A cycle decomposition conjecture for Eulerian graphs

Gary Chartrand
Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008 U.S.A.
Heather Jordon*
Mathematical Reviews
416 Fourth St
Ann Arbor, MI 48103
U.S.A.
Ping Zhang
Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008
U.S.A.
ping.zhang@wmich.edu

Abstract

A classic theorem of Veblen states that a connected graph G has a cycle decomposition if and only if G is Eulerian. The number of odd cycles in a cycle decomposition of an Eulerian graph G is therefore even if and only if G has even size. It is conjectured that if the minimum number of odd cycles in a cycle decomposition of an Eulerian graph G with m edges is a and the maximum number of odd cycles in a cycle decomposition is c, then for every integer b such that $a \leq b \leq c$ and b and m are of the same parity, then there is a cycle decomposition of G with exactly b odd cycles. This conjecture is verified for small powers of cycles and Eulerian complete tripartite graphs.

[^0]
1 A Circuit Decomposition Problem

It is well-known that if G is a connected graph containing $2 k$ odd vertices for some positive integer k, then G can be decomposed into k open trails but no fewer. In 1973, the following [8] was proved.

Theorem 1.1 If G is a connected graph containing $2 k$ odd vertices for some positive integer k, then G can be decomposed into k open trails, at most one of which has odd length.

A generalization of Theorem 1.1 was established in [4].
Theorem 1.2 Let G be a connected graph of size m containing $2 k$ odd vertices $(k \geq 1)$. Among all decompositions of G into k open trails, let s be the maximum number of such trails of odd length.
(a) If m is even, then s is even and for every even integer a such that $0 \leq a \leq s$, there exists a decomposition of G into k open trails, exactly a of which have odd length.
(b) If m is odd, then s is odd and for every odd integer b such that $1 \leq b \leq s$, there exists a decomposition of G into k open trails, exactly b of which have odd length.

The distance between two subgraphs F and H in a connected graph G is

$$
d(F, H)=\min \{d(u, v): u \in V(F), v \in V(H)\} .
$$

Theorem 1.3 For an Eulerian graph G of size m, let s be the maximum number of circuits of odd length in a circuit decomposition of G.
(a) If m is even, then s is even and for every even integer a such that $0 \leq a \leq s$, there exists a circuit decomposition of G, exactly a of which have odd length.
(b) If m is odd, then s is odd and for every odd integer b such that $1 \leq b \leq s$, there exists a circuit decomposition of G, exactly b of which have odd length.

Proof. We only verify (a) because the proof of (b) is similar. Since the size of G is even, s is even. If $s=0$, then the result is true trivially. Thus we may assume that $s \geq 2$. It suffices to show that there exists a circuit decomposition of G, exactly $s-2$ of which have odd length. Among all circuit decompositions of G, consider those circuit decompositions containing exactly s circuits of odd length; and, among those, consider one, say $\mathcal{D}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ for some positive integer k, where the distance between some pair C_{i}, C_{j} of circuits of odd length is minimum. We claim that this minimum distance is 0 . Assume that this is not the case. Suppose that P
is a path of minimum length connecting a vertex w_{i} in C_{i} and a vertex w_{j} in C_{j}, and let $w_{i} x$ be the edge of P incident with w_{i} (where it is possible that $x=w_{j}$). Then $w_{i} x$ belongs to a circuit C_{p} among $C_{1}, C_{2}, \ldots, C_{k}$. Necessarily, C_{p} has even length, for otherwise, the distance between C_{i} and C_{p} is 0 , producing a contradiction. Since C_{i} and C_{p} have the vertex w_{i} in common, C_{i} and C_{p} may be replaced by the circuit C^{\prime} consisting of C_{i} and C_{p} (that is, $\left.E\left(C^{\prime}\right)=E\left(C_{i}\right) \cup E\left(C_{p}\right)\right)$ and C^{\prime} has odd length. However then, the circuit decomposition $\mathcal{D}^{\prime}=\left(\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}-\left\{C_{i}, C_{p}\right\}\right) \cup\left\{C^{\prime}\right\}$ has exactly s circuits of odd length and the distance between C_{j} and C^{\prime} in \mathcal{D}^{\prime} is smaller than the distance between C_{i} and C_{j} in \mathcal{D}, which contradicts the defining property of \mathcal{D}. Thus, as claimed, the distance between C_{i} and C_{j} is 0 and so C_{i} and C_{j} have a vertex in common. Hence the circuit C^{*} consisting of C_{i} and C_{j} has even length. Then $\left(\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}-\left\{C_{i}, C_{j}\right\}\right) \cup\left\{C^{*}\right\}$ is a circuit decomposition of G, exactly $s-2$ of which have odd length.

2 The Eulerian Cycle Decomposition Conjecture

The earliest and a major influential book on topology was written by Veblen [17] in 1922 and titled Analysis Situs, with a second edition in 1931. The first chapter of this book was titled Linear Graphs and dealt with graph theory. In fact, both editions preceded the first book entirely devoted to graph theory, written by König [14] in 1936. In 1736 Euler [9] wrote a paper containing a solution of the famous Königsberg Bridge Problem. This paper essentially contained a characterization of Eulerian graphs as well, although the proof was only completed in 1873 in a paper by Hierholzer [12]. In 1912 Veblen [16] himself obtained a characterization of Eulerian graphs.

Theorem 2.1 (Veblen's Theorem) A nontrivial connected graph G is Eulerian if and only if G has a decomposition into cycles.

When it comes to cycle decompositions, the Eulerian graphs that have received the most attention are the complete graphs of odd order and, to a lesser degree, the complete graphs of even order in which (the edges of) a 1-factor has been removed. In 1847, Kirkman [13] proved that the complete graph K_{n}, where $n \geq 3$ is odd, can be decomposed into 3 -cycles if and only if $3 \left\lvert\,\binom{ n}{2}\right.$. At the other extreme, in 1890 Walecki (see [2]) proved that the complete graph K_{n}, where $n \geq 3$ is odd, can always be decomposed into n-cycles. Consequently, when $n \geq 3$ is an odd integer, the complete graph K_{n} can be decomposed into m-cycles for $m=3$ or $m=n$ if and only if $m \left\lvert\,\binom{ n}{2}\right.$. In 2001 Alspach and Gavlas [3] proved for every odd integer $n \geq 3$ and odd integer m with $3<m<n$ that K_{n} can be decomposed into m-cycles if and only if $m \left\lvert\,\binom{ n}{2}\right.$. In addition, they proved that for every even integer $n \geq 4$ and even integer m with $3<m<n$ and for a 1-factor I of K_{n}, the graph $K_{n}-I$ can be decomposed into m-cycles if and only if $m \mid\left(n^{2}-2 n\right) / 2$. In 2002, Šajna [15] proved the remaining cases for m-cycle decompositions of K_{n} and $K_{n}-I$, namely
the cases when m and n are of opposite parity. These results verify special cases of a conjecture made by Alspach [1] in 1981.

Alspach's Conjecture Suppose that $n \geq 3$ is an odd integer and that $m_{1}, m_{2}, \ldots, m_{t}$ are integers such that $3 \leq m_{i} \leq n$ for each $i(1 \leq i \leq t)$ and $m_{1}+m_{2}+\cdots+m_{t}=\binom{n}{2}$. Then K_{n} can be decomposed into the cycles $C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}$. Furthermore, for every even integer $m \geq 4$ and integers $m_{1}, m_{2}, \ldots, m_{t}$ such that $3 \leq m_{i} \leq n$ for each $i(1 \leq i \leq t)$ with $m_{1}+m_{2}+\cdots+m_{t}=\left(n^{2}-2 n\right) / 2$, there is a decomposition of $K_{n}-I$ for a 1-factor I of K_{n} into the cycles $C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}$.

Following many years of attempting to establish Alspach's Conjecture by many mathematicians, the conjecture was verified in its entirety by Bryant, Horsley and Pettersson [6] in 2012. We now state another conjecture involving cycle decompositions of Eulerian graphs.

The Eulerian Cycle Decomposition Conjecture (ECDC) Let G be an Eulerian graph of size m, where a is the minimum number of odd cycles in a cycle decomposition of G and c is the maximum number of odd cycles in a cycle decomposition of G. For every integer b such that $a \leq b \leq c$ and b and m are of the same parity, there exists a cycle decomposition of G containing exactly b odd cycles.

In the case of the complete graphs of odd order or complete graphs of even order in which a 1 -factor has been removed, the maximum number of odd cycles in a cycle decomposition of each such graph is given below. This follows from results of Kirkman [13], Guy [10] and Heinrich, Horák and Rosa [11].

Corollary 2.2 (a) For an odd integer $n \geq 3$, the maximum number s of odd cycles in a cycle decomposition of K_{n} is

$$
s= \begin{cases}\frac{n(n-1)}{6} & \text { if } n \equiv 1,3 \quad(\bmod 6) \\ \frac{n(n-1)-8}{6} & \text { if } n \equiv 5 \quad(\bmod 6) .\end{cases}
$$

(b) For an even integer $n \geq 4$ and a 1 -factor I of K_{n}, the maximum number s of odd cycles in a cycle decomposition of $K_{n}-I$ is

$$
s= \begin{cases}\frac{n(n-2)}{6} & \text { if } n \equiv 0,2 \quad(\bmod 6) \\ \frac{n(n-2)-8}{6} & \text { if } n \equiv 4 \quad(\bmod 6)\end{cases}
$$

For complete graphs K_{n} of odd order $n \geq 3$ and graphs $K_{n}-I$ where $n \geq 4$ is even and I is a 1 -factor of K_{n}, the ECDC is then a special case of Alspach's Conjecture and therefore is satisfied for these two classes of graphs.

3 The ECDC and Small Powers of Cycles

In a cycle decomposition of an Eulerian graph G, the number of odd cycles in the decomposition and the size of G are of the same parity. One class of Eulerian graphs
consists of the squares C_{n}^{2} of cycles C_{n} where $n \geq 5$, and more generally the k th power C_{n}^{k} of C_{n} for $k \leq\lfloor n / 2\rfloor$, which is a special class of circulant graphs. For each integer $n \geq 3$ and integers $n_{1}, n_{2}, \ldots, n_{k}(k \geq 1)$ such that $1 \leq n_{1}<n_{2}<\ldots<n_{k} \leq\lfloor n / 2\rfloor$, the circulant graph $\left\langle\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}\right\rangle_{n}$ is that graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that v_{i} is adjacent to $v_{i \pm n_{j}(\bmod n)}$ for each j with $1 \leq j \leq k$. The integers $n_{i}(1 \leq i \leq k)$ are called the jump sizes of the circulant. The circulant graph $\langle\{1,2, \ldots, k\}\rangle_{n}$ is the k th power of C_{n} and is denoted by C_{n}^{k} and in particular, if $k=1$, then $\langle\{1\}\rangle_{n}=C_{n}$. The circulant $\left\langle\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}\right\rangle_{n}$ is $2 k$-regular if $n_{k}<n / 2$ and $(2 k-1)$-regular if $n_{k}=n / 2$ where then n is even. Thus circulant graphs are symmetric classes of regular graphs.

Let G be an Eulerian graph of order n and size m. For a sequence $m_{1}, m_{2}, \ldots, m_{t}$ of positive integers, an $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$-cycle decomposition of G is a decomposition $\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ where G_{i} is an m_{i}-cycle for $i=1,2, \ldots, t$. Obviously, necessary conditions for the existence of an $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$-cycle decomposition of G are that $3 \leq m_{i} \leq n$ for $i=1,2, \ldots, t$ and $m_{1}+m_{2}+\cdots+m_{t}=m$. In [7] Bryant and Martin proved the following results for cycle decompositions of C_{n}^{2} and C_{n}^{3}.

Theorem 3.1 Let $n \geq 5$ be an integer and let $m_{1}, m_{2}, \ldots, m_{t}$ be a sequence of integers with $m_{i} \geq 3$ for $i=1,2, \ldots, t$. Then $C_{n}^{2}=\langle\{1,2\}\rangle_{n}$ has an $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ cycle decomposition if and only if each of the following conditions hold:
(1) $m_{i} \leq n$ for $i=1,2, \ldots, t$;
(2) $m_{1}+m_{2}+\cdots+m_{t}=2 n$; and
(3) either
(i) $t=3$ and $\frac{n}{2} \leq m_{1}, m_{2}, m_{3} \leq n$ or
(ii) there exists a $k \in\{1,2, \ldots, t\}$ such that $m_{k} \geq n-t+1$.

Theorem 3.2 Let $n \geq 7$ be an integer and let $m_{1}, m_{2}, \ldots, m_{t}$ be any sequence of integers with $3 \leq m_{i} \leq 5$ for $i=1,2, \ldots, t$ with $m_{1}+m_{2}+\cdots+m_{t}=3 n$. Then $C_{n}^{3}=\langle\{1,2,3\}\rangle_{n}$ has an $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$-cycle decomposition.

For $k=2,3,4$, we now determine the maximum number of odd cycles in a cycle decomposition of C_{n}^{k} for $n \geq 2 k+1$ and show that the ECDC holds in each case. In a ($m_{1}, m_{2}, \ldots, m_{t}$)-cycle decomposition of a graph G, if $m_{i}=m_{i+1}=\cdots=m_{k}$, we will write m_{i}^{k-i+1} for $m_{i}, m_{i+1}, \ldots, m_{k}$ in $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$.

Theorem 3.3 For every integer $n \geq 5$, the graph C_{n}^{2} satisfies the ECDC.
Proof. Let $n \geq 5$ be an integer. By Theorem 3.1, the following cycle decompositions of C_{n}^{2} exist:

- an $\left(\frac{n}{2}, \frac{n}{2}, n\right)$-cycle decomposition if $n \equiv 0(\bmod 4)$;
- a $\left(4^{(n+3) / 4}, n-3\right)$-cycle decomposition if $n \equiv 1(\bmod 4)$;
- an $\left(\frac{n}{2}+1, \frac{n}{2}+1, n-2\right)$-cycle decomposition if $n \equiv 2(\bmod 4)$;
- a $\left(4^{(n+1) / 4}, n-1\right)$-cycle decomposition if $n \equiv 3(\bmod 4)$.

Next, let $s(n)$ be the maximum number of odd cycles in a cycle decomposition of C_{n}^{2}. Since C_{n}^{2} has $2 n$ edges, it follows that $s(n)$ must be even. By Theorem 3.1, the following cycle decompositions of C_{n}^{2} with exactly $2\left\lfloor\frac{n+2}{4}\right\rfloor$ odd cycles exist:

- a $\left(3^{n / 2}, \frac{n}{2}\right)$-cycle decomposition if n is even;
- a $\left(3^{(n-1) / 2}, \frac{n+3}{2}\right)$-cycle decomposition if n is odd.

Hence, $s(n) \geq 2\left\lfloor\frac{n+2}{4}\right\rfloor$. It remains to show that $s(n) \leq 2\left\lfloor\frac{n+2}{4}\right\rfloor$. First note that if C_{n}^{2} has an ($m_{1}, m_{2}, \ldots, m_{t}$)-cycle decomposition, then, by Theorem 3.1,

$$
3(t-1)+n-t+1 \leq m_{1}+m_{2}+\cdots+m_{t}=2 n
$$

so that $t \leq \frac{n}{2}+1$, or in fact, $t \leq\left\lfloor\frac{n}{2}+1\right\rfloor$. Thus, $s(n) \leq\left\lfloor\frac{n}{2}+1\right\rfloor$. Note that $2\left\lfloor\frac{n+2}{4}\right\rfloor=\left\lfloor\frac{n}{2}+1\right\rfloor$ if $n \equiv 2,3(\bmod 4)$, and hence $s(n)=2\left\lfloor\frac{n+2}{4}\right\rfloor$ for $n \equiv 2,3$ $(\bmod 4)$. If $n \equiv 0,1(\bmod 4)$, then $\left\lfloor\frac{n}{2}+1\right\rfloor$ is odd and thus, since $s(n)$ must be even, it follows that $s(n) \leq\left\lfloor\frac{n}{2}+1\right\rfloor-1=2\left\lfloor\frac{n+2}{4}\right\rfloor$. Hence, $s(n) \leq 2\left\lfloor\frac{n+2}{4}\right\rfloor$ if $n \equiv 0,1$ $(\bmod 4)$ and therefore $s(n)=2\left\lfloor\frac{n+2}{4}\right\rfloor$ for $n \equiv 0,1(\bmod 4)$ as well.

It remains to find cycle decompositions of C_{n}^{2} with exactly r odd cycles for each even integer r with $2 \leq r \leq 2\left\lfloor\frac{n+2}{4}\right\rfloor-2$. Let $r=2 a$ for some positive integer a, where then $1 \leq a \leq \frac{n-2}{4}$ and $n \geq 4 a+2$.

First, let $n=4 a+2$ for some positive integer a. By Theorem 3.1, there is a ($3^{2 a}, 2 a+4$)-cycle decomposition of C_{n}^{2} since $2 a+4 \geq n-(2 a+1)+1=n-2 a=2 a+2$. Next, assume that $4 a+3 \leq n \leq 6 a+4$. Then $2 n-6 a-4 \geq n-(2 a+2)+1$ and $2 n-6 a-4 \leq n$. Thus, by Theorem 3.1, there is a $\left(3^{2 a}, 4,2 n-6 a-4\right)$-cycle decomposition of C_{n}^{2}.

Finally, assume that $n \geq 6 a+5$. Let $n=6 a+\ell$ for some integer $\ell \geq 5$ and let $b=\lceil\ell / 2\rceil$. Then $n \leq 6 a+2 b$ and so $2 n-6 a-2 b \leq n$. It follows by Theorem 3.1 that there is a $\left(3^{2 a}, 2 b, 2 n-6 a-2 b\right)$-cycle decomposition of C_{n}^{2}.

Theorem 3.4 For every integer $n \geq 7$, the graph C_{n}^{3} satisfies the ECDC.
Proof. Let $n \geq 7$ be an integer. By Theorem 3.2, C_{n}^{3} has a $\left(3^{n}\right)$-cycle decomposition and so the maximum number of odd cycles in a cycle decomposition of C_{n}^{3} is n. It remains to show that for each integer r with $0 \leq r \leq n$ such that r and $3 n$ are of the same parity, there is a cycle decomposition of C_{n}^{3} having exactly r odd cycles.

First suppose that n is even. Then $n=2 \ell$ for some integer $\ell \geq 4$. Let $r=2 a$ for some nonnegative integer a for which $a \leq \ell$. First, suppose that $\ell-a$ is even, say $\ell-a=2 p$ for some nonnegative integer p. Then by Theorem 3.2, C_{n}^{3} has an
$\left(3^{2 a}, 4^{3 p}\right)$-cycle decomposition since $3(2 a)+4(3 p)=3 n$. Next, suppose that $\ell-a$ is odd, say $\ell-a=2 p+1$ for some nonnegative integer p. Then by Theorem 3.2, C_{n}^{3} has an ($3^{2 a-1}, 4^{3 p+1}, 5$)-cycle decomposition since $3(2 a-1)+4(3 p+1)+5=3 n$.

Next suppose that n is odd. Then $n=2 \ell+1$ for some integer $\ell \geq 3$. Let $r=2 a+1$ for some nonnegative integer a where $a \leq \ell$. First, if $\ell-a$ is even, say $\ell-a=2 p$ for some nonnegative integer p, then by Theorem $3.2, C_{n}^{3}$ has an $\left(3^{2 a+1}, 4^{3 p}\right)$-cycle decomposition since $3(2 a+1)+4(3 p)=3 n$. Next, if $\ell-a$ is odd, say $\ell-a=2 p+1$ for some nonnegative integer p, then by Theorem $3.2, C_{n}^{3}$ has an $\left(3^{2 a}, 4^{3 p+1}, 5\right)$-cycle decomposition since $3(2 a)+4(3 p+1)+5=3 n$.

Thus, the ECDC holds for C_{n}^{2} when $n \geq 5$ and for C_{n}^{3} when $n \geq 7$. We conclude this section by showing that the ECDC holds as well for C_{n}^{4} for $n \geq 9$. For simplicity, we express a cycle $\left(u_{1}, u_{2}, \ldots, u_{k}, u_{1}\right), k \geq 3$, as $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ in the proof of the following theorem.

Theorem 3.5 For every integer $n \geq 9$, the graph C_{n}^{4} satisfies the ECDC.
Proof. Let $n \geq 9$ be an integer and recall that $C_{n}^{4}=\langle\{1,2,3,4\}\rangle_{n}$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Consider the set \mathcal{C} of 4 -cycles defined by

$$
\mathcal{C}=\left\{\left(v_{i}, v_{i+1}, v_{i-1}, v_{i+3}\right) \mid i=0,1, \ldots, n-1\right\}
$$

where all arithmetic is done modulo n. Since \mathcal{C} is a decomposition of C_{n}^{4} into 4-cycles, there exists a cycle decomposition of C_{n}^{4} with no odd cycles. Note also that in any cycle decomposition of C_{n}^{4}, the number of odd cycles must be even since C_{n}^{4} has an even number of edges.

Next, for an integer j with $0 \leq j \leq n-3$, consider the subgraph H_{j} of C_{n}^{4} consisting of three consecutive 4 -cycles from \mathcal{C}, starting at j, that is,

$$
H_{j}=\left\{\left(v_{i}, v_{i+1}, v_{i-1}, v_{i+3}\right) \mid i=j, j+1, j+2\right\}
$$

Note that H_{j} can also be decomposed into four 3-cycles, as given by the collection

$$
\left\{\left(v_{j}, v_{j+1}, v_{j+4}\right),\left(v_{j+1}, v_{j+2}, v_{j+5}\right),\left(v_{j}, v_{j+2}, v_{j+3}\right),\left(v_{j+1}, v_{j+3}, v_{j-1}\right)\right\}
$$

or decomposed into two 3-cycles and a 6 -cycle, as given by the collection

$$
\left\{\left(v_{j}, v_{j+1}, v_{j+2}\right),\left(v_{j+1}, v_{j-1}, v_{j+3}\right),\left(v_{j}, v_{j+4}, v_{j+1}, v_{j+5}, v_{j+2}, v_{j+3}\right)\right\}
$$

We now consider two cases, according to whether n is congruent to 0,1 modulo 3 or to 2 modulo 3 .

Case 1. Let $n \equiv 0,1(\bmod 3)$. Assume first that $n \equiv 0(\bmod 3)$, say $n=3 k$ for some positive integer k. Then, since C_{n}^{4} has $4 n$ edges and $3 \mid n$, the maximum possible number of odd cycles in a cycle decomposition of C_{n}^{4} is $4 n / 3=4 k$. If $n \equiv 1(\bmod 3)$, then $n=3 k+1$ for some positive integer k. In this case, C_{n}^{4} has
$4 n=12 k+4$ edges and since a cycle must have at least 3 edges, it follows that the maximum possible number of odd cycles in a cycle decomposition of C_{n}^{4} is also $4 k$. Now, let r be an even integer with $0 \leq r \leq 4 k$. We show that there exists a cycle decomposition of C_{n}^{4} having exactly r odd cycles. Since the case $r=0$ has already been handled, we may assume that $r>0$.

First, suppose that $r \equiv 0(\bmod 4)$. Then $r=4 \ell$ for some integer ℓ with $0<$ $r \leq k$. For integer j and i, let $A_{j}=\left(v_{j}, v_{j+1}, v_{j+4}\right), B_{j}=\left(v_{j}, v_{j+2}, v_{j+3}\right), D_{j}=$ $\left(v_{j+1}, v_{j+3}, v_{j-1}\right)$ and $F_{i}=\left(v_{i}, v_{i+1}, v_{i-1}, v_{i+3}\right)$. Then,

$$
\left\{A_{j}, A_{j+1}, B_{j}, D_{j}: j=0,3,6, \ldots, 3(\ell-1)\right\} \cup\left\{F_{i}: i=3 \ell, 3 \ell+1, \ldots, n-1\right\}
$$

is an $\left(3^{4 \ell}, 4^{n-3 \ell}\right)$-cycle decomposition of C_{n}^{4}.
Next, suppose that $r \equiv 2(\bmod 4)$. Then $r=4 \ell+2$ for some integer ℓ with $0<\ell \leq k$. Then,

$$
\begin{aligned}
& \left\{\left(v_{0}, v_{1}, v_{2}\right),\left(v_{1}, v_{n-1}, v_{3}\right),\left(v_{0}, v_{4}, v_{1}, v_{5}, v_{2}, v_{3}\right)\right\} \cup \\
& \quad\left\{A_{j}, A_{j+1}, B_{j}, D_{j}: j=3,6,9, \ldots, 3 \ell\right\} \cup\left\{F_{i}: i=3 \ell+3,3 \ell+4, \ldots, n-1\right\}
\end{aligned}
$$

where the second set is empty if $\ell=0$, is an $\left(3^{4 \ell+2}, 4^{n-(3 \ell+3)}, 6\right)$-cycle decomposition of C_{n}^{4}.

Case 2. Let $n \equiv 2(\bmod 3)$. Then $n=3 k+2$ for some positive integer k. Since C_{n}^{4} has $4 n=12 k+8$ edges, C_{n}^{4} could possibly be decomposed into $4 k+1$ 3 -cycles and one 5 -cycle. Hence, the maximum possible number of odd cycles in a cycle decomposition of C_{n}^{4} is $4 k+2=4\lfloor n / 3\rfloor+1$. We show that there exists a cycle decomposition of C_{n}^{4} with exactly r odd cycles for every even integer r with $0<r \leq 4 k+2$ (as the case $r=0$ has already been settled). As in the previous case, if $r \equiv 0(\bmod 4)$, say $r=4 \ell$ for some positive integer ℓ, then

$$
\left\{A_{j}, A_{j+1}, B_{j}, D_{j}: j=0,3,6, \ldots, 3(\ell-1)\right\} \cup\left\{F_{i}: i=3 \ell, 3 \ell+1, \ldots, n-1\right\}
$$

is an $\left(3^{4 \ell}, 4^{n-3 \ell}\right)$-cycle decomposition of C_{n}^{4}.
Now suppose that $r \equiv 2(\bmod 4)$, say $r=4 \ell+2$ for some nonnegative integer ℓ. Then

$$
\begin{aligned}
& \left\{\left(v_{0}, v_{1}, v_{2}\right),\left(v_{0}, v_{4}, v_{1}, v_{n-1}, v_{3}\right)\right\} \cup\left\{A_{j}, A_{j+1}, B_{j}, D_{j}: j=2,5,8, \ldots, 3 \ell-1\right\} \cup \\
& \quad\left\{F_{i}: i=3 \ell+2,3 \ell+3, \ldots, n-1\right\},
\end{aligned}
$$

where the second set is empty if $\ell=0$, is an $\left(3^{4 \ell+1}, 4^{n-(3 \ell+2)}, 5\right)$-cycle decomposition of C_{n}^{4}.

For an odd integer $n=2 d+1 \geq 3$, we have $C_{n}^{d}=K_{n}$. Therefore, the maximum number of odd cycles in a cycle decomposition of $C_{n}^{k}, 1 \leq k \leq d$, is known for $k \in\{1,2,3,4, d\}$. For an even integer $n=2 d \geq 4$, we have $C_{n}^{d-1}=K_{n}-I$, where I is a 1 -factor in K_{n}. Therefore, the maximum number of odd cycles in a cycle decomposition of $C_{n}^{k}, 1 \leq k \leq d-1$, is known for $k \in\{1,2,3,4, d-1\}$. Furthermore, we have shown that the ECDC is true for each of these graphs.

4 The ECDC and Complete Tripartite Graphs

We now turn to a class of Eulerian graphs that are not necessarily regular. The complete tripartite graph $K_{r, s, t}$, where $1 \leq r \leq s \leq t$, is Eulerian if and only if r, s, t are all even or all odd. Billington [5] investigated cycle decompositions of these graphs in which every cycle has length 3 or 4 . In particular, she obtained the following theorem.

Theorem 4.1 The complete tripartite graph $K_{r, s, t}$ with $r \leq s \leq t$ can be decomposed into α cycles of length 3 and β cycles of length 4 if and only if
(i) r, s, t are all even or all odd;
(ii) if either r is even or if r is odd and $s-r \equiv 0(\bmod 4)$, then $\alpha \leq r s$;
(iii) if r is odd and $s-r \equiv 2(\bmod 4)$, then $\alpha \leq r s-2$;
(iv) $3 \alpha+4 \beta=r s+r t+s t$.

Note that Theorem 4.1 does not show that the complete tripartite graph $K_{r, s, t}$ satisfies the ECDC. Nevertheless the ECDC does hold for this class of graphs.

Theorem 4.2 The complete tripartite graph $K_{r, s, t}$ where r, s, t are all even or all odd satisfies the ECDC.

Proof. Let $G=K_{r, s, t}$ where $r \leq s \leq t$ and r, s, t are either all even or all odd. Since every odd cycle in G must contain at least one vertex from each partite set of G, the maximum number of odd cycles in any cycle decomposition of G is at most rs.

Let the partite sets of G be denoted by U, V and W, where $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$, $V=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. Consider a cycle decomposition of G that contains the rs 3 -cycles

$$
C_{i, j}=\left(u_{i}, v_{j}, w_{j+i-1}\right), 1 \leq i \leq r, 1 \leq j \leq s
$$

where $j+i-1 \in\{1,2, \ldots, s\}$ and all arithmetic is performed modulo s.
These $r s 3$-cycles use all edges incident with the vertices in U. Since the only edges of G not used in these 3 -cycles are $s^{2}-r s$ edges in $K_{s, s}$ and those edges in $K_{r, t-s}$ and $K_{s, t-s}$, where each of the subgraphs induced by these edges is Eulerian and bipartite, this results in a cycle decomposition of G containing exactly $r s$ odd cycles. Therefore, the maximum number of odd cycles in any cycle decomposition of G is $r s$.

This also says that if $K_{r, s, s}$ has a cycle decomposition with exactly k odd cycles, then so does $K_{r, s, t}$ for every integer $t>s$ (for which s and t have the same parity). Thus, in what follows, we may assume $s=t$.

Suppose now that r and s are even, say $r=2 a$, and $s=2 b$, where $a \leq b$. Let $U_{i}=\left\{u_{2 i-1}, u_{2 i}\right\}$ for $1 \leq i \leq a$, and $V_{i}=\left\{v_{2 i-1}, v_{2 i}\right\}$ and $W_{i}=\left\{w_{2 i-1}, w_{2 i}\right\}$ for $1 \leq$ $i \leq b$. For $1 \leq i \leq a$ and $1 \leq j \leq b$, let $G_{i, j}$ be the induced subgraph of G isomorphic to $K_{2,2,2}$ and having partite sets $U_{i}, V_{j}, W_{j+(i-1)}$, where $j+i-1 \in\{1,2, \ldots, s\}$ and all arithmetic is performed modulo s.

Since the graph $K_{2,2,2}$ has a (4,4,4)-, a (3, 3, 6)-, and a (3, 3, 3, 3)-cycle decomposition, it follows that $K_{2,2,2}$ has a cycle decomposition into 0,2 or 4 odd cycles.

Now $K_{r, s, s}$ can be decomposed into the subgraphs $G_{i, j}$ if $r=s$ or into the subgraphs $G_{i, j}$ together with an Eulerian subgraph of $K_{s, s}$ of size $s^{2}-r s$ if $s>r$. Since $K_{s, s}$ is bipartite, the only odd cycles in the decomposition are those obtained from the subgraphs $G_{i, j}$. Since each $G_{i, j}$ can be decomposed into 0,2 or 4 odd cycles, $K_{r, s, s}$ can be decomposed into any even number k of odd cycles, where $0 \leq k \leq 4(a b)=r s$.

Suppose now that r and s are odd, say $r=2 a+1$ and $s=2 b+1$ for nonnegative integers a and b with $a \leq b$. In this case, $K_{r, s, s}$ has an odd number of edges and thus in any cycle decomposition of $K_{r, s, s}$, the number of odd cycles must be odd. Now let the partite sets of $K_{r, s, s}$ be denoted by U, V and W, where $U=\left\{u_{0}, u_{1}, \ldots, u_{2 a}\right\}$, $V=\left\{v_{0}, v_{1}, \ldots, v_{2 b}\right\}$ and $W=\left\{w_{0}, w_{1}, \ldots, w_{2 b}\right\}$.

As before, let $U_{i}=\left\{u_{2 i-1}, u_{2 i}\right\}$ for $1 \leq i \leq a$, and $V_{i}=\left\{v_{2 i-1}, v_{2 i}\right\}$ and $W_{i}=\left\{w_{2 i-1}, w_{2 i}\right\}$ for $1 \leq i \leq b$. Also, for $1 \leq i \leq a$ and $1 \leq j \leq b$, let $G_{i, j}$ be the induced subgraph of $K_{r, s, s}$ isomorphic to $K_{2,2,2}$ and having partite sets $U_{i}, V_{j}, W_{j+(i-1)}$, where all arithmetic is performed modulo s. Let $H_{i, j}$ be the induced subgraph of $K_{r, s, s}$ having partite sets V_{j} and $W_{j+(i-1)}$ and note that $H_{i, j}$ is a 4 -cycle. Now each $G_{i, j}$ decomposes into 0,2 or 4 odd cycles. Note also that $\left\{\left(u_{0}, v_{2 j-1}, w_{0}, v_{2 j}\right),\left(u_{0}, w_{2 j-1}, v_{0}, w_{2 j}\right) \mid 1 \leq j \leq b\right\}$ and $\left\{H_{i, j} \mid a+1 \leq i \leq b, 1 \leq\right.$ $j \leq b\}$ is a collection of 4 -cycles that together with $\left\{G_{i, j} \mid 1 \leq i \leq a, 1 \leq j \leq b\right\}$ and the 3 -cycle $\left(u_{0}, v_{0}, w_{0}\right)$ is a decomposition of $K_{r, s, s}$. Decomposing each $G_{i, j}$ into the required number of odd cycles will yield a cycle decomposition of $K_{r, s, s}$ with exactly k odd cycles for each odd integer k with $1 \leq k \leq 4 a b+1=(r-1)(s-1)+1$.

It remains to show that for every odd integer k with $(r-1)(s-1)+1<k<r s$, there exists a cycle decomposition of $K_{r, s, s}$ with exactly k odd cycles. First, observe that the induced subgraph of $K_{r, s, s}$ with vertex set $V \cup W$ is isomorphic to $K_{s, s}$ and has a 1-factorization given by $\left\{F_{j} \mid 0 \leq j \leq s-1\right\}$ where $F_{j}=\left\{\left\{v_{m}, w_{m+j}\right\} \mid 0 \leq\right.$ $m \leq s-1\}$.

Note that $(r-1)(s-1)+1=(r-2) s+(s-r+2)$ and so $k>(r-2) s$. For fixed integers i and j with $0 \leq i \leq r-1$ and $0 \leq j \leq s-1$, the graph $S_{i, j}$ formed by joining u_{i} to the vertices of F_{j} can be decomposed into $s 3$-cycles. Thus, the set $\left\{S_{i, i} \mid 2 \leq i \leq r-1\right\}$ will give rise to $(r-2) s 3$-cycles. Let $\ell=k-(r-2) s$ and note that $\ell \geq 2$ is even, say $\ell=2 t$ for some positive integer t. Consider the graph H formed by $S_{0,0} \cup S_{1,1}$, which is the join of two isolated vertices $\left\{u_{0}, u_{1}\right\}$ to the cycle $\left(w_{0}, v_{0}, w_{1}, v_{1}, \ldots, w_{s-1}, v_{s-1}\right)$ of length $2 s$. The cycle decomposition of H given by the collection of $\ell-13$-cycles

$$
\left\{\left(u_{0}, w_{i}, v_{i}\right),\left(u_{1}, v_{i}, w_{i+1}\right) \mid 0 \leq i \leq t-2\right\} \cup\left\{\left(u_{0}, w_{t-1}, v_{t-1}\right)\right\}
$$

the $(2 s-\ell+1)$-cycle

$$
\left(u_{1}, v_{t-1}, w_{t}, v_{t}, w_{t+1}, v_{t+1}, \ldots, w_{s}, v_{s}, w_{0}, u_{1}\right),
$$

and the collection of 4-cycles

$$
\left.\left\{\left(u_{0}, w_{i}, u_{1}, v_{i}\right) \mid t \leq i \leq s\right)\right\}
$$

is a cycle decomposition of H with ℓ odd cycles. Since the remaining $s-r 1$-factors $\left\{F_{i} \mid r \leq i \leq s-1\right\}$ when taken two at a time form 2-factors of a bipartite graph and hence must consist of even cycles, we have a cycle decomposition of $K_{r, s, s}$ with exactly k odd cycles for each odd integer k with $(r-1)(s-1)+1<k<r s$.

References

[1] B. Alspach, Research problems, Problem 3. Discrete Math. 36 (1981), 333.
[2] B. Alspach, The wonderful Walecki construction. Bull. Inst. Combin. Appl. 52 (2008), 7-20.
[3] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001), 77-99.
[4] E. Andrews, G. Chartrand, C. Lumduanhom and P. Zhang, On Eulerian walks in graphs, Bull. Inst. Combin. Appl. (to appear).
[5] E. J. Billington, Decomposing complete tripartite graphs into cycles of lengths 3 and 4, 16th British Combin. Conf. (London, 1997), Discrete Math. 197/198 (1999), 123-135.
[6] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, Proc. London Math. Soc. (to appear).
[7] D. Bryant and G. Martin, Some results on decompositions of low degree circulant graphs, Australas. J. Combin. 45 (2009), 251-261.
[8] G. Chartrand, A. D. Polimeni and M. J. Stewart, The existence of 1-factors in line graphs, squares, and total graphs, Nedrl. Akad. Wetensch. Proc. Ser. A 76 Indag. Math. 35 (1973), 228-232.
[9] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Academiae Sci. I. Petropolitanae 8 (1736), 128-140.
[10] R. K. Guy, A problem of Zarankiewicz, 1968 Theory of Graphs (Proc. Colloq., Tihany). Academic Press, New York (1966), 119-150.
[11] K. Heinrich, P. Horák and A. Rosa, On Alspach's conjecture, in: Combinatorial designs - a tribute to Haim Hanani, Discrete Math. 77 (1989), 97-121.
[12] C. Hierholzer, Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechnung zu umfahren, Math. Ann. 6 (1873), 30-32.
[13] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204.
[14] D. König, Theorie der endlichen und unendliehen Graphen, Akademische Verlagsgesellschaft, Leipzig (1936).
[15] M. Šajna, Cycle Decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27-78.
[16] O. Veblen, An application of modular equations in analysis situs, Ann. Math. 14 (1912), 86-94.
[17] O. Veblen, Analysis Situs, New York: Amer. Math. Soc. Colloquium publications (1922). Second edition (1931).
(Received 9 Nov 2012; revised 21 July 2013, 22 Oct 2013)

[^0]: * Also at Department of Mathematics, Illinois State University, Normal, IL 61790-4520, U.S.A.

