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Abstract

For each positive integer n, the toroidal queens graph may be described
as a graph with vertex set Zn × Zn where every vertex is adjacent to
those vertices in the directions (1, 0), (0, 1), (1, 1), (1,−1) from it. We
here extend this idea, examining graphs with vertex set F × F , where F
is a finite field, and any four directions are used to define adjacency. The
automorphism groups and isomorphism classes of such graphs are found.

1 Introduction

For each positive integer n, the toroidal queens graph Qt
n may be defined as the graph

whose vertices are the squares of an n×n chessboard covering the surface of a torus;
two squares are adjacent if a chess queen can move from one to the other. (A precise
definition is given below.)

This family of graphs has been widely studied. The sizes of minimum dominating
sets were found in [2, 3, 7]. Determining the number of maximum independent sets
(solutions of the “n-queens problem” on the torus) is an old and difficult problem,
studied in [2, 5, 8]. The “regular” maximum independent sets (those generated by a
repeated step) were classified in [1, 9].

We consider here a generalization of the toroidal queens graph.

Definitions. Let R be a finite commutative ring with multiplicative identity 1 and
set VR = R ×R.

Say that (c, d) ∈ VR is a direction generator of VR if |R| = |{r(c, d) : r ∈ R}|. It is
easily seen that (c, d) is a direction generator if and only if annR(c)∩ annR(d) = {0},
and that this condition is satisfied if Rc+ Rd = R .

For each direction generator (c, d), let [c, d] = {r(c, d) : r ∈ R, r �= 0}. Say [c, d]
is a direction in VR, and let DR be the set of directions in VR.
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For any subset D of DR, let G(R,D) be the graph with vertex set VR and edge
set ED = {(x, y)(x + e, y + f) : (x, y) ∈ VR, (e, f) ∈ [c, d] ∈ D}.

For each positive integer n, let Zn denote the ring of integers modulo n.

Examples. (1) For each positive integer n and D = {[1, 0], [0, 1]}, G(Zn, D) is the
rook’s graph Rn. More commonly, Rn is defined by saying its vertices are the squares
of an n×n chessboard, and two squares are adjacent if a rook can move from one to
the other. It does not matter here whether the board is considered to be on a torus
or in the plane.

(2) For each positive integer n and D = {[1, 0], [0, 1], [1, 1], [1,−1]}, G(Zn, D) =
Qt
n.

(3) Taking R to be a finite field F , the set DF can be seen as the underlying set
of the projective line P 1(F ); also as the set of one-dimensional subspaces of VF , with
the zero element removed from each subspace.

Definitions. For any (x, y) in VR and [c, d] ∈ DR, (x, y) together with all (x+h, y+k)
such that (h, k) ∈ [c, d] will be called the line through (x, y) with direction [c, d].

Two vertices of the line are said to be adjacent along [c, d]. Distinct lines with
the same direction are parallel. It is easily seen that for each direction [c, d], the set
of all lines of G(R,D) with direction [c, d] is a partition of VR, which we call the line
family of [c, d] in G(R,D).

In Example 2 above, we see that adjacency in Qt
n is defined in terms of four

directions. We will study graphs G(R,D) where |D| = 4 and the ring R is a field.
The restriction to fields has two consequences. First, as we will show in Lemma 1,
lines of G(R,D) with different directions always intersect if and only if R is a field.
Second, any graph G(R,D) with |D| = 4 is isomorphic to a graph G(a) of a standard
form (defined later).

The main result of the paper, Theorem 5, enables us to characterize line-pres-
erving isomorphisms between graphs of form G(a). Using the characterization, we
are able to determine (Theorem 8) the size and some of the structure of the group
Aut�(G(a)) of line-preserving automorphisms of G(a).

We then examine (Lemma 9 – Proposition 12) isomorphisms between graphs of
form G(a) that do not preserve lines, finding that these only occur in a few cases.
This allows us to describe (Theorem 13) the full automorphism group of each graph
G(a), and thus of any G(F,D) with |D| = 4. Finally, Theorem 5 and Proposition
12 allow us to determine (Theorem 14) the isomorphism classes of these graphs, and
count them (Theorem 15).

We will write [a11, a12; a21, a22] for the 2 × 2 matrix with entry aij in row i and
column j. The identity matrix will be denoted I.

Lemma 1 Let R be a finite commutative ring. Then R is a field if and only if any
two lines in VR with different directions meet; in this case, the intersection vertex is
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unique.

Proof. Suppose that R is a field. We need to show that for distinct directions
[c1, d1] and [c2, d2] in VR and any (x1, y1) and (x2, y2) in VR, there are s1, s2 ∈ R
such that (x1, y1) + s2(c1, d1) = (x2, y2) + s1(c2, d2). Solving for s1 and s2 gives
di(x1 − x2) − ci(y1 − y2) = si · det[c1, d1; c2, d2] for i = 1, 2. Since [c1, d1] �= [c2, d2],
det[c1, d1; c2, d2] �= 0, so there do exist such s1, s2 in R, and they are unique.

Conversely, suppose that any two lines in VR with different directions intersect
and let z be any nonzero member of R. Then [1, 0] and [1, z] are different directions,
so (0, 0)+s2(1, z) = (0, 1)+s1(1, 0) for some s1, s2 in R, which implies s2z = 1. Thus
every nonzero element of R has a multiplicative inverse, and R is a field.

From here on, we require the ring R to be a finite field.

Definitions and notation. It is well known that for any prime number p and positive
integer m, there is a field of order n = pm, unique up to isomorphism. We write Fn
for this field. We have Fp ∼= Zp; the prime subfield of Fn is isomorphic to Zp, and as
there is only one nonzero ring homomorphism from Zp into Fn, we will identify the
prime subfield of Fn with Zp.

2 Line-preserving isomorphisms

Definitions. For D,D′ ⊆ DF , a graph isomorphism θ : G(F,D) → G(F,D′) preserves
lines if for every line � of G(F,D), θ(�) is a line of G(F,D′).

Say that θ preserves line families if for every [c, d] ∈ D there is [e, f ] ∈ D′ such
that for every line � of G(F,D) with direction [c, d], θ(�) is a line of G(F,D′) with
direction [e, f ].

In this case we write θ([c, d]) = [e, f ], using θ to denote the induced bijection
from D to D′.

Lemma 2 Let F be a finite field, D,D′ ⊆ DF , and suppose θ : G(F,D) → G(F,D′)
is a graph isomorphism. If θ preserves lines then θ preserves line families.

Proof. Let �1, �2 be parallel lines of G(F,D1). Since �1 and �2 do not meet and θ
is one-to-one, θ(�1) and θ(�2) are lines of G(F,D2) that do not meet. Then Lemma
1 implies that θ(�1) and θ(�2) are parallel.

Definitions. Let F be a finite field. For any subset D of DF , let Aut(F,D) denote
the group of graph automorphisms of G(F,D). Let Aut�(F,D) denote the subgroup
of Aut(F,D) consisting of all line-preserving automorphisms.

We now describe some automorphisms and isomorphisms involving these graphs.
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For any (e, f) ∈ VF , we may define a permutation τ(e,f) of VF by τ(e,f)(x, y) =
(x + e, y + f) for all (x, y) ∈ VF . For any D ⊆ DF , τ(e,f) sends every line family
of G(F,D) to itself, so τ(e,f) is a line-preserving automorphism of G(F,D). Let
TF = {τ(e,f) : (e, f) ∈ VF}, the translation subgroup of Aut(F,D). It is easily seen
that TF is isomorphic to the additive group of F × F , and that the graph G(F,D)
is vertex-transitive.

For any matrix M = [a11, a12; a21, a22] in the general linear group GL2(F ), we can
define a permutation μM of VF using left multiplication by M . That is, for (x, y) ∈
VF we set μM(x, y) = (a11x + a12y, a21x + a22y). Also, μM induces a permutation
of DF , and it is easy to verify that if [c, d] ∈ DF , then for each vertex (x, y) ∈
VF , the function μM takes the line through (x, y) with direction [c, d] to the line
through the vertex μM (x, y) with direction [μM(c, d)]. Thus for D ⊆ DF , if we let
μM(D) = {[μM(c, d)] : [c, d] ∈ D}, then μM is a graph isomorphism from G(F,D)
to G(F, μM(D)). Let M(D) = {μM : μM(D) = D}. Then M(D) is a subgroup of
Aut�(F,D).

Definitions. For a finite field F , let F ′ = F \ {0, 1}. For a ∈ F ′, let D(a) denote
{[1, 0], [0, 1], [1, 1], [1, a]}. We will write G(a) for G(F,D(a)) when it is not important
what field F is involved.

It is well-known [6, Theorem 2.2] that the action of GL2(F ) on DF is sharply 3-
transitive. That is, given distinct [c1, d1], [c2, d2], [c3, d3] and distinct [e1, f1], [e2, f2],
[e3, f3] in DF , there is M ∈ GL2(F ), unique up to scalar multiple, such that
μM([ci, di]) = [ei, fi] for i = 1, 2, 3. Thus for any D ⊆ DF with |D| = 4, there
is a ∈ F ′ with G(F,D) ∼= G(a). For this reason we will now examine isomorphisms
involving the graphs G(a).

We are going to show (Theorem 14) that the graph G(a) is isomorphic to the
graph G(b) if and only if α(a) = b for some α in the group Γ(F ) defined below.

Definitions. For any nonempty set S, let Sym(S) denote the group of permutations
of S. If S = {1, . . . , n} for some positive integer n, we will write Sn for Sym(S).

For a finite field F of characteristic p, |F | > 2, define α1, α2 ∈ Sym(F ′) by
α1(x) = 1 − x and α2(x) = 1/x for all x ∈ F ′. Define α3 ∈ Sym(F ) by α3(x) = xp.
Then α3 is the Frobenius automorphism of F , which will be quite important here.
Note that the restriction of α3 to F ′ is in Sym(F ′).

Given elements γ1, . . . , γk of a group Γ, we write 〈γ1, . . . , γk〉 for the subgroup of
Γ they generate. The identity element of a group will be denoted ι.

Let Γ(F ) be the subgroup 〈α1, α2, α3〉 of Sym(F ′). For a, b ∈ F ′, we write a ≈ b
if α(a) = b for some α ∈ Γ(F ). If a ≈ b then a and b generate the same subfield of
F ; the converse is not true.

Lemma 3 Let p be a prime, let m be a positive integer such that pm > 4, and let
F = Fpm. Then 〈α1, α2〉 ∼= S3 and Γ(F ) ∼= S3 × Zm. Thus for each α ∈ Γ(F )
there are a unique integer jα, 0 ≤ jα < m, and a unique φα ∈ 〈α1, α2〉 such that
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α = φαα
jα
3 = αjα3 φα.

Proof. For any finite field F with |F | > 2, there is a group homomorphism δ
from S3 onto 〈α1, α2〉 satisfying δ((1, 2)) = α1 and δ((1, 3)) = α2. It is easily checked
that ker δ = S3 if and only if F = F3 and ker δ is the alternating group A3 if and
only if F = F4. Thus if |F | = pm > 4, then 〈α1, α2〉 ∼= S3.

Now assume |F | > 4. As no polynomial of degree less than pm−2 annihilates F ′,
〈α1, α2〉∩〈α3〉 = {ι}, and since α3 commutes with α1 and α2, we have Γ(F ) ∼= S3×Zm,
and the remaining claim follows.

In Theorem 5 we will consider the possibilities for a line-preserving isomorphism
θ from G(a) to G(b) that fixes (0, 0) and the line family [0, 1]. Such a θ will send the
remaining line families [1, 0], [1, 1], [1, a] of G(a) to the line families [1, 0], [1, 1], [1, b]
of G(b). This will be described by a bijection σ : {0, 1, a} → {0, 1, b}; say that θ
sends the line family [1, d] to the line family [1, σ(d)] for d ∈ {0, 1, a}. The following
lemma gives the values of σ possible for a given a and b = α(a).

For any x ∈ F ′, the stabilizer in 〈α1, α2〉 of x is Stab1,2(x) = {β ∈ 〈α1, α2〉 :
β(x) = x}.

Definition and Lemma 4 Let p be a prime, let m a positive integer such that
pm > 4, and let F = Fpm. For each α ∈ Γ(F ) and each a ∈ F ′, say that a bijection
σ : {0, 1, a} → {0, 1, α(a)} is an associate of the pair (α, a) if

αjα3 (a) =
σ(a) − σ(0)

σ(1) − σ(0)
. (1)

The pair (α, a) has |Stab1,2(a)| associates.

Proof. Set b = α(a), so the left side of (1) is φ−1
α (b). As σ ranges over

the bijections from {0, 1, a} to {0, 1, b = α(a)}, the right side of (1) ranges over
{γ(b) : γ ∈ 〈α1, α2〉} = {γ−1(b) : γ ∈ 〈α1, α2〉}. Thus there will be values of σ giv-
ing φ−1

α (b) for the right side of (1), and each of these is an associate of (α, a). This
will occur |Stab1,2(b)| times, and from αjα3 φα(a) = b and the fact that α3 commutes
with members of 〈α1, α2〉, it follows that |Stab1,2(b)| = |Stab1,2(a)|.

The following theorem is the main part of our characterization of isomorphisms
that preserve lines.

Theorem 5 Let p be a prime and m a positive integer such that pm > 4. Set
F = Fpm, let a ∈ F ′, let k be the dimension of Zp(a) as a Zp-vector space, and let
La(F ) denote the group of Zp(a)-vector space automorphisms of F .

For any b ∈ F ′ such that a ≈ b, there exists α ∈ Γ(F ) with α(a) = b. For any
such α and any ψ ∈ La(F ), define ω ∈ Sym(F ) by

ω = αjα3 ◦ ψ. (2)
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Then for any associate σ of (α, a), the mapping θ : VF → VF defined by

θ(x, y) = (ω(x), σ(0)ω(x) + [σ(1) − σ(0)]ω(y)) (3)

is a graph isomorphism from G(a) to G(b) that preserves lines and satisfies

θ(0, 0) = (0, 0) and θ([0, 1]) = [0, 1], and (4)

θ([1, d]) = [1, σ(d)] for d ∈ {0, 1, a}. (5)

Conversely, for any b ∈ F ′, if there exists a graph isomorphism θ from G(a) to
G(b) that preserves lines and satisfies (4), then a ≈ b, and there exist ψ ∈ La(F ),
α ∈ Γ(F ) with α(a) = b, and an associate σ of (α, a) such that with ω ∈ Sym(F )
defined by (2), θ is given by (3) and satisfies (5).

Proof. Assume that F is a finite field of characteristic p, |F | > 4, and a, b ∈ F ′

with a ≈ b, so there exists α ∈ ΓF such that α(a) = b. Let ψ be any Zp(a)-vector
space automorphism of F , let σ be an associate of (α, a), and define ω by (2) and θ
by (3). It follows from (2) and the hypothesis on ψ that

ω(c + e) = ω(c) + ω(e) for c, e ∈ F . (6)

This and the Zp(a)-linearity of ψ imply for (x, y) ∈ VF , s ∈ F , and (u, v) ∈ VZp(a)

that
θ((x, y) + s(u, v)) = θ(x, y) + (ω(s)/ω(1))θ(u, v). (7)

The definition of ω implies ω(0) = 0, and then (3) gives

θ(1, d) = ω(1)(1, σ(d)) for d = 0, 1. (8)

From (3) we have θ(1, a) = ω(1)(1, σ(0)+ [σ(1)−σ(0)](ω(a)/ω(1))). Since α3 is a
field automorphism of F and ψ is Zp(a)-linear, (2) implies ω(a)/ω(1) =
αjα3 (ψ(a)/ψ(1)) = αjα3 (a), which equals (σ(a) − σ(0))/(σ(1) − σ(0)) by (1). Thus

θ(1, a) = ω(1)
(
1, σ(0) + [σ(1) − σ(0)]φ−1

α (b)
)

= ω(1)(1, σ(a)). (9)

Combining (7), (8), and (9), we have

θ((x, y) + s(1, d)) = θ(x, y) + ω(s)(1, σ(d)) for (x, y) ∈ VF , s ∈ F, d ∈ {0, 1, a}. (10)

Similarly,

θ((x, y)+ s(0, 1)) = θ(x, y)+ω(s)[σ(1)−σ(0)](0, 1) for s ∈ F and (x, y) ∈ VF . (11)

Together, (10) and (11) imply that θ sends adjacent vertices of G(a) to adjacent
vertices of G(b). As ω(0) = 0, we have θ(0, 0) = (0, 0) by (3). Then (11) implies
that every vertex of G(b) that is adjacent to (0, 0) along [0, 1] is in θ(VF ), and (10)
implies that for each of those vertices, every vertex adjacent to it along [1, σ(0)] is
in θ(VF ). Thus θ is onto VF , which implies that θ is one-to-one and that θ sends
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non-adjacent vertices of G(a) to non-adjacent vertices of G(b). Therefore θ is a graph
isomorphism. As we have shown θ satisfies (4) and (5), the first part of the theorem
is proved.

Assume now that b ∈ F ′ and there is a line-preserving isomorphism θ : G(a) →
G(b) that satisfies (4). Then there are ω ∈ Sym(F ) and a function β : VF → F such
that θ(x, y) = (ω(x), β(x, y)) for (x, y) ∈ VF .

As θ preserves lines, by Lemma 2 it also preserves line families, so we may define
a bijection σ : {0, 1, a} → {0, 1, b} corresponding to the action of θ on line families
other than [0, 1] of G(a). That is, for each d ∈ {0, 1, a}, θ sends the line family [1, d]
of G(a) to the line family [1, σ(d)] of G(b).

Let z ∈ F . Since (az, 0) and (0,−az) are adjacent along [1, 1] or equal, θ(az, 0) =
θ(0,−az) + sz(1, σ(1)) for some sz ∈ F . As θ(0, 0) = (0, 0) and thus ω(0) = 0, we
have sz = ω(az) and then

β(az, 0) = β(0,−az) + σ(1)ω(az) for z ∈ F . (12)

Similarly using the fact that (z, 0) and (0,−az) are adjacent along [1, a] or equal, we
get

β(z, 0) = β(0,−az) + σ(a)ω(z). (13)

Then since each of (az, 0) and (z, 0) are equal to or adjacent along [1, 0] with the
vertex (0, 0), which is fixed by θ,

β(az, 0) = σ(0)ω(az) and β(z, 0) = σ(0)ω(z). (14)

Together (12), (13), and (14) imply

ω(az) =
σ(a) − σ(0)

σ(1) − σ(0)
ω(z) for z ∈ F. (15)

Define γ ∈ Sym(F ) by γ(z) = ω(z)/ω(1) for z ∈ F . Then (15) with z = 1 implies
γ(a) = (σ(a) − σ(0))/(σ(1) − σ(0)) and

γ(az) = γ(a)γ(z) for z ∈ F . (16)

For each d ∈ {0, 1, a} and each z ∈ F , (0, 0) and (z, dz) are adjacent along [1, d]
or equal, so (ω(z), β(z, dz)) = θ(z, dz) = rz(1, σ(d)) for some rz ∈ F , implying
rz = ω(z) and thus

β(z, dz) = σ(d)ω(z) for each d ∈ {0, 1, a} and z ∈ F . (17)

For c, e ∈ F , consider the vertices (0, 0), (c, ac), (e, e), (c + e, ac + e) of G(a). From
(17) we have θ(c, ac) = (ω(c), σ(a)ω(c)) and θ(e, e) = (ω(e), σ(1)ω(e)). Then since
(c, ac) and (c+ e, ac+ e) are adjacent along [1, 1] or equal,

θ(c + e, ac+ e) = (ω(c), σ(a)ω(c)) + sc,e(1, σ(1)) for some sc,e ∈ F . (18)
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Similarly using the fact that (e, e) and (c+e, ac+e) are adjacent along [1, a] or equal,

θ(c + e, ac+ e) = (ω(e), σ(1)ω(e)) + tc,e(1, σ(a)) for some tc,e ∈ F . (19)

Solving equations (18) and (19) together gives sc,e = ω(e) and tc,e = ω(c). This
implies (6) and (using (17))

β(c + e, ac + e) = σ(a)ω(c) + σ(1)ω(e) = β(c, ac) + β(e, e) for c, e ∈ F. (20)

From the definition of γ we see γ(1) = 1 and from (6) we have

γ(c + e) = γ(c) + γ(e) for c, e ∈ F . (21)

Then an induction shows γ(r) = r for r ∈ Zp. Another induction using (16) shows
that γ(rai) = r(γ(a))i for r ∈ Zp and nonnegative integers i. Since every element of
the extension field Zp(a) has the form

∑
ria

i for some ri’s in Zp, (16) and (21) imply

γ(ce) = γ(c)γ(e) for c ∈ F and e ∈ Zp(a). (22)

Then (21) and (22) imply that the restriction γ′ of γ to the subfield Zp(a) of F
is a field isomorphism from Zp(a) to γ(Zp(a)). We now need some facts from the
theory of finite fields, which we take from Proposition 15 of [4, Chapter 14]. First,
distinct subfields of a finite field are not isomorphic, so γ(Zp(a)) = Zp(a) and γ′ is
a field automorphism. Second, every field automorphism of Zp(a) is a power of the
Frobenius automorphism x → xp. Therefore there is an integer j such that

αj3(a) = γ(a) =
σ(a) − σ(0)

σ(1) − σ(0)
. (23)

Since σ({0, 1, a}) = {0, 1, b}, the possible values of the right side of (23) are exactly
the images of b under members of the subgroup 〈α1, α2〉 of Γ(F ). Thus there is
φ ∈ 〈α1, α2〉 such that αj3(a) = φ−1(b). Then setting α = φαj3 ∈ Γ(F ) we have
α(a) = b, so a ≈ b, j = jα, and σ is an associate of (α, a).

Solving the equations x = c+e and y = ac+e for c and e gives c = (y−x)/(a−1)
and e = −(y − ax)/(a − 1), and then the first equation of (20) gives θ(x, y) =
(ω(x), σ(a)ω((y−x)/(a−1))+σ(1)ω((−(y−ax)/(a−1))) for (x, y) ∈ VF . Using the
definition of γ and (22, 23), we see ω((y − x)/(a − 1)) = ω(1)γ((y − x)/(a − 1)) =
ω(1)γ(y−x)/γ(a−1) = [ω(1)γ(y)−ω(1)γ(x)]/(γ(a)−γ(1)) = [ω(y)−ω(x)]/[(σ(a)−
σ(1))/(σ(1) − σ(0))] and can similarly expand ω((−(y − ax)/(a − 1))), eventually
obtaining (3).

Set ψ = α−jα
3 ◦ ω. Since ω is in Sym(F ) and preserves addition and α3 is an

automorphism, ψ is in Sym(F ) and preserves addition. For z ∈ F , (15) and (23)
imply ψ(az) = α−jα

3 (ω(az)) = α−jα
3 (αjα3 (a)ω(z)) = aψ(z). Therefore a is in Sψ =

{r ∈ F : ψ(rz) = rψ(z) for all z ∈ F}. Using the fact that ψ preserves addition,
it is easy to show that Sψ is a field and contains Zp as well as a, and thus ψ is
Zp(a)-linear.
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Definitions. For any finite field F , D ⊆ DF , and θ ∈ Aut�(F,D), it follows from
Lemma 2 that θ induces a permutation of D: for each [c, d] ∈ D, there is [e, f ] ∈ D
such that θ sends every line with direction [c, d] to a line with direction [e, f ]. We may
define a group homomorphism ΦD : Aut�(F,D) → Sym(D) by ΦD(θ)([c, d]) = [e, f ].
When D = D(a), we will write Φa rather than ΦD(a).

Since |D(a)| = 4, the group Sym(D(a)) is isomorphic to S4 and thus has a
subgroup isomorphic to the Klein four-group, which will be denoted by K.

Let a ∈ F ′. Define matrices M,M ′ in GL2(F ) by M = [0, 1; a, 0] and M ′ =
[1,−1/a; 1,−1], and let MK(a) be the subgroup of M(D(a)) generated by μM , μM ′,
and all μcI , where c is a nonzero element of F .

Lemma 6 For any finite field F and a ∈ F ′, Φa(MK(a)) = K. Thus MK(a) acts
transitively on D(a).

Proof. A short computation shows that Φa(μM) = ([1, 0], [0, 1])([1, 1], [1, a])
and Φa(μM ′) = ([1, 0], [1, 1])([0, 1], [1, a]), using cycle notation for permutations in
Sym(D(a)). It is then clear that Φa(MK(a)) = K.

We can now describe all line-preserving isomorphisms among the graphs G(a).

Proposition 7 Let F be a finite field, |F | > 4, and a, b ∈ F ′. If there exists a line-
preserving isomorphism η : G(a) → G(b) then a ≈ b and there exist μN ∈ MK(b), θ
as in Theorem 5, and unique τ ∈ TF such that

η = τ ◦ μN ◦ θ.
Conversely, if a ≈ b then there is a line-preserving isomorphism from G(a) to G(b).

Any line-preserving isomorphism from G(a) to G(b) that fixes (0, 0) is Zp(a)-
linear.

Proof. Let η : G(a) → G(b) be a line-preserving isomorphism. For some (s, t) ∈
VF , η(0, 0) = (s, t). Then with τ = τ(−s,−t) ∈ TF , τ−1 ◦ η fixes (0, 0), and sends
line family [0, 1] of G(a) to some line family [c, d] of G(b). By Lemma 6, there is
μN ∈ MK(b) taking line family [0, 1] of G(b) to line family [c, d] of G(b). Now
μ−1
N ◦ τ−1 ◦ η is a line-preserving isomorphism from G(a) to G(b) that fixes (0, 0) and

sends line family [0, 1] of G(a) to line family [0, 1] of G(b), so by the converse part of
Theorem 5 the desired θ exists and a ≈ b.

The converse is immediate from Theorem 5.

For the last statement, note that if η fixes (0, 0) then from the first part of this
theorem η = μN ◦θ. Here μN is F -linear from its definition, and the proof of Theorem
5 shows θ to be Zp(a)-linear, so η is Zp(a)-linear.

We now look at the structure of Aut�(G(a)). We need to define some subgroups.
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Definitions. For a ∈ F ′, let H(a) = {η ∈ Aut�(G(a)) : η(0, 0) = (0, 0)}.
For any Zp(a)-vector space automorphism ψ of F , define θψ : VF → VF by

θψ(x, y) = (ψ(x), ψ(y)). Taking α = ι and σ = ι in Theorem 5 and its proof, we
see that θψ is a graph automorphism of G(a) that sends each line family in D(a) to
itself. Let Ψa denote the subgroup of Aut�(G(a)) consisting of all the θψ.

Theorem 8 Let F be a finite field, |F | = pm > 4, and a ∈ F ′, with |Zp(a)| = pk.
Then Aut�(G(a)) is the semidirect product of its subgroups TF and H(a).

The image of H(a) under Φa is a subgroup of Sym(D(a)) that contains K, so
|Φa(H(a))| ∈ {4, 8, 12, 24}, and

|Aut�(G(a))| = p2m · (pm − 1)(pm − pk) · · · (pm − pm−k) · |Φa(H(a))|.
Proof. As τ(0,0) = ι is the only translation that fixes (0, 0), we have TF ∩H(a) =

{ι}; Proposition 7 implies that TF · H(a) = Aut�(G(a)) and that any η ∈ H(a) is
additive, giving ητ(s,t)η

−1 = τη(s,t) for all τ(s,t) ∈ TF . So TF is normal in Aut�(G(a)),
which is thus a semidirect product as claimed.

As MK(a) ⊆ H(a), Lemma 6 implies Φa(H(a)) is a subgroup of Sym(D(a)) that
contains K. Since Sym(D(a)) ∼= S4, we have |Φa(H(a))| ∈ {4, 8, 12, 24}.

We claim that ker(Φa) ∩ H(a) = Ψa. It is easy to see that both ker(Φa) and
H(a) contain Ψa. Suppose η ∈ ker(Φa) ∩ H(a). Then η([0, 1]) = [0, 1], so we may
use Theorem 5: there are α ∈ Sym(F ′), ψ ∈ La(F ), and and an associate σ of (α, a)
such that the corresponding θ of Theorem 5 equals η. Since θ ∈ ker(Φa), we have
σ = ι so θ(x, y) = (ω(x), ω(y)) with ω = αjα3 ◦ ψ, and by (1), αjα3 (a) = a, implying
that αjα3 and thus also ω are Zp(a)-linear. Therefore ω ∈ La(F ) and η = θ ∈ Ψa,
establishing the claim.

Finally, applying the fundamental homomorphism theorem to the restriction of
Φa to H(a), we have |H(a)| = |Ψa| · |Φa(H(a))|. Since TF ∼= F × F and Ψa is
isomorphic to the general linear group GLm/k(Zp(a)), the conclusion follows.

Remark. It was shown in [9] that for n ≥ 6, Aut(Qt
n) is Aut�(Q

t
n) and has size

4n2φ(n) if n is even, 8n2φ(n) if n is odd (where φ denotes the Euler function). When
n = pm ≥ 6 is a prime power, it is interesting to compare Aut(Qt

n) with Aut�(G(a)).
Both are semidirect products of the translation subgroup TF (of size n2) with the
subgroup of origin-fixing automorphisms, which for Qt

n will here be denoted Hn.

The restriction of Φ−1 to Hn has kernel isomorphic to the group of units of the
ring Zn, and thus of order φ(n). As just shown, the restriction of Φa to H(a) has
kernel isomorphic to GLm/k(Zp(a)), which has order (pm−1)(pm−pk) · · · (pm−pm−k).

For even n ≥ 6, Φ−1(Hn) = 〈([1, 0], [0, 1]), ([1, 1], [1,−1])〉. For odd n ≥ 7,
Φ−1(Hn) = 〈([1, 0], [1, 1], [0, 1], [1,−1]), ([1, 0], [0, 1])〉. Thus Φ−1(Hn) acts transitively
on D(−1) only for odd n.

From Theorem 8, |Φa(H(a))| ∈ {4, 8, 12, 24}; in particular, when a = −1 and F
has characteristic 3, Φa(H(a)) can be shown to be isomorphic to S4, and thus has
order 24.



TOROIDAL QUEENS GRAPHS OVER FINITE FIELDS 31

To find the full automorphism group Aut(G(a)), we need to consider the possi-
bilities for automorphisms of G(a) that do not preserve lines. This requires charac-
terization of maximal cliques of G(a).

3 Maximal cliques

The following lemma is easily proved, and is the reason for our investigation of
maximal cliques in Propositions 10 and 11.

Lemma 9 For i = 1, 2, let Hi be a finite simple graph with vertex set Vi. A bijective
function θ : V1 → V2 is a graph isomorphism from H1 to H2 if and only if for every
subset S of V1, S is a maximal clique of H1 if and only if θ(S) is a maximal clique
of H2.

Definition. Let F be a finite field and let D ⊆ VF with |D| = 4. A maximal clique
of size four of G(F,D) that does not contain more than two vertices of any line of
G(F,D) is a two-by-two of G(F,D).

Proposition 10 Let F be a finite field and let D ⊆ VF with |D| = 4. Then:

Every maximal clique of G(F,D) that does not contain more than two vertices of
any line of G(F,D) is a two-by-two.

The graph G(F,D) has a two-by-two if and only if F has characteristic 2.

If char(F ) = 2 then M ⊆ VF is a two-by-two if and only if M = {(x0, y0), (x1, y1),
(x2, y2), (x0 +x1 +x2, y0 + y1 + y2)}, where the vertices (x0, y0), (x1, y1), (x2, y2) ∈ VF
are not collinear.

Proof. Suppose that M is a maximal m-clique of G(F,D) and no line of G(F,D)
contains more than two vertices of M . Since each vertex of M is a member of four
lines, we see that m ≤ 5, and m = 5 can occur only if every line of G(F,D) through
a vertex of M contains exactly two vertices of M . But then if h is the number of
lines with direction [0, 1] that contain vertices of M , we have 2h = 5, which is not
possible. Thus m ≤ 4.

Since |F | ≥ 2, we have m ≥ 2. For distinct v1, v2 ∈M we can find two directions
[ci, di], i = 1, 2, in D and different from the direction of the line through v1 and v2.
For i = 1, 2 consider the line through vi with direction [ci, di]. By Lemma 1, these
lines meet at a vertex that by the maximality of the clique M must be in M , so
m ≥ 3.

If m = 3, the three pairs of points of M determine three different directions in
D. Let [c, d] be the fourth direction in D. By Lemma 1, the line through v1 with
direction [c, d] meets the line through the other two points of M in a vertex v, and
M ∪ {v} is a clique properly containing M , a contradiction. Thus m = 4, and M is
a two-by-two.
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Let (x0, y0) ∈M and define a translation automorphism of G(F,D) by τ (x, y) =
(x − x0, y − y0). Then M ′ = τ (M) is a two-by-two containing (0, 0); let (x′1, y

′
1),

(x′2, y
′
2), (x

′
3, y

′
3) be the other vertices of M ′. Since M ′ is a maximal clique, the line

through any pair of vertices of M ′ does not intersect the line through the other two
vertices of M ′. Then Lemma 1 implies these two lines are parallel. Thus [x′3 −
x′1, y

′
3 − y′1] = [x′2, y

′
2] and [x′3 − x′2, y

′
3 − y′2] = [x′1, y

′
1], so there are s, t ∈ F such that

(x′3, y
′
3) = (x′1, y

′
1) + s(x′2, y

′
2) = (x′2, y

′
2) + t(x′1, y

′
1). As no line contains more than

two vertices of M ′, the directions [x′1, y
′
1] and [x′2, y

′
2] are different, so by Lemma 1

the only solution is s = t = 1, giving x′3 = x′1 + x′2 and y′3 = y′1 + y′2.

Then since the line through (0, 0) and (x′3, y
′
3) is parallel to the line through (x′1, y

′
1)

and (x′2, y
′
2), we have 0 = det[x′1+x

′
2, y

′
1+y′2; x

′
2−x′1, y′2−y′1] = 2·det[x′1, y

′
1; x

′
2, y

′
2]. As

(0, 0), (x′1, y
′
1), (x

′
2, y

′
2) are not collinear, det[x′1, y

′
1; x

′
2, y

′
2] �= 0. Thus F has character-

istic 2, and M = τ−1(M ′) has the form given in the last sentence of this proposition.

Conversely, suppose that char(F ) = 2 and M = {(x0, y0),(x1, y1), (x2, y2), (x0 +
x1 + x2, y0 + y1 + y2)}, with the vertices (x0, y0), (x1, y1), (x2, y2) ∈ VF not collinear.
Then M is a 4-clique and no line contains more than two members of M . We need
to show that M is a maximal clique. Suppose that some vertex v is adjacent to all
vertices of M .

The pairs of vertices of M determine three of the four directions in D. To simplify
notation, let D = {d1, d2, d3, d4}, set M = {v1, v2, v3, v4}, and for distinct vertices
w, z of G(F,D) let wz denote the unique line containing w and z. We may assume
that for i = 2, 3, 4, the line v1vi has direction di. (Then also the line v3v4 has direction
d2, the line v2v4 has direction d3, and the line v2v3 has direction d4.)

Since no two vi’s are adjacent along d1, at most one vi is adjacent to v along d1.
If there is such a vi we may assume it is v1 by renumbering if necessary.

Define a function ρ : M → D by saying that ρ(vi) is the direction of the line
vvi. Then ρ takes the value d1 at most once, and if it does, we are assuming that
ρ(v1) = d1.

If ρ(v2) = d2, then since the line v1v2 has direction d2, also ρ(v1) = d2, but
ρ(v3) �= d2 and ρ(v4) �= d2 since no line contains more than two vertices of M .
Similarly considering the possibilities ρ(v2) = d3 and ρ(v2) = d4, we see that ρ takes
the value ρ(v2) exactly twice. The same is true for the values ρ(v3) and ρ(v4). Thus
the set ρ−1(di) has either two members or none for i = 2, 3, 4. As |M | = 4, parity
implies that ρ(v1) = d1 does not occur, and that ρ takes exactly two values. But this
contradicts the fact that disjoint pairs of vertices of M determine parallel lines, so
no such vertex v exists.

Definition. Let F be a finite field of characteristic 3. Say that M ⊆ VF is a three-by-
three of G(−1) if there are x, y, t ∈ F , t �= 0, such that M = {(x+ rt, y+ st) : r, s ∈
Z3}.

It is straightforward to verify that a three-by-three is a clique of G(−1).

Proposition 11 Let F be a finite field, a ∈ F ′, and M a maximal clique of G(a)
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that is neither a line nor a two-by-two. Then some line of G(a) contains exactly
three vertices of M , and just one of the following holds:

(i) a �∈ {−1, 2, 1/2} and |M | = 4;

(ii) char(F ) �= 3, a ∈ {−1, 2, 1/2}, and |M | = 5;

(iii) char(F ) = 3, a = −1, M is a three-by-three, and |M | = 9.

Proof. Assume that M is a maximal clique of G(a) that is neither a line nor
a two-by-two. Since M is not a two-by-two, Proposition 10 implies that M has at
least three vertices in some line � of G(a). As M is a maximal clique but not a line,
M contains some vertex v not in �. Since |D(a)| = 4, Lemma 1 implies v is adjacent
to exactly three vertices in �, so |M ∩ �| = 3.

By Lemma 6, there is an automorphic image M ′ of M that has three vertices
v1, v2, v3 in the line C0 through (0, 0) with direction [0, 1]. Any other vertex v of M ′

is adjacent to each of v1, v2, v3 along a different one of the directions [1, 0], [1, 1], [1, a],
so by applying a vertical translation to M ′ we obtain M ′′ containing (0, 0) and (−t, 0)
for some t ∈ F , t �= 0. Then M ′′ also contains the vertices (0, t) and (0, at) where
the lines through (−t, 0) with directions [1, 1] and [1, a] meet C0.

We next investigate what vertices other than (−t, 0) are adjacent to every vertex
in M ′′ ∩ C0 = {(0, 0), (0, t), (0, at)}, and under what conditions these vertices are
adjacent to (−t, 0).

The line through (0, 0) along [1, 0], the line through (0, at) along [1, 1], and the
line through (0, t) along [1, a] all meet if and only if at = t/a; since t �= 0 and a �= 1,
this is true if and only if a = −1. In this case the intersection is (t, 0), which is
adjacent to (−t, 0) along [1, 0].

The line through (0, t) along [1, 0], the line through (0, 0) along [1, 1], and the
line through (0, at) along [1, a] all meet if and only if a = 1/2. In this case the
intersection is (t, t), which is adjacent to (−t, 0) along [1, a].

The line through (0, t) along [1, 0], the line through (0, at) along [1, 1], and the
line through (0, 0) along [1, a] all meet if and only if a2 − a+ 1 = 0. In this case the
intersection is ((1 − a)t, t), which is adjacent to (−t, 0) if and only if a = 2.

The line through (0, at) along [1, 0], the line through (0, 0) along [1, 1], and the
line through (0, t) along [1, a] all meet if and only if a2 − a+ 1 = 0. In this case the
intersection is (at, at), which is adjacent to (−t, 0) if and only if a = −1.

The line through (0, at) along [1, 0], the line through (0, t) along [1, 1], and the line
through (0, 0) along [1, a] all meet if and only if a = 2. In this case the intersection
is (t, 2t), which is adjacent to (−t, 0) along [1, 1].

We can now complete the proof.

If a �∈ {−1, 2, 1/2} then the above analysis implies no vertex is adjacent to (−t, 0)
and also to every vertex of M ′′ ∩ C0, so |M | = |M ′′| = 4.

If char(F ) �= 3 and a ∈ {−1, 2, 1/2}, then exactly one of a = −1, a = 2, and
a = 1/2 holds and a2 − a+ 1 �= 0, so |M | = |M ′′| = 5.
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Finally, if char(F ) = 3 and a ∈ {−1, 2, 1/2}, then a = −1 = 2 = 1/2 and
a2 − a + 1 = 0 so M ′′ contains nine squares, as does M , and M ′′ and M are three-
by-threes.

4 Conclusions

Proposition 12 Let Fn be a finite field. There is a graph isomorphism θ : G(a) →
G(b) that does not preserve lines if and only if one of the following conditions holds:

(i) n ∈ {3, 4, 5} and a, b ∈ F ′
n;

(ii) n = 9 and a = b = −1.

Thus if such an isomorphism exists then there also exists a graph isomorphism
from G(a) to G(b) that preserves lines.

Proof. Let F be a finite field. For F = F3, since |D(a)| = |D(b)| = 4, necessarily
a = b = −1, D(a) = DF and G(a) is the complete graph on nine vertices, so any
permutation of VF is an automorphism of G(a). Thus there are many automorphisms
of G(a) that do not preserve lines. For the remainder of the proof, we may assume
|F | ≥ 4.

We next show that for each of n = 4, 5, 9, there is a ∈ F ′
n such that G(a) has

a graph automorphism that does not preserve lines. For F5 and a = −1 such an
automorphism (taken from [9]) is shown in Figure 1 on the right.
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Figure 1: Automorphisms θ2 of G(F4, D(w2)) and θ′ of G(F5, D(−1)) are shown. In
each case, the automorphism fixes blank squares and exchanges squares labelled with
the same letter, and does not preserve lines.
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For each of p = 2, 3, let wp be an element of Fp2 that is not in Zp. Then {1, wp}
is a basis for Fp2 as a vector space over Zp, so each u ∈ Fp2 has a unique expression
as a linear combination u = t0 + t1wp with t0, t1 ∈ Zp.

For p = 2, let a = w2; for p = 3, let a = −1. Then for p = 2, 3, define
θp : G(Fp2 , D(a)) → G(Fp2 , D(a)) by

θp(t0 + t1wp, t2 + t3wp) = (t3 + t1wp, t2 + t0wp) for all t0, t1, t2, t3 ∈ Zp.

Clearly θp is a bijection and is its own inverse, so if it preserves adjacency then θp is
a graph automorphism. For s ∈ Fp2 , write s = s0 + s1wp with s0, s1 ∈ Fp. Then for
z ∈ Fp and t0, t1, t2, t3 ∈ Zp,

θp((t0 + t1wp, t2 + t3wp)+(s0 + s1wp)(1, z)) = θp(t0 + t1wp, t2 + t3wp)+(wp+ z)(s1, s0)
(24)

and

θp((t0 + t1wp, t2 + t3wp) + (s0 + s1wp)(0, 1) = θp(t0 + t1wp, t2 + t3wp) + (s1, s0). (25)

This implies that θ3 sends each line of G(−1) = G(F9, D(−1)) to a three-by-three,
so θ3 is an automorphism of G(−1).

Since w2
2 = w2+1, θ2((t0 +t1w2, t2+t3w2)+(s0+s1w2)(1, w2)) = θ2(t0 +t1w2, t2 +

t3w2) + (s1(w2 + 1) + s0)(1, w2). Combined with (24) and (25), this shows that θ2
sends lines with direction [1, w2] to lines with direction [1, w2], and the remaining
three-fourths of the lines to two-by-twos. Thus θ2 is an automorphism of G(w2) =
G(F4, D(w2)); it is shown on the left in Figure 1.

Now we will show for n ≥ 4 that if there is a graph isomorphism θ : G(Fn, D(a)) →
G(Fn, D(b)) that does not preserve lines then n ∈ {4, 5, 9}. Suppose there is such an
isomorphism.

Since |D(a)| = 4, Lemma 1 implies that a vertex ofG(a) that is not in a particular
line is adjacent to exactly three vertices of that line. This and |Fn| ≥ 4 imply every
line of G(a) is a maximal clique. The same is true for G(b). Since G(a) and G(b)
each have exactly 4n lines, Lemma 9 and the assumption that θ does not preserve
lines imply that both G(a) and G(b) have maximal cliques of size m that are not
lines. From Propositions 10 and 11 we see this can only occur if n ∈ {4, 5, 9}. For
F9, Proposition 11 implies a = b = −1, so the last statement of the proposition holds
for F9.

For n = 4, 5, there is only one orbit of F ′
n under the action of Γ(Fn), so Theorem

5 implies the last statement of the proposition for these values of n. Finally, we
have shown for F = F4 with a = w2 and for F = F5 with a = −1 the existence of
automorphisms of G(F,D(a)) that do not preserve lines, and since composing such
an automorphism with an isomorphism that preserves lines will yield an isomorphism
that does not preserve lines, we are done.

Remark. The toroidal queens graph Qt
9 = G(Z9, D(−1)) has three-by-threes, but as

shown in the proof of [9, Theorem 9], every automorphism of Qt
9 preserves lines.
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Definitions. Let G be a graph without loops or multiple edges. The complement of
G is the graph G having the same vertex set as G, with the property that distinct
vertices v, w are adjacent in G if and only if v, w are not adjacent in G. It is easily
seen that Aut(G) = Aut(G).

We will write N �H for the semidirect product of the groups N and H.

Theorem 13 For n ∈ {3, 4, 5} and a ∈ F ′
n, we have:

Aut(F3, D(a)) ∼= S9,
Aut(F4, D(a)) ∼= (S4)

5,
Aut(F5, D(a)) ∼= (S5 × S5) � Z2.

Also Aut(F9, D(−1)) ∼= Aut�(F9, D(−1)) � Z2.

For all other prime powers n and a ∈ F ′
n, Aut(Fn, D(a)) = Aut�(Fn, D(a)).

Proof. For G = G(F3, D(−1)), G is the empty graph on nine vertices, which
implies the claim.

The members of F ′
4 are the roots of x2−x+1. With either of these roots as a and

G = G(F4, D(a)), we have G ∼= G(F4, {[0, 1]}). This has automorphism group (S4)
5,

since the four lines, and the vertices of each line, may be independently permuted.

For any a ∈ F ′
5 we have a ≈ −1 so it suffices to examine G = G(F5, D(−1)). Its

automorphism group was found in [9, Theorem 7]. Here we offer a simpler proof:
G = G(F5, {[1, 2], [1, 3]}) which by the transitivity [6, Theorem 2.2] of the action of
GL2(F5) on DF5 is isomorphic to G(F5, {[1, 0], [0, 1]}), the rook’s graph on F5. This
has the claimed automorphism group since the five rows can be permuted in any
way, as can the five columns, and there is an automorphism that switches rows and
columns.

By Proposition 12 there is an automorphism θ of G = G(F9, D(−1)) that does
not preserve lines. By Proposition 11 there is a line � of G such that θ(�) is a three-
by-three. Consider the 27 lines �1, . . . , �27 of G that are not parallel to �. By Lemma
1, each �i meets � in exactly one square; if θ(�i) were a line, it would meet θ(�) in
either three squares or none. Thus each θ(�i) is a three-by-three. Replacing � with
�1, we see by a similar argument that each line in the family of � is sent by θ to a
three-by-three. As G has exactly 36 three-by-threes, θ must also send every three-
by-three to a line. Thus if θ, θ′ are any two automorphisms of G that do not preserve
lines, then θ ◦ θ′ does preserve lines, implying that the index of Aut�(F9, D(−1)) in
Aut(F9, D(−1)) is two.

The final statement of the theorem follows from Proposition 12.

The following summarizes our work on the isomorphism classes of the graphs
G(a).

Theorem 14 Let F be a finite field. Then:

For any D ⊆ DF with |D| = 4, there is a ∈ F ′ such that G(F,D) ∼= G(a).
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For a, b ∈ F ′, G(a) ∼= G(b) if and only if a ≈ b.

Thus the isomorphism classes of graphs G(F,D) with |D| = 4 are in one-to-one
correspondence with the orbits of F ′ under the action of Γ(F ).

Proof. Let D ⊆ DF with |D| = 4. Since GL2(F ) acts 3-transitively on DF [6,
Theorem 2.2], there are a matrix M ∈ GL2(F ) and a ∈ F ′ such that μM(D) = D(a).
Then μM is an isomorphism from G(F,D) to G(a), which establishes the first claim.

Suppose that θ1 : G(a) → G(b) is a graph isomorphism. By Proposition 12 we
may assume θ preserves lines, and then a ≈ b by Proposition 7.

Conversely, assume a ≈ b. Then there is α ∈ Γ(F ) with α(a) = b. With this α,
any associate σ of (α, a), and ψ = ι, Theorem 5 gives an isomorphism θ : G(a) →
G(b).

Definition. For each prime power pm > 2, let χ(pm) denote the number of iso-
morphism classes of graphs G(F,D) with F a finite field of order pm and |D| = 4.

Using the Burnside Counting Theorem, it is possible to find the following values
of χ(pm); the proof is straightforward but lengthy and complicated, so we omit it.

Theorem 15 For prime p > 2, χ(p) = �p/6�.
For any prime p:

For m = 2, 3, χ(pm) = �(pm + 2mp− 2)/6m�; χ(p4) = �(p4 + 4p2 + 8p)/24�;
For prime m ≥ 5, χ(2m) = (2m − 2)/6m and for p > 2, χ(pm) = (pm − p)/6m +

�p/6�.
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