m-spotty Hamming
weight enumerator of C from the numbers A(α1,α2,...,αn) for the dual code C⊥ of
C, which are easier to compute, as C⊥ is of comparatively smaller size.

Proof of Theorem 3. For any vector v = (v1, v2, . . . , vn) ∈ Rbn with each vi ∈ Rb, let

us define f(v) =
n∏

i=1

z
wM (vi)
i . Then by Lemma 3, for u = (u1, u2, . . . , un) ∈ Rbn, f̃(u)

is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

z
wM (vi)
i =

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zwM (vi)
i

⎞⎠ .

Let us suppose that wH(ui) = αi for 1 ≤ i ≤ n. Then working as in Lemma 27 of
Sharma et al. [8], we get ∑

vi∈Rb

χ(〈ui, vi〉)zwM (vi)
i = g(t)

αi
(zi)

for each i.
This gives

f̃(u) =

n∏
i=1

g(t)
αi

(zi),

where (α1, α2, . . . , αn) is the Hamming weight distribution vector of u.
Now if A(α1,α2,...,αn) is the number of codewords in C⊥ having the Hamming weight

distribution vector as (α1, α2, . . . , αn), then we have∑
u∈C⊥

f̃(u) =
∑

(α1,α2,...,αn)

A(α1,α2,...,αn)

n∏
i=1

g(t)
αi

(zi), (6)

where the summation runs over all n-tuples (α1, α2, . . . , αn) satisfying 0 ≤ αi ≤ b.
Again applying Lemma 3 and using (6), we get

SC(zi : i = 1, 2, . . . , n) =
∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u)

=
1

|C⊥|
∑

(α1,α2,...,αn)

A(α1,α2,...,αn)

n∏
i=1

g(t)
αi

(zi),

which proves the identity.
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In the following theorem, we see that equivalent byte error-control codes have
the same m-spotty Hamming weight enumerator but their split m-spotty Hamming
weight enumerators may be different.

Theorem 4. [8] Let C,D be byte error-control codes of length bn and byte length b
over R having m-spotty Hamming weight enumerators as WC(z), WD(z) and split
m-spotty Hamming weight enumerators as SC(zi : i = 1, 2, . . . , n), SD(Zi : i =
1, 2, . . . , n), respectively. Then

(i) the direct sum
C ⊕ D = {(u|v) : u ∈ C, v ∈ D}

has m-spotty Hamming weight enumerator as WC(z)WD(z) and split m-spotty
Hamming weight enumerator as SC(zi : i = 1, 2, . . . , n) SD(Zi : i = 1, 2, . . . , n).

(ii) assuming n even, the code

C ‖ D = {(u′|v′|u′′|v′′) : u = (u′|u′′) ∈ C, v = (v′|v′′) ∈ D}

(where u and v have each been broken into two equal halves) has m-spotty Ham-
ming weight enumerator as WC(z)WD(z) and split m-spotty Hamming weight
enumerator as SC(zi; Zi : i = 1, 2, . . . , n/2)SD(zi; Zi : i = (n/2) + 1, . . . , n).

Proof. For proof, see Theorem 28 of Sharma et al. [8].

Some Applications
Let C be a byte error-control code of length bn and byte length b over R. Suppose

that the codewords of C are transmitted through the |R|-ary memoryless channel C,
defined as follows:

(i) For each i (1 ≤ i ≤ n), the bit-error probability in the ith byte is pi.

(ii) In order to ensure reliable data transmission and storage, it is assumed that
0 < pi < 1/2 for 1 ≤ i ≤ n.

(iii) Within a given byte, all bit-errors are equally likely.

Now let us define

δM (C) = min {�M(u) : u ∈ C, u �= 0} ,

where �M(u) =
n∑

i=1

piwM(ui) for u = (u1, u2, . . . , un) ∈ Rbn with each ui ∈ Rb, and

pi = log(1−pi

pi
) for each i.

In the following theorem, we see that δM (C) measures the (m-spotty) error-
detecting and error-correcting capabilities of the code C relative to the channel C.

Theorem 5. Let C be a byte error-control code of length bn and byte length b over
R. Then we have the following:
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(i) The code C can detect any m-spotty byte error e satisfying �M(e) < δ if and
only if δM(C) ≥ δ.

(ii) If δM(C) = δ, then the code C can correct any m-spotty byte error e satisfying
�M(e) < δM(C)/2 and C cannot correct any m-spotty byte error e satisfying
�M(e) ≥ δM(C)/2.

Proof. For proof, see Sharma et al. [8, Theorem 31].

Note that if we take zi = zpi (1 ≤ i ≤ n) in the split m-spotty Hamming weight
enumerator SC(zi : i = 1, 2, . . . , n) of C, then δM(C) is the least positive real number
δ such that the coefficient of zδ in SC(zpi : i = 1, 2, . . . , n) is non-zero. Thus one can
obtain the number δM (C) from the split m-spotty Hamming weight enumerator of
the byte error-control code C.

In the following theorem, we prove that the split m-spotty Hamming weight enu-
merator of a byte error-control code C also measures the probability of an undetected
m-spotty byte error in any codeword of C assuming the channel of transmission as C.

Theorem 6. Let C be a byte error-control code of length bn and byte length b over
R, whose codewords are transmitted through the channel C. Then the probability of
an undetected m-spotty byte error in any codeword of C is given by

PUDE(pi : 1 ≤ i ≤ n) =

n� b
t
�∑

μ=1

∑
μ1+···+μn=μ

0≤μi≤� b
t
�

B(μ1,...,μn)Pμ1(p1) . . . Pμn(pn),

where B(μ1,...,μn) is the number of codewords in C having m-spotty Hamming weights
of first, second, . . . , nth bytes as μ1, μ2, . . . , μn, respectively and Pμi

(pi) (1 ≤ i ≤ n)
is given by

Pμi
(pi) =

μit∑
j=(μi−1)t+1

(
b

j

)
(|R| − 1)j

( pi

|R| − 1

)j

(1 − pi)
b−j.

Remark 3. Note that

B(μ1,...,μn) =
∑

(α1,α2,...,αn)

A(α1,α2,...,αn),

where the summation
∑

(α1,α2,...,αn)

runs over all n-tuples (α1, α2, . . . , αn) satisfying


αi

t
� = μi for each i. Therefore B(μ1,...,μn) equals the coefficient of

n∏
i=1

zμi

i in the split

m-spotty Hamming weight enumerator of C. This shows that one can compute the
probability of an undetected m-spotty byte error in a codeword of C knowing its split
m-spotty Hamming weight enumerator.
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Proof of Theorem 6. Let us suppose that a codeword c is transmitted through the
channel C and a vector r ∈ Rbn is received resulting in the error e = r− c. Then the
error e will remain undetected if the received vector r is itself a codeword.

Without any loss of generality, we assume that the zero codeword has been sent.
So to find the probability of an undetected error during this transmission, it is enough
to find the probability that the received vector is a codeword.

For this, we first observe that μ number of spotty byte errors occur in a b-bit byte
if the number of erroneous bits j in the byte satisfies (μ − 1)t + 1 ≤ j ≤ min(μt, b).
Therefore the probability that μ number of spotty byte errors occur in the ith byte
is given by

Pμ(pi) =

μt∑
j=(μ−1)t+1

(
b

j

)
(|R| − 1)j

( pi

|R| − 1

)j

(1 − pi)
b−j ,

where pi is the bit-error probability in the ith byte of the codewords of C. Further,
if B(μ1,...,μn) is the number of codewords in C having the m-spotty Hamming weight
of the ith byte as μi for each i, then the probability that the received vector is itself
a codeword, is given by

PUDE(pi : 1 ≤ i ≤ n) =

n� b
t
�∑

μ=1

∑
μ1+···+μn=μ

0≤μi≤� b
t
�

B(μ1,...,μn)Pμ1(p1) . . . Pμn(pn),

which equals the probability of an undetected error in any codeword of C.

In the following theorem, we see that the split m-spotty Hamming weight enu-
merator of a byte error-control code over R measures the probability of decoding
error in the channel C when a bounded distance decoder is used for decoding.

Theorem 7. Let C be a byte error-control code of length bn and byte length b over
R having m-spotty Hamming distance as dM . If the bounded distance decoder is used
for decoding, then the probability of decoding error is given by

P (pi : 1 ≤ i ≤ n) =

n� b
t
�∑

μ=dM

∑
μ1+···+μn=μ

0≤μi≤� b
t
�

B(μ1,...,μn)

j
dM−1

2

k∑
δ=0

∑
δ1+···+δn=δ
0≤δi≤� b

t
�

Rδ1,μ1(p1) . . . Rδn,μn(pn),

where B(μ1,...,μn) is the number of codewords in C having m-spotty Hamming weight
of the ith byte as μi for each i and Rδi,μi

’s are given by

Rδi,μi
(pi) =

μit∑
ji=(μi−1)t+1

δit∑
ki=(δi−1)t+1

ki∑
a1=0

a1∑
a2=0

(
b − ji

ki − a1

)(
ji

a1

)(
a1

a2

)
(|R|−1)ki−a1(|R|−2)a2

(
pi

|R| − 1

)ki+ji−2a1+a2

(1 − pi)
b−ji−ki+2a1−a2 .
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Note that the numbers B(μ1,...,μn) of a code C can be computed from the split m-spotty

Hamming weight enumerator of C as the coefficient of
n∏

i=1

zμi

i (see Remark 3).

To prove this theorem, we need to prove the following lemma.

Lemma 4. Let C be a byte error-control code of length bn and byte length b over R,
whose codewords are transmitted through the channel C. Let c = (c1, c2, . . . , cn) be a
codeword of C such that the m-spotty Hamming weight of the ith byte ci of c is μi for
each i. Then the probability that a received vector is at m-spotty distance δ from the
codeword c is given by ∑

δ
Rδ1,μ1(p1) . . . Rδn,μn(pn),

where the sum
∑

δ runs over all n-tuples (δ1, δ2, . . . , δn) satisfying 0 ≤ δi ≤ 
 b
t
� and

δ1 + · · · + δn = δ.

Proof. Without any loss of generality, suppose that the zero codeword is sent through
the channel C and a vector r ∈ Rbn is received. In order to calculate the probability
that the received vector r is at m-spotty distance δ from the codeword c, we write
r = (r1, r2, . . . , rn) ∈ Rbn and suppose that dM(ri, ci) = δi for each i, so that δ1 +
δ2 + · · · + δn = δ. Note that δi varies from 0 to 
 b

t
� for each i. Let wH(ci) = ji

and without any loss of generality, suppose that all the non-zero entries of ci appear
at first ji positions. Let a1 be the number of positions at which ri differs from the
non-zero bits of ci, and out of these a1 positions, let a2 be the number of positions
at which both ri and ci have non-zero entries. If dH(ri, ci) = ki, then the number
of positions at which ri differs from the zero positions of ci is ki − a1 (as shown in
Figure 1).

ri

ci

ji

a2

a1

ki − a1

0

Figure 1: The ith bytes of ri and ci.

(The shaded region represents non-zero bits)

From Figure 1, it is clear that the ki − a1 non-zero bits of ri can be chosen from
b − ji zero bits of ci in (|R| − 1)ki−a1

(
b−ji

ki−a1

)
ways and the a1 bits of ri can be chosen

from the ji non-zero bits of ci in (|R| − 2)a2
(

ji

a1

)(
a1

a2

)
ways (as each of the k2 non-zero

bits of ri can be chosen in (|R| − 2) ways). Since wM(ci) = μi and dM(ci, ri) = δi, we
have (μi−1)t+1 ≤ ji ≤ min(μit, b) and (δi−1)t+1 ≤ ki ≤ min(δit, b). Therefore if pi



A. SHARMA ET AL. /AUSTRALAS. J. COMBIN. 58 (1) (2014), 67–105 81

is the bit-error probability in the ith byte of any codeword of C, then the probability
of receiving ith byte ri ∈ Rb (provided 0-byte is sent) satisfying dM(ri, ci) = δi for
each i, is given by

Rδi,μi
(pi) =
μit∑

ji=(μi−1)t+1

δit∑
ki=(δi−1)t+1

ki∑
a1=0

a1∑
a2=0

(
b − ji

ki − a1

)(
ji

a1

)(
a1

a2

)
(|R| − 1)ki−a1(|R| − 2)a2

(
pi

|R| − 1

)ki+ji−2a1+a2

(1 − pi)
b−ji−ki+2a1−a2 .

Hence the probability that the received vector r is at a m-spotty Hamming dis-
tance δ from the codeword c is given by∑

δ
Rδ1,μ1(p1) . . . Rδn,μn(pn),

where the sum
∑

δ runs over all n-tuples (δ1, δ2, . . . , δn) satisfying δ1 + · · · + δn = δ
and 0 ≤ δi ≤ 
 b

t
� for each i.

Proof of Theorem 7. Let c′ ∈ C be transmitted through the channel C and a vector
r ∈ Rbn is received. Then a decoding error occurs if dM(r, c∗) ≤ �dM−1

2
� from some

other codeword c∗ ∈ C, and we say that the received vector r lies in the decoding
sphere of c∗ (here dM is the m-spotty Hamming distance of C).

Without any loss of generality, we can assume that the zero codeword is sent and
a vector r ∈ Rbn is received. Let c be a codeword such that the m-spotty Hamming
weight of the ith byte of c is μi (1 ≤ i ≤ n). Then the probability that the received
vector r will lie in the decoding sphere of c is given by

j
dM−1

2

k∑
δ=0

∑
δ1+···+δn=δ
0≤δi≤� b

t
�

Rδ1,μ1(p1) . . .Rδn,μn(pn).

Further if B(μ1,...,μn) is the number of codewords in C having m-spotty Hamming
weight of the ith byte as μi for each i, then the probability of decoding error when
a bounded distance decoder is used for decoding, is given by

P (pi : 1 ≤ i ≤ n) =

n� b
t
�∑

μ=dM

∑
μ1+···+μn=μ

0≤μi≤� b
t
�

B(μ1,...,μn)

j
dM−1

2

k∑
δ=0

∑
δ1+···+δn=δ
0≤δi≤� b

t
�

Rδ1,μ1(p1) . . . Rδn,μn(pn),

which proves the theorem.
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3.3 r-fold joint m-spotty Hamming weight enumerator

In this subsection, we define the r-fold joint m-spotty Hamming weight enumer-
ator of r byte error-control codes over R and derive some MacWilliams identities for
the same. For this, we need to define the following:

Let F2 = {0, 1} and Fr
2 be the vector space of all r-tuples over F2. For each a ∈ Fr

2,
let [a]i (1 ≤ i ≤ r) denote the ith coordinate of a. Define Si = {a ∈ Fr

2 : [a]i = 1}
for each i.

For positive integers k and m, let (Rm)k = Rm × Rm × · · · × Rm︸ ︷︷ ︸
k times

.

Definition 7. [9] For each a ∈ (Fr
2)

∗ = Fr
2 \ {0}, define a function na : (Rb)r → Z

as
na(c1, c2, . . . , cr) = |{k : 1 ≤ k ≤ b, (ĉ1k, ĉ2k, . . . , ĉrk) = a}|,

where for each i, ci = (ci1, ci2, . . . , cib) ∈ Rb and ĉik (1 ≤ k ≤ b) is given by

ĉik =

{
1 if cik �= 0;
0 if cik = 0.

Definition 8. [9] Let {e1, e2, . . . , er} be the standard ordered basis of Fr
2 over F2.

Now for each a ∈ (Fr
2)

∗, define a function Na : (Rb)r → Z as

Na(c1, c2, . . . , cr) =
⌊na(c1, c2, . . . , cr)

t

⌋
+ Ωa(c1, c2, . . . , cr),

where the number Ωa(c1, c2, . . . , cr) is given by

Ωa(c1, c2, . . . , cr) =

⎧⎪⎪⎨⎪⎪⎩
⌈ P

β∈Si

nβ(c1,c2,...,cr)

t

⌉
if a = ei (1 ≤ i ≤ r);

0 otherwise.

(Here x̄ denotes the least non-negative residue of x modulo t.)

We extend the functions Na (a ∈ (Fr
2)

∗) defined on (Rb)r to the elements of (Rbn)r

as

Na(c1, c2, . . . , cr) =

n∑
j=1

Na(c
(j)
1 , c

(j)
2 , . . . , c(j)

r ), (7)

where each ci = (c
(1)
i , c

(2)
i , . . . , c

(n)
i ) ∈ Rbn with c

(j)
i = (c

(j)
i1 , c

(j)
i2 , . . . , c

(j)
ib ) ∈ Rb.

Now we extend the definition of r-fold joint m-spotty Hamming weight enumer-
ator for r byte error-control codes over R as follows:

Definition 9. [9] Let C1, C2, . . . , Cr be r byte error-control codes of length bn and
having the same byte length b over R. Then the r-fold joint m-spotty Hamming
weight enumerator of the codes C1, C2, . . . , Cr is defined as

JC1,C2,...,Cr(xa : a ∈ (Fr
2)

∗) =
∑
c1∈C1

∑
c2∈C2

· · ·
∑
cr∈Cr

∏
a∈(Fr

2)∗
xNa(c1,c2,...,cr)

a ,
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where each ci = (c
(1)
i , c

(2)
i , . . . , c

(n)
i ) with c

(j)
i = (c

(j)
i1 , c

(j)
i2 , . . . , c

(j)
ib ) for 1 ≤ j ≤ n; and

the numbers Na(c1, c2, . . . , cr) are as defined above.

Remark 4. (i) When t = 1, the r-fold joint m-spotty Hamming weight enumerator
of r byte error-control codes over R is the r-fold joint Hamming weight enumerator
of the codes over R.
(ii) When r = 1, the r-fold joint m-spotty Hamming weight enumerator of r byte
error-control codes over R coincides with the m-spotty Hamming weight enumerator
of a byte error-control over R.
(iii) When r = 2, the r-fold joint m-spotty Hamming weight enumerator of r byte
error-control codes over R is same as the joint m-spotty Hamming weight enumerator
of two byte error-control codes over R.

In the following theorem, we show that the r-fold joint m-spotty Hamming weight
enumerator generalizes the m-spotty Hamming weight enumerator just like the joint
probability density function generalizes single probability density function.

Theorem 8. [9] Let JC1,C2,...,Cr(xa : a ∈ (Fr
2)

∗) be the r-fold joint m-spotty Hamming
weight enumerator of byte error-control codes C1, C2, . . . , Cr of length bn and byte
length b over R. Then we have the following:

(i) JC1,C2,...,Cr(1, 1, . . . , 1) = |C1||C2| . . . |Cr|.
(ii) For integers 1 ≤ i, j ≤ r, the r-fold joint m-spotty Hamming weight enumerator

of the codes C1, . . . , Cj , . . . , Ci, . . . , Cr (i.e., the same sequence of codes except for
Ci and Cj interchanged) is given by JC1,C2,...,Cr(xã : ã ∈ (Fr

2)
∗), where for each

a ∈ (Fr
2)

∗, the tuples ã ∈ (Fr
2)

∗ are defined as

[ã]k =

⎧⎨⎩
[a]j if k = i;
[a]i if k = j;
[a]k otherwise

for 1 ≤ k ≤ r.

(iii) The m-spotty Hamming weight enumerator of the code Ci (1 ≤ i ≤ n) is given
by

WCi
(z) =

1∏
i

j

|Cj|
JC1,C2,...,Cr(xa : a ∈ (Fr

2)
∗) with xa =

{
z if a ∈ Si;
1 otherwise,

where the product
∏

i
j

is extended over all integers j satisfying 1 ≤ j ≤ r and

j �= i.

Proof. For proof, see Sharma et al. [9, Theorem 3.6].
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Now to derive MacWilliams identities for r-fold joint m-spotty Hamming weight
enumerator of r byte error-control codes over R, we need to define the following:

For each a ∈ Fr
2 and each integer i (1 ≤ i ≤ r), define the r + 1-tuples σi(a),

μi(a) ∈ F
r+1
2 as

[σi(a)]j =

⎧⎨⎩
[a]j if 1 ≤ j ≤ i − 1;
1 if j = i;
[a]j−1 if i + 1 ≤ j ≤ r + 1,

[μi(a)]j =

⎧⎨⎩
[a]j if 1 ≤ j ≤ i − 1;
0 if j = i;
[a]j−1 if i + 1 ≤ j ≤ r + 1.

Note that F
r+1
2 =

⋃
a∈F

r
2

{σi(a), μi(a)} for each i.

Definition 10. [9] Let t (1 ≤ t ≤ b) and q (1 ≤ q ≤ r) be fixed integers. Let
δ = (δa : a ∈ Fr

2) be a 2r-tuple over {0, 1, 2, . . . , b} satisfying
∑

a∈F
r
2

δa = b. Let

Ap (0 ≤ p ≤ b) be the set of all tuples α = (αg : g ∈ F
r+1
2 ) of non-negative integers

αg’s satisfying the following:∑
a∈F

r
2

ασq+1(a) = p and ασq+1(a) + αμq+1(a) = δa for each a ∈ F
r
2.

Then the polynomial Gδ(xa : a ∈ (Fr
2)

∗) is defined as

b∑
p=0

∑
p
(−1)hp(α)(|R| − 1)p−hp(α)

∏
a∈F

r
2

(
δa

ασq+1(a)

) ∏
a∈(Fr

2)∗
x

⌊ασq(a)+αμq(a)

t

⌋
+θ

(α)
a

a , (8)

where for each p (0 ≤ p ≤ b), the summation
∑

p runs over the set Ap; and further

for each tuple α ∈ Ap, the numbers θ
(α)
a and hp(α) are given by

θ(α)
a =

⎧⎪⎪⎨⎪⎪⎩
⌈ P

β∈Si

(ασq(β)+αμq(β))

t

⌉
if a = ei (1 ≤ i ≤ r);

0 otherwise

(9)

and
hp(α) =

∑
a∈Sq

ασq(a).

Definition 11. [9] Let δi = (δ
(i)
a : a ∈ Fr

2) be a 2r-tuple over {0, 1, 2, . . . , b} satisfying∑
a∈F

r
2

δ
(i)
a = b for 1 ≤ i ≤ n. Then for δ = (δ1, δ2, . . . , δn), we define the polynomial

Gδ(xa : a ∈ (Fr
2)

∗) =

n∏
i=1

Gδi
(xa : a ∈ (Fr

2)
∗). (10)
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Definition 12. [9] Let c = (c1, c2, . . . , cr) ∈ (Rb)r with each ci = (ci1, ci2, . . . , cib) ∈
Rb. Then the joint composition vector of c, denoted by j(c), is defined as the tuple
δ = (δa : a ∈ Fr

2), where for each a ∈ Fr
2, δa is given by

δa = |{k : 1 ≤ k ≤ b, (ĉ1k, ĉ2k, . . . , ĉrk) = a}| with ĉik =

{
1 if cik �= 0;
0 otherwise.

It is easy to see that
∑

a∈F
r
2

δa = b.

Let c = (c(1), c(2), . . . , c(r)) ∈ (Rbn)r with each c(i) = (ci1, ci2, . . . , cin) ∈ Rbn. Then
the joint composition vector of c is defined as

j(c) = δ = (δ1, δ2, . . . , δn),

where δk = j(c1k, c2k, . . . , crk) for 1 ≤ k ≤ n with each cik ∈ Rb.

In the following theorem, we derive some MacWilliams identities for the r-fold
joint m-spotty Hamming weight enumerator of r byte error-control codes over R.

Theorem 9. [9] Let C1, C2, . . . , Cr be byte error-control codes of length bn and byte
length b over R. Let Pq(δ) (1 ≤ q ≤ r) be the number of r-tuples (c1, c2, . . . , cr) of
codewords ci ∈ Ci (1 ≤ i ≤ r, i �= q) and cq ∈ C⊥

q having the joint composition vector
as δ. Then we have

JC1,C2,...,Cr(xa : a ∈ (Fr
2)

∗) =
1

|C⊥
q |
∑

Pq(δ)Gδ(xa : a ∈ (Fr
2)

∗),

where the summation runs over all n-tuples δ = (δ1, δ2, . . . , δn) such that each δi =

(δ
(i)
a : a ∈ Fr

2) is a 2r-tuple over {0, 1, 2, . . . , b} satisfying
∑

a∈F
r
2

δ
(i)
a = b, and the

polynomials Gδ(xa : a ∈ (Fr
2)

∗)’s are as defined by (10).

Remark 5. (i) When at least one of the codes C1, C2, . . . , Cr (say Cq) is of large size,
it is usually very hard to determine the r-fold joint m-spotty Hamming weight
enumerator for them. However, by applying Theorem 9, it is comparatively
easier to determine the same from the list of numbers Pq(δ)’s for the codes
C1, . . . , Cq−1, C⊥

q , Cq+1, . . . , Cr.

(ii) When r = 1, Theorem 9 gives a MacWilliams identity for the m-spotty Ham-
ming weight enumerator of a byte error-control code over R; and when r = 2,
Theorem 9 gives a MacWilliams identity for the joint m-spotty Hamming
weight enumerator of two byte error-control codes over R.

Proof of Theorem 9. The r-fold joint m-spotty Hamming weight enumerator of the
codes C1, C2, . . . , Cr is given by

JC1,C2,...,Cr(xa : a ∈ (Fr
2)

∗) =
∑ ∏

a∈(Fr
2)∗

xNa(c1,c2,...,cr)
a ,

where the summation
∑

runs over all the codewords ck ∈ Ck for 1 ≤ k ≤ r.
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For v ∈ Rbn, let f(v) =
∑

q

∏
a∈(Fr

2)∗
x

Na(c1,...,cq−1,v,cq+1,...,cr)
a , where the summation∑

q runs over all codewords ck ∈ Ck for 1 ≤ k ≤ r and k �= q. Then for u =

(u1, u2, . . . , un) ∈ Rbn, using Lemma 3, we have

f̃(u) =
∑

v∈Rbn

χ(〈u, v〉)
∑

q

∏
a∈(Fr

2)∗
xNa(c1,...,cq−1,v,cq+1,...,cr)

a

=
∑

q

∑
v=(v1,v2,...,vn)∈Rbn

χ
( n∑

i=1

〈ui, vi〉
) ∏

a∈(Fr
2)∗

xNa(c1,...,cq−1,v,cq+1,...,cr)
a

=
∑

q

n∏
i=1

⎧⎨⎩∑
vi∈Rb

χ
(〈ui, vi〉

) ∏
a∈(Fr

2)∗
x

Na(c1i,...,c(q−1)i,vi,c(q+1)i,...,cri)
a

⎫⎬⎭ ,

where each ck = (ck1, ck2, . . . , ckn) ∈ Ck for 1 ≤ k ≤ r and k �= q.
If the joint composition vector of the r-tuple (c1i, . . . , c(q−1)i, ui, c(q+1)i, . . . , cri) is

δi for each i, then working as in Lemma 4.7 of Sharma et al. [9], we get∑
vi∈Rb

χ
(〈ui, vi〉

) ∏
a∈(Fr

2)∗
x

Na(c1i,...,c(q−1)i,vi,c(q+1)i,...,cri)
a = Gδi

(xa : a ∈ (Fr
2)

∗).

This gives ∑
cq∈C⊥

q

f̃(cq) =
∑ n∏

i=1

Gδi
(xa : a ∈ (Fr

2)
∗),

where the summation
∑

runs over all codewords ck = (ck1, ck2, . . . , ckn) ∈ Ck (1 ≤
k ≤ r, k �= q) and cq = (cq1, cq2, . . . , cqn) ∈ C⊥

q satisfying j(c1i, c2i . . . , cri) = δi for
each i.

Further suppose that the number of r-tuples (c1, c2, . . . , cr) of codewords ck ∈
Ck (1 ≤ k ≤ r, k �= q) and cq ∈ C⊥

q having j(c1, c2, . . . , cr) = δ is Pq(δ). Then using
(10), we have ∑

cq∈C⊥
q

f̃(cq) =
∑

Pq(δ)Gδ(xa : a ∈ (Fr
2)

∗), (11)

where the summation
∑

runs over all n-tuples δ = (δ1, δ2, . . . , δn) such that each

δi = (δ
(i)
a : a ∈ Fr

2) is a 2r-tuple over {0, 1, 2, . . . , b} satisfying
∑

a∈F
r
2

δ
(i)
a = b. Again

applying Lemma 3 and using (11), we get

JC1,C2,...,Cr(xa : a ∈ (Fr
2)

∗) =
∑
v∈Cq

f(v) =
1

|C⊥
q |

∑
cq∈C⊥

q

f̃(cq)

=
1

|C⊥
q |
∑

Pq(δ)Gδ(xa : a ∈ (Fr
2)

∗),

which proves the theorem.
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3.4 Complete m-spotty Hamming weight enumerator

In this subsection, we extend the definition of complete m-spotty Hamming weight
enumerator for a byte error-control code over R and derive a MacWilliams identity
for the same.

Definition 13. Let C be a byte error-control code of length bn and byte length b
over R. Then the complete m-spotty Hamming weight enumerator of C is defined as

CHC(z0, z1, . . . , zb) =
∑

u=(u1,u2,...,un)∈C

n∏
i=1

zwH(ui).

Note that the m-spotty Hamming weight enumerator of a byte error-control code
C over R can be obtained from the complete m-spotty Hamming weight enumerator
of C by replacing zj with z�j/t� for each j.

If A(α1,α2,...,αn) denotes the number of codewords in C having the Hamming weight
distribution vector as (α1, α2, . . . , αn), then the complete m-spotty Hamming weight
enumerator can be rewritten as

CHC(z0, z1, . . . , zb) =
∑

(α1,α2,...,αn)

A(α1,α2,...,αn)

n∏
i=1

zαi
,

where the summation runs over all n-tuples (α1, α2, . . . , αn) satisfying 0 ≤ αi ≤ b for
each i.

In the following theorem, we derive a MacWilliams identity for the complete
m-spotty Hamming weight enumerator of a byte error-control code over R.

Theorem 10. Let C be a byte error-control code of length bn and byte length b over R
with C⊥ being its dual code. Then the complete m-spotty Hamming weight enumerator
of C is given by

CHC(z0, z1, . . . , zb) =
1

|C⊥|
∑

A(α1,α2,...,αn)

n∏
i=1

(
b∑

pi=0

Kpi
(αi)zpi

)
,

where the summation
∑

runs over all n-tuples (α1, α2, . . . , αn) satisfying 0 ≤ αi ≤ b
for each i, A(α1,α2,...,αn) is the number of codewords in C⊥ having the Hamming weight

distribution vector as (α1, α2, . . . , αn), and Kp(X) =
p∑

a=0

(−1)a(|R| − 1)p−a
(

X
a

)(
b−X
p−a

)
(assuming

(
j
�

)
= 0 for j < � and

(
0
0

)
= 0).

Proof. Let f(v) =
n∏

i=1

zwH(vi) for v = (v1, v2, . . . , vn) ∈ Rbn. Then by Lemma 3, for

u = (u1, u2, . . . , un) ∈ Rbn, f̃(u) is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

zwH(vi) =
n∏

i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zwH(vi)

⎞⎠ . (12)
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If wH(ui) = αi for 1 ≤ i ≤ n, then working as in Lemma 27 of Sharma et al. [8], we
get ∑

vi∈Rb

χ(〈ui, vi〉)zwH(vi) =
b∑

pi=0

Kpi
(αi)zpi

for each i. Thus

f̃(u) =

n∏
i=1

(
b∑

pi=0

Kpi
(αi)zpi

)
,

where (α1, α2, . . . , αn) is the Hamming weight distribution vector of u.
Let A(α1,α2,...,αn) be the number of codewords in C⊥ having the Hamming weight

distribution vector as (α1, α2, . . . , αn). Then we have

∑
u∈C⊥

f̃(u) =
∑

A(α1,α2,...,αn)

n∏
i=1

(
b∑

pi=0

Kpi
(αi)zpi

)
, (13)

where the summation
∑

runs over all n-tuples (α1, α2, . . . , αn) satisfying 0 ≤ αi ≤ b
for each i.

Now applying Lemma 3 and using (13), we get

CHC(z0, z1, . . . , zb) =
∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u)

=
1

|C⊥|
∑

A(α1,α2,...,αn)

n∏
i=1

(
b∑

pi=0

Kpi
(αi)zpi

)
.

This proves the theorem.

4 Weight enumerators with respect to the m-spotty Lee

metric

In this section, we discuss various weight enumerators defined with respect to the
m-spotty Lee metric and derive MacWilliams identities for them. First of all, we
define the Lee weight in Fq as follows:

Definition 14. [5] Let e1, e2, . . . , ek be the standard basis of the real k-dimensional

space Rk over R. Now define a map ϕ : Zk → Fq as ϕ(x) =
k∑

i=1

aixi (mod p) for

x =
k∑

i=1

xiei (xi ∈ Z), where a1, a2, . . . , ak are distinct elements of the finite field Fq

chosen in such a way that the map ϕ is surjective. Then the Lee weight wL(a) of an
element a ∈ Fq is defined as

wL(a) = min
x=(xi)∈Z

k

ϕ(x)=a

{
k∑

i=1

|xi|
}

,
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where |x| denotes the absolute value of a real number x.
The Lee weight of a vector over Fq is defined as the sum of Lee weights of all its
components.

Next we define Lee weights in R1 and R2, in terms of certain gray maps, as
follows:

Definition 15. Let φ1 : R1 → Fe
q be a gray map defined as follows:

φ1(r) =

(
e−1∑
i=0

ai(r),

e−1∑
i=1

ai(r), . . . , ae−1(r)

)
for each r = a0(r)+ua1(r)+ · · ·+ue−1ae−1(r) ∈ R1 with ai(r)’s in Fq. Then the Lee
weight of an element r ∈ R1 is defined as the Lee weight of the e-tuple φ1(r) ∈ F

e
q.

The Lee weight of an n-tuple over R1 is defined as the sum of Lee weights of its
components.

Definition 16. Let φ2 : R2 → F4
q be a gray map defined as

φ2(r) = (a0(r) + a1(r) + a2(r) + a3(r), a2(r) + a3(r), a1(r) + a3(r), a3(r))

for r = a0(r) + ua1(r) + va2(r) + uva3(r) ∈ R2 with each ai(r) ∈ Fq. Then we define
the Lee weight of an element r ∈ R2 as the Lee weight of the 4-tuple φ2(r) ∈ F

4
q.

Further, the Lee weight of an n-tuple over R2 is defined as the sum of Lee weights
of its components.

Let R be either the ring R1 or the ring R2. Then we extend the notion of m-spotty
Lee distance in Rbn as follows:

Definition 17. [10, 13] Let u, v be two vectors in Rbn having ui, vi as their ith bytes.
Then the m-spotty Lee distance between u and v, denoted by dML(u, v), is defined
as

dML(u, v) =

n∑
i=1

⌈dL(ui, vi)

t

⌉
,

where dL(ui, vi) denotes the Lee distance between ith bytes ui and vi of u and v,
respectively.

Note that dML is a metric on Rbn. When t = 1, the m-spotty Lee distance between
any two vectors in Rbn is same as the Lee distance between those two vectors.

Definition 18. [10, 13] The m-spotty Lee weight of a vector u = (u1, u2, . . . , un) ∈
Rbn, denoted by wML(u), is defined as

wML(u) =
n∑

i=1

⌈wL(ui)

t

⌉
,

where wL(ui) denotes the Lee weight of ith byte ui of u.

Observe that dML(u, v) = wML(u − v). When t = 1, the m-spotty Lee weight of
a vector in Rbn is same as the Lee weight of the vector.
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4.1 m-spotty Lee weight enumerator

In this subsection, we define the m-spotty Lee weight enumerator of a byte error-
control code over R, derive a MacWilliams identity for the same and discuss its
application. Let |R| = �, and let the elements of R be listed as r0 = 0, r1, . . . , r�−1.

Definition 19. [10, 13] Let C be a byte error-control code of length bn and byte
length b over R. Then the m-spotty Lee weight enumerator of C is defined as

LC(z) =
∑
u∈C

zwML(u) =
∑

u=(u1,...,un)∈C

n∏
i=1

z�wL(ui)/t�.

When t = 1, the m-spotty Lee weight enumerator of C coincides with the Lee
weight enumerator of C.

Let u = (u1, u2, . . . , un) be a vector in Rbn with each ui ∈ Rb. For 0 ≤ k ≤ �− 1,
if jik is the number of bits in ui that are equal to rk, then the composition of the
ith byte ui of u is defined as the �-tuple Ji = (ji0, ji1, . . . , ji,�−1) and the composition
vector of u is defined as the tuple J = (J1, J2, . . . , Jn).

Now if A(J) denotes the number of codewords in C having the composition vector
as J, then the m-spotty Lee weight enumerator can be rewritten as

LC(z) =
∑

J

A(J)
n∏

i=1

z�ρ(Ji)/t�,

where the summation
∑
J

runs over all n-tuples J = (J1, J2, . . . , Jn) with each Ji =

(ji0, ji1, . . . , ji(�−1)) an �-tuple over {0, 1, 2, . . . , b}, and ρ(Ji) =
�−1∑
k=0

wL(rk)jik.

Definition 20. For a fixed positive integer t and an �-tuple J = (j0, j1, . . . , j�−1)

over {0, 1, 2, . . . , b}, we define a polynomial g
(t)
J (z) as

g
(t)
J (z) =

∑
skp

⎛⎜⎜⎜⎝
�−1∏
k=0

jk!
�−1∏
p=0

skp!

χ

(
�−1∑
p=0

rkrpskp

)⎞⎟⎟⎟⎠ z

&
�−1P
k=0

(
�−1P
p=1

wL(rp)skp

)
/t

’
, (14)

where the summation
∑
skp

runs over all non-negative integers skp (0 ≤ k, p ≤ � − 1)

satisfying
�−1∑
p=0

skp = jk for each k, and χ is the non-trivial additive character on R,

given by

χ =

{
χ1 when R = R1,
χ2 when R = R2

with χ1 and χ2 as defined by (1) and (2).
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In the following theorem, we derive a MacWilliams identity for the m-spotty Lee
weight enumerator of a byte error-control code over R.

Theorem 11. [10] Let C be a byte error-control code of length bn and byte length b
over R and C⊥ be its dual code. Then the m-spotty Lee weight enumerator of C is
given by

LC(z) =
1

|C⊥|
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)

n∏
i=1

g
(t)
Ji

(z),

where the summation
∑

(J1,J2,...,Jn)

runs over all n-tuples (J1, J2, . . . , Jn) with each Ji =

(ji0, ji1, . . . , ji,�−1) an �-tuple over {0, 1, 2, . . . , b}, A(J1, J2, . . . , Jn) is the number of
codewords in C⊥ having the composition vector as (J1, J2, . . . , Jn) and for 1 ≤ i ≤ n,

the polynomial g
(t)
Ji

(z) is as defined by (14).

Remark 6. The computation of the numbers A(J1, J2, . . . , Jn) is, in general, very
hard for a code C of large size. But the numbers A(J1, J2, . . . , Jn)’s are comparatively
easier to compute for the dual code C⊥, which is of relatively smaller size. Thus by
applying the MacWilliams identity (Theorem 11), one can easily obtain the m-spotty
Lee weight enumerator of C.

Proof of Theorem 11. Let f(v) =
n∏

i=1

z�wL(vi)/t� for v = (v1, v2, . . . , vn) ∈ Rbn, where

each vi ∈ Rb. Then for u = (u1, u2, . . . , un) ∈ Rbn, by Lemma 3, f̃(u) is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

z�wL(vi)/t� =

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)z�wL(vi)/t�

⎞⎠ .

Now if Ji (1 ≤ i ≤ n) is the composition of the ith byte ui of u, then working as
in Lemma 2 of Sharma et al. [10], we get∑

vi∈Rb

χ(〈ui, vi〉)z�wL(vi)/t� = g
(t)
Ji

(z)

for each i. This gives

f̃(u) =
n∏

i=1

g
(t)
Ji

(z).

If A(J1, J2, . . . , Jn) is the number of codewords in C⊥ having the composition
vector as (J1, J2, . . . , Jn), then

∑
u∈C⊥

f̃(u) =
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)
n∏

i=1

g
(t)
Ji

(z), (15)

where the summation runs over all n-tuples (J1, J2, . . . , Jn) with each Ji, an �-tuple
over {0, 1, 2, . . . , b}.
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Again applying Lemma 3 and using (15), we get

LC(z) =
∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u)

=
1

|C⊥|
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)

n∏
i=1

g
(t)
Ji

(z),

which proves the theorem.

An application
For a byte error-control code C of length bn and byte length b over R, the m-spotty

Lee distance of the code C is defined as dML(C) = min{dML(u, v) : u, v ∈ C, u �= v}.
It is easy to see that dML(C) = min{wML(u) : u ∈ C, u �= 0}.

In the following theorem, it is proved that the m-spotty Lee distance of a code
measures the m-spotty error-detecting and error-correcting capabilities of the code C.

Theorem 12. [10] Let C be a byte error-control code of length bn and byte length b
over R. Then we have the following:

(i) The code C can detect any m-spotty byte error e satisfying wML(e) < d if and
only if dML(C) ≥ d.

(ii) If dML(C) = d, then C can correct all m-spotty byte errors e satisfying wML(e) <
d/2, and C cannot correct any m-spotty byte error e satisfying wML(e) ≥ d/2.

Proof. For proof, see Sharma et al. [10, Theorems 2-3].

Observe that the m-spotty Lee distance of C is the least positive integer d such
that the coefficient of zd in LC(z) is non-zero. Thus knowing the m-spotty Lee weight
enumerator LC(z) of a code C, one can compute its m-spotty Lee distance.

4.2 Split m-spotty Lee weight enumerator

In this subsection, we define the split m-spotty Lee weight enumerator of a byte
error-control code over R, derive a MacWilliams identity for the same and discuss
its application.

Definition 21. [10] Let C be a byte error-control code of length bn and byte length
b over R. Then the split m-spotty Lee weight enumerator of C is defined as

SC(zi : i = 1, 2, . . . , n) =
∑

(c1,c2,...,cn)∈C

n∏
i=1

z
wML(ci)
i .

If A(J1, J2, . . . , Jn) is the number of codewords in C having the composition vector as
(J1, J2, . . . , Jn), then the split m-spotty Lee weight enumerator of C can be rewritten
as

SC(zi : i = 1, 2, . . . , n) =
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)

n∏
i=1

z
� ρ(Ji)

t
�

i ,
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where each Ji = (ji0, ji1, . . . , ji,�−1) is an �-tuple over {0, 1, . . . , b}, and ρ(Ji) =
�−1∑
k=0

wL(rk)jik for each i.

When z1 = z2 = . . . = zn = z, the split m-spotty Lee weight enumerator of C
coincides with the m-spotty Lee weight enumerator of C.

In the following theorem, we derive a MacWilliams identity for the split m-spotty
Lee weight enumerator of a byte error-control code over R.

Theorem 13. [10] Let C be a byte error-control code of length bn and byte length b
over R and C⊥ be its dual code. Then the split m-spotty Lee weight enumerator of C
is given by

SC(zi : i = 1, 2, . . . , n) =
1

|C⊥|
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)
n∏

i=1

g
(t)
Ji

(zi),

where the summation runs over all n-tuples (J1, J2, . . . , Jn) with each Ji, an �-tuple
over {0, 1, 2, . . . , b}, A(J1, J2, . . . , Jn) is the number of codewords in C⊥ having the

composition vector as (J1, J2, . . . , Jn), and the polynomials g
(t)
Ji

(zi)’s are as defined by
(14).

Remark 7. (i) When z1 = z2 = . . . = zn = z, Theorem 11 follows from Theorem
13.

(ii) It is generally very hard to compute the numbers A(J1, J2, . . . , Jn) for a code
C of large size, and hence its split m-spotty Lee weight enumerator. However,
the dual code C⊥ of C is of relatively smaller size, so it is comparatively easier
to compute the numbers A(J1, J2, . . . , Jn) for the dual code C⊥. From this, one
can easily obtain the split m-spotty Lee weight enumerator of C by applying
the MacWilliams identity (Theorem 13).

Proof of Theorem 13. We will prove this theorem by applying Lemma 3. For this,

let f(v) =
n∏

i=1

z
�wL(vi)/t�
i for v = (v1, v2, . . . , vn) ∈ Rbn, where each vi ∈ Rb. Then by

Lemma 3, for u = (u1, u2, . . . , un) ∈ Rbn, f̃(u) is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

z
�wL(vi)/t�
i =

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)z�wL(vi)/t�
i

⎞⎠ .

Let the composition of the ith byte ui of u be Ji (1 ≤ i ≤ n). Then working as
in Lemma 2 of Sharma et al. [10], we get∑

vi∈Rb

χ(〈ui, vi〉)z�wL(vi)/t�
i = g

(t)
Ji

(zi)

for each i, 1 ≤ i ≤ n. This gives

f̃(u) =
n∏

i=1

g
(t)
Ji

(zi).
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If A(J1, J2, . . . , Jn) is the number of codewords in C⊥ having the composition
vector as (J1, J2, . . . , Jn), then we have

∑
u∈C⊥

f̃(u) =
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)
n∏

i=1

g
(t)
Ji

(zi), (16)

where the summation runs over all n-tuples (J1, J2, . . . , Jn) with each Ji, an �-tuple
over {0, 1, 2, . . . , b}.

Again applying Lemma 3 and using (16), we get

SC(zi : i = 1, 2, . . . , n) =
∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u)

=
1

|C⊥|
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)

n∏
i=1

g
(t)
Ji

(zi),

which proves the theorem.

In the following theorem, we show that two equivalent byte error-control codes
may have the same m-spotty Lee weight enumerator but their split m-spotty Lee
weight enumerators may be different.

Theorem 14. [10] Let C,D be byte error-control codes of length bn and byte length
b over R having the m-spotty Lee weight enumerators as LC(z), LD(z) and split m-
spotty Lee weight enumerators as SC(zi : i = 1, 2, . . . , n), SD(Zi : i = 1, 2, . . . , n),
respectively. Then

(i) the direct sum
C ⊕ D = {(u|v) : u ∈ C, v ∈ D}

has m-spotty Lee weight enumerator as LC(z)LD(z) and split m-spotty Lee
weight enumerator as SC(zi : i = 1, 2, . . . , n) SD(Zi : i = 1, 2, . . . , n).

(ii) assuming n even, the code

C ‖ D = {(u′|v′|u′′|v′′) : u = (u′|u′′) ∈ C, v = (v′|v′′) ∈ D}
(where u and v have each been broken into two equal halves) has m-spotty Lee
weight enumerator as LC(z)LD(z) and split m-spotty Lee weight enumerator as
SC(zi; Zi : i = 1, 2, . . . , n/2)SD(zi; Zi : i = (n/2) + 1, . . . , n).

Proof. For proof, see Theorem 4 of Sharma et al. [10].

An application
Let C be a byte error-control code of length bn and byte length b over R. Suppose

that the codewords of C are transmitted through the channel C (as defined in Section
3.2). Then we define

δML(C) = min {�ML(u) : u ∈ C, u �= 0} ,
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where for each u = (u1, u2, . . . , un) ∈ Rbn with each ui ∈ Rb, �ML(u) =
n∑

i=1

piwML(ui)

and pi = log(1−pi

pi
) for each i.

In the following theorem, we see that δML(C) is a measure of (m-spotty) error-
detecting and error-correcting capabilities of the code C.

Theorem 15. (i) The code C can detect any m-spotty byte error e satisfying
�ML(e) < δ if and only if δML(C) ≥ δ.

(ii) If δML(C) = δ, then the code C can correct all m-spotty byte errors e satisfying
�ML(e) < δML(C)/2 and C cannot correct any m-spotty byte error e satisfying
�ML(e) ≥ δML(C)/2.

Proof. For proof, see Sharma et al. [10, Theorems 6-7].

Note that the number δML(C) can be computed from the split m-spotty Lee
weight enumerator SC(zi : i = 1, 2, . . . , n) of C by taking zi = zpi for 1 ≤ i ≤ n.
Hence δML(C) equals the least positive real number δ such that the coefficient of zδ

in SC(zpi : i = 1, 2, . . . , n) is non-zero.

4.3 r-fold joint m-spotty Lee weight enumerator

In this subsection, we define the r-fold joint m-spotty Lee weight enumerator of
r byte error-control codes over R, derive some MacWilliams identities for the same
and discuss its properties. For this, we need to define the following:

For L = {0, 1, 2, . . . , � − 1}, let Lr be the set of all r-tuples over L. Then for
1 ≤ i ≤ r, define

Qi = {a ∈ Lr : [a]i �= 0 and [a]j = 0 for all j �= i}
and

Ti = {a ∈ Lr : [a]i �= 0 and [a]j �= 0 for some j �= i}.
Definition 22. [11] For each a ∈ Lr, define a function fa : (Rb)r → Z as

fa(u1, u2, . . . , ur) = |{p : 1 ≤ p ≤ b, (u1p, u2p, . . . , urp) = (r[a]1, r[a]2, . . . , r[a]r)}|,
where each ui = (ui1, ui2, . . . , uib) ∈ Rb.

Definition 23. [11] For 1 ≤ i ≤ r, define Ki, Li : (Rb)r → Z as

Ki(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�Ai(u)

t
� if Ai(u) + Bi(u) = 0;

�Ai(u)
t

� + 1 if 0 < Ai(u) + Bi(u) ≤ t;

�Ai(u)
t

� + 2 if t < Ai(u) + Bi(u) ≤ 2t − 2,

(17)

Li(u) =
⌊Bi(u)

t

⌋
, (18)

where u = (u1, u2, . . . , ur) with each ui ∈ Rb, and Ai(u)’s and Bi(u)’s are given by

Ai(u) =
∑
a∈Qi

wL(r[a]i)fa(u), Bi(u) =
∑
a∈Ti

wL(r[a]i)fa(u). (19)
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Now for each i, we extend the functions Ki, Li defined on (Rb)r to the elements
of (Rbn)r as

Ki(u) =

n∑
j=1

Ki(u
(j)
1 , u

(j)
2 , . . . , u(j)

r ), Li(u) =

n∑
j=1

Li(u
(j)
1 , u

(j)
2 , . . . , u(j)

r ), (20)

where u = (u1, u2, . . . , ur) ∈ (Rbn)r with each ui = (u
(1)
i , u

(2)
i , . . . , u

(n)
i ) ∈ Rbn and

u
(j)
i ∈ Rb for 1 ≤ j ≤ n.

Now we extend the definition of r-fold joint m-spotty Lee weight enumerator for
r byte error-control codes over R.

Definition 24. [11] Let C1, C2, . . . , Cr be r byte error-control codes of length bn
and byte length b over R. Then the r-fold joint m-spotty Lee weight enumerator of
the codes C1, C2, . . . , Cr is defined as

JC1,...,Cr(xi, yi : 1 ≤ i ≤ r) =
∑
c1∈C1

· · ·
∑
cr∈Cr

r∏
i=1

x
Ki(c1,...,cr)
i y

Li(c1,...,cr)
i ,

where Ki, Li’s are as defined by (17)-(20).

Remark 8. The r-fold joint m-spotty Lee weight enumerator coincides with

(i) the m-spotty Lee weight enumerator when r = 1;

(ii) the joint m-spotty Lee weight enumerator when r = 2.

In the following theorem, we show that the r-fold joint m-spotty Lee weight
enumerator generalizes m-spotty Lee weight enumerator just like the joint probability
density function generalizes single probability density function.

Theorem 16. Let JC1,C2,...,Cr(xi, yi : 1 ≤ i ≤ r) be the r-fold joint m-spotty Lee
weight enumerator of byte error-control codes C1, C2, . . . , Cr over R. Then we have
the following:

(i) JC1,C2,...,Cr(1, 1, . . . , 1) = |C1||C2| . . . |Cr|.

(ii) For integers 1 ≤ p < q ≤ r, the r-fold joint m-spotty Lee weight enumerator of
the codes C1, . . . , Cq, . . . , Cp, . . . , Cr (i.e., for the same sequence of codes except
for Cp and Cq interchanged) is given by JC1,C2,...,Cr(x̃i, ỹi : 1 ≤ i ≤ r), where for
each xi or yi (1 ≤ i ≤ r)

x̃i =

⎧⎨⎩
xq if i = p;
xp if i = q;
xi otherwise

and ỹi =

⎧⎨⎩
yq if i = p;
yp if i = q;
yi otherwise.
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(iii) The m-spotty Lee weight enumerator of the code Cs (1 ≤ s ≤ r) is given by

LCs(z) =
1∏
s

j

|Cj |
JC1,...,Cr(xi, yi : 1 ≤ i ≤ r) with xi = yi =

{
z if i = s;
1 otherwise,

where the product
∏

s
j

is extended over all integers j satisfying 1 ≤ j ≤ r and

j �= s.

Proof. For proof, see Sharma et al. [11, Theorem 3.6].

To derive MacWilliams identities, we define the following:
For integers 1 ≤ i ≤ r, j ∈ L and for each tuple a ∈ Lr, define the vector

σij(a) ∈ Lr+1 as

[σij(a)]k =

⎧⎨⎩
[a]k if 1 ≤ k ≤ i − 1;
j if k = i;
[a]k−1 if i + 1 ≤ k ≤ r + 1.

Note that Lr+1 =
⋃

a∈Lr

{⋃
j∈L

σij(a)
}

for each i.

Definition 25. [11] Let t (1 ≤ t ≤ b) and q (1 ≤ q ≤ r) be fixed integers. Let
δ = (δa : a ∈ Lr) be an �r-tuple over {0, 1, 2, . . . , b} satisfying

∑
a∈Lr

δa = b. For

an integer p (0 ≤ p ≤ b), let Ap be the set of all tuples α = (αw : w ∈ Lr+1) of
non-negative integers αw’s satisfying the following:∑

a∈Lr

∑
j∈L∗

ασ(q+1)j
(a) = p and

∑
j∈L

ασ(q+1)j
(a) = δa for each a ∈ Lr,

where L∗ = L \ {0}. Then define the polynomial Gδ(xi, yi : 1 ≤ i ≤ r) as

b∑
p=0

∑
p
hp(α)

r∏
i=1

x

⌊
Ai(α)

t

⌋
+θ

(α)
i

i y

⌊
Bi(α)

t

⌋
i , (21)

where for each p (0 ≤ p ≤ b), the summation
∑

p runs over the set Ap; and further
for each tuple α ∈ Ap, the coefficient hp(α) is given by

hp(α) =
∏
a∈Lr

(
δa!∏

j∈L

ασ(q+1)j(a)!
χ
(∑

j∈L∗
r[a]qrjασqj(a)

))
,

the integers Ai(α), Bi(α) are given by

Ai(α) =
∑
a∈Si

∑
j∈L

wL(r[a]i)ασqj(a), Bi(α) =
∑
a∈Ti

∑
j∈L

wL(r[a]i)ασqj(a), (22)
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and the number θ
(α)
i is given by

θ
(α)
i =

⎧⎪⎨⎪⎩
0 if Ai(α) + Bi(α) = 0;

1 if 0 < Ai(α) + Bi(α) ≤ t;

2 if t < Ai(α) + Bi(α) ≤ 2t − 2.

(23)

Definition 26. [11] For 1 ≤ j ≤ n, let δj = (δ
(j)
a : a ∈ Lr) be an �r-tuple over

{0, 1, 2, . . . , b} satisfying
∑

a∈Lr

δ
(j)
a = b. Then for δ = (δ1, δ2, . . . , δn), we define the

polynomial

Gδ(xi, yi : 1 ≤ i ≤ r) =

n∏
j=1

Gδj
(xi, yi : 1 ≤ i ≤ r). (24)

Definition 27. [11] The joint composition vector of an r-tuple (c1, c2, . . . , cr) ∈
(Rb)r, denoted by j(c1, c2, . . . , cr), is defined as the tuple δ = (δa : a ∈ Lr), where for
each a ∈ Lr, δa is given by

δa = |{k : 1 ≤ k ≤ b, (ĉ1k, ĉ2k, . . . , ĉrk) = a}| with ĉik = s if cik = rs.

It is easy to see that
∑

a∈Lr

δa = b.

The joint composition vector of an r-tuple (c(1), c(2), . . . , c(r)) ∈ (Rbn)r is defined
as

j(c(1), c(2), . . . , c(r)) = δ = (δ1, δ2, . . . , δn),

where for each i, c(i) = (ci1, ci2, . . . , cin) ∈ Rbn with each cik ∈ Rb and δk =
j(c1k, c2k, . . . , crk) for each k.

Theorem 17. [11] Let C1, C2, . . . , Cr be byte error-control codes of length bn and byte
length b over R. For 1 ≤ q ≤ r, let Pq(δ) be the number of r-tuples (c1, c2, . . . , cr) of
codewords ci ∈ Ci (1 ≤ i ≤ r, i �= q) and cq ∈ C⊥

q having the joint composition vector
as δ. Then we have

JC1,C2,...,Cr(xi, yi : 1 ≤ i ≤ r) =
1

|C⊥
q |
∑

Pq(δ)Gδ(xi, yi : 1 ≤ i ≤ r),

where the summation runs over all n-tuples δ = (δ1, δ2, . . . , δn) such that each δj =

(δ
(j)
a : a ∈ Lr) is an �r-tuple over {0, 1, 2, . . . , b} satisfying

∑
a∈Lr

δ
(j)
a = b, and the

polynomial Gδ(xi, yi : 1 ≤ i ≤ r) is as defined by (24).

Remark 9. When one of the codes, say Cq, is of large size, the computation of the
numbers Pq(δ)’s for the codes C1, C2, . . . , Cr becomes very tedious. However it is
easier to compute these numbers for the codes C1, . . . , Cq−1, C⊥

q , Cq+1, . . . , Cr, as the
dual code C⊥

q of Cq is of relatively smaller size. From this, one can obtain the r-fold
joint m-spotty Lee weight enumerator for the codes C1, C2, . . . , Cr, using Theorem 17.
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Remark 10. The MacWilliams identity for m-spotty Lee weight enumerator follows
from Theorem 17 when r = 1, and that for joint m-spotty Lee weight enumerator
follows from Theorem 17 when r = 2.

Proof of Theorem 17. The r-fold joint m-spotty Lee weight enumerator of the codes
C1, C2, . . . , Cr is defined as

JC1,C2,...,Cr(xi, yi : 1 ≤ i ≤ r) =
∑ r∏

i=1

x
Ki(c1,c2,...,cr)
i y

Li(c1,c2,...,cr)
i ,

where the summation
∑

runs over all the codewords ci ∈ Ci for 1 ≤ i ≤ r.

In order to prove this result, we will apply Lemma 3. For this, let

f(v) =
∑

q

r∏
i=1

x
Ki(c1,...,cq−1,v,cq+1,...,cr)
i y

Li(c1,...,cq−1,v,cq+1,...,cr)
i

for v ∈ Rbn, where the summation
∑

q runs over all codewords ci ∈ Ci (1 ≤ i ≤ r, i �=
q). Then by Lemma 3, for u = (u1, u2, . . . , un) ∈ Rbn, f̃(u) is given by

∑
v∈Rbn

χ(〈u, v〉)
∑

q

r∏
i=1

x
Ki(c1,...,cq−1,v,cq+1,...,cr)
i y

Li(c1,...,cq−1,v,cq+1,...,cr)
i

=
∑

q

n∏
j=1

⎧⎨⎩∑
vj∈Rb

χ
(〈uj, vj〉

)
r∏

i=1

x
Ki(c1j ,...,c(q−1)j ,vj ,c(q+1)j ,...,crj)

i y
Li(c1j ,...,c(q−1)j ,vj ,c(q+1)j,...,crj)

i

}
,

where ci = (ci1, ci2, . . . , cin) ∈ Ci for 1 ≤ i ≤ r with i �= q.
If the joint composition vector of the r-tuple (c1j , . . . , c(q−1)j , uj, c(q+1)j , . . . , crj)

is δj for each j, then working as in Lemma 4.7 of Sharma et al. [11], we obtain

∑
vj∈Rb

χ
(〈uj, vj〉

) r∏
i=1

x
Ki(c1j ,...,c(q−1)j ,vj ,c(q+1)j ,...,crj)

i y
Li(c1j ,...,c(q−1)j ,vj ,c(q+1)j ,...,crj)

i

= Gδj
(xi, yi : 1 ≤ i ≤ r) for each j.

This gives

∑
cq∈C⊥

q

f̃(cq) =
∑ n∏

j=1

Gδj
(xi, yi : 1 ≤ i ≤ r),

where the summation
∑

runs over all codewords ci = (ci1, ci2, . . . , cin) ∈ Ci for
1 ≤ i ≤ r (i �= q) and cq = (cq1, cq2, . . . , cqn) ∈ C⊥

q satisfying j(c1j, c2j , . . . , crj) = δj

for each j.
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Now if Pq(δ) is the number of r-tuples (c1, c2, . . . , cr) of codewords ci ∈ Ci (1 ≤
i ≤ r, i �= q) and cq ∈ C⊥

q such that j(c1, c2, . . . , cr) = δ, then using (24), we get∑
cq∈C⊥

q

f̃(cq) =
∑

Pq(δ)Gδ(xi, yi : 1 ≤ i ≤ r), (25)

where the summation
∑

runs over all n-tuples δ = (δ1, δ2, . . . , δn) such that each

δj = (δ
(j)
a : a ∈ Lr) is an �r-tuple over {0, 1, 2, . . . , b} satisfying

∑
a∈Lr

δ
(j)
a = b. Again

applying Lemma 3 and using (25), we get

JC1,C2,...,Cr(xi, yi : 1 ≤ i ≤ r) =
∑
v∈Cq

f(v) =
1

|C⊥
q |

∑
cq∈C⊥

q

f̃(cq)

=
1

|C⊥
q |
∑

Pq(δ)Gδ(xi, yi : 1 ≤ i ≤ r),

which proves the theorem.

4.4 Complete m-spotty Lee weight enumerator

In this subsection, we define the complete m-spotty Lee weight enumerator of a
byte error-control code over R and derive a MacWilliams identity for the same.

Definition 28. Let C be a byte error-control code of length bn and byte length b
over R. Then the complete m-spotty Lee weight enumerator of C is defined as

CLC(z0, z1, . . . , zM) =
∑

u=(u1,...,un)∈C

n∏
i=1

zwL(ui),

where M = max
r∈R

{wL(r)}.

If A(J) is the number of codewords in C having the composition vector as J , then
the complete m-spotty Lee weight enumerator can be rewritten as

CLC(z0, z1, . . . , zM) =
∑

J

A(J)

n∏
i=1

zρ(Ji),

where J = (J1, J2, . . . , Jn) with each Ji = (ji0, ji1, . . . , ji,�−1) an �-tuple over {0, 1, 2,
. . . , b} and ρ(Ji) =

�−1∑
k=0

wL(rk)jik.

Definition 29. For a fixed positive integer t and an �-tuple J = (j0, j1, . . . , j�−1)

over {0, 1, 2, . . . , b}, we define a polynomial h
(t)
J (z0, z1, . . . , zM) as

h
(t)
J (z0, z1, . . . , zM) =

∑
s

⎛⎜⎜⎜⎝
�−1∏
k=0

jk!
�−1∏
p=0

skp!

χ

(
�−1∑
p=0

rkrpskp

)⎞⎟⎟⎟⎠ zωs , (26)
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where the summation
∑
s

runs over all non-negative integers skp (0 ≤ k, p ≤ � − 1)

satisfying
�−1∑
p=0

skp = jk for each k, ωs =
�−1∑
k=0

(�−1∑
p=1

wL(rp)skp

)
and χ is the non-trivial

additive character on R that equals χ1 when R = R1 and equals χ2 when R = R2

(χ1 and χ2 are as defined by (1) and (2)).

In the following theorem, we derive a MacWilliams identity for the complete
m-spotty Lee weight enumerator of a byte error-control code over R.

Theorem 18. Let C be a byte error-control code of length bn and byte length b over
R and C⊥ be its dual code. Then the complete m-spotty Lee weight enumerator of C
is given by

CLC(z0, z1, . . . , zM) =
1

|C⊥|
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)
n∏

i=1

h
(t)
Ji

(z0, z1, . . . , zM),

where the summation runs over all n-tuples (J1, J2, . . . , Jn) with each Ji = (ji0, ji1,
. . . , ji,�−1) an �-tuple over {0, 1, 2, . . . , b}, A(J1, J2, . . . , Jn) is the number of code-
words in C⊥ having the composition vector as (J1, J2, . . . , Jn) and for 1 ≤ i ≤ n, the

polynomial h
(t)
Ji

(z0, z1, . . . , zM) is as defined by (26).

Proof. Let f(v) =
n∏

i=1

zwL(vi) for v = (v1, v2, . . . , vn) ∈ Rbn, where each vi ∈ Rb. Then

by Lemma 3, for u = (u1, u2, . . . , un) ∈ Rbn, f̃(u) is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

zwL(vi) =

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zwL(vi)

⎞⎠ .

Now if Ji (1 ≤ i ≤ n) is the composition of the ith byte ui of u, then working as
in Lemma 2 of Sharma et al. [10], we get∑

vi∈Rb

χ(〈ui, vi〉)zwL(vi) = h
(t)
Ji

(z0, z1, . . . , zM)

for each i. This gives

f̃(u) =

n∏
i=1

h
(t)
Ji

(z0, z1, . . . , zM).

If A(J1, J2, . . . , Jn) is the number of codewords in C⊥ having the composition
vector as (J1, J2, . . . , Jn), then

∑
u∈C⊥

f̃(u) =
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)

n∏
i=1

h
(t)
Ji

(z0, z1, . . . , zM), (27)

where the summation runs over all n-tuples (J1, J2, . . . , Jn) with each Ji, an �-tuple
over {0, 1, 2, . . . , b}.
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Again applying Lemma 3 and using (27), we get

CLC(z0, z1, . . . , zM) =
∑
v∈C

f(v) =
1

|C⊥|
∑
u∈C⊥

f̃(u)

=
1

|C⊥|
∑

(J1,J2,...,Jn)

A(J1, J2, . . . , Jn)

n∏
i=1

h
(t)
Ji

(z0, z1, . . . , zM),

which proves the theorem.

5 Byte-weight enumerator

In this section, we extend the definition of byte-weight enumerator for a byte
error-control code over R and derive a MacWilliams identity for the same.

Definition 30. [22] Let C be a byte error-control code of length bn and byte length
b over R. Then the byte-weight enumerator of C is defined as

BWC(zk : k ∈ Rb) =
∑

u=(u1,u2,...,un)∈C

n∏
i=1

zui
.

It is easy to see that the complete m-spotty Hamming weight enumerator of
a byte error-control code C can be obtained from the byte-weight enumerator of
C by replacing zui

with zwH(ui) for each i and the complete m-spotty Lee weight
enumerator of C can be obtained from the byte-weight enumerator of C by replacing
zui

with zwL(ui) for each i.
In the following theorem, we derive a MacWilliams identity for the byte-weight

enumerator of a byte error-control code over R.

Theorem 19. Let C be a byte error-control code of length bn and byte length b over
R and C⊥ be its dual code. Then the byte-weight enumerator of C is given by

BWC(zk : k ∈ Rb) =
1

|C⊥|BWC⊥

(∑
v∈Rb

χ(〈u, v〉)zv : u ∈ Rb

)
,

where χ is the non-trivial additive character on R, given by

χ =

{
χ1 when R = R1,
χ2 when R = R2.

Proof. Let f(v) =
n∏

i=1

zvi
, where v = (v1, v2, . . . , vn) ∈ Rbn. Then by applying Lemma

3, for u = (u1, u2, . . . , un) ∈ Rbn, f̃(u) is given by

f̃(u) =
∑

v=(v1,v2,...,vn)∈Rbn

χ(〈u, v〉)
n∏

i=1

zvi
=

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zvi

⎞⎠ .
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This gives ∑
u∈C⊥

f̃(u) =
∑
u∈C⊥

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zvi

⎞⎠ . (28)

Again applying Lemma 3 and using (28), we get

BWC(zk : k ∈ Rb) =
1

|C⊥|
∑
u∈C⊥

f̃(u) =
1

|C⊥|
∑
u∈C⊥

n∏
i=1

⎛⎝∑
vi∈Rb

χ(〈ui, vi〉)zvi

⎞⎠
=

1

|C⊥|BWC⊥

(∑
v∈Rb

χ(〈u, v〉)zv : u ∈ Rb

)
,

which proves the theorem.

6 Conclusion

Let R be either the finite chain ring R1 = Fq +uFq +u2Fq + · · ·+ue−1Fq (ue = 0)
or the ring R2 = Fq + uFq + vFq + uvFq (u2 = 0, v2 = 0, uv = vu). In this paper, we
defined the m-spotty weight enumerator, split m-spotty weight enumerator, r-fold
joint m-spotty weight enumerator, complete m-spotty weight enumerator and byte-
weight enumerator for byte error-control codes over R with respect to both m-spotty
Hamming and m-spotty Lee metrics. We also derived MacWilliams identities for
these enumerators and discussed some of their applications. Further, it would be
interesting to find some more applications of these enumerators and to study their
invariance properties.

Note that the results on m-spotty enumerators with respect to m-spotty Hamming
metric can be extended to any finite Frobenius ring, while the results on m-spotty
weight enumerators with respect to m-spotty Lee metric can be extended to all those
finite Frobenius rings for which a suitable notion of Lee weight can be defined.
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