A class of trees with equal broadcast and domination numbers

C. M. Mynhardt* J. Wodlinger ${ }^{\dagger}$
Department of Mathematics and Statistics
University of Victoria, P.O. Box 3060 STN CSC
Victoria, BC V8W $3 R_{4}$
Canada
mynhardt@math.uvic.ca jw@uvic.ca

Abstract

A broadcast on a graph G is a function $f: V \rightarrow\{0,1,2, \ldots\}$. The broadcast number of G is the minimum value of $\sum_{v \in V} f(v)$ among all broadcasts f for which each vertex of G is within distance $f(v)$ from some vertex v with $f(v) \geq 1$. The broadcast number is bounded above by the radius and the domination number of G.

We consider a class of trees that contains the caterpillars and characterize the trees in this class that have equal domination and broadcast numbers, thus generalizing the results in: [S. M. Seager, Dominating broadcasts of caterpillars, Ars Combin. 88 (2008), 307-319].

1 Introduction

We place broadcast towers on some of the vertices of a graph and broadcast from each tower to all vertices within its range. The cost of the broadcast is proportional to the strength of the broadcast, and our goal is to broadcast to the entire graph with minimum cost. We need a few definitions to formalize this description.

A broadcast on a graph G is a function $f: V(G) \rightarrow\{0,1,2, \ldots\}$. A broadcast vertex is a vertex v for which $f(v) \geq 1$. The set of all broadcast vertices is denoted $V_{f}^{+}(G)$, or V_{f}^{+}when the graph under consideration is clear. A vertex u hears a broadcast from $v \in V_{f}^{+}$, and v broadcasts to u, if the distance between u and v is at most $f(v)$ (possibly $u=v$).

A broadcast f is a dominating broadcast if every vertex hears at least one broadcast. The cost of a broadcast f is defined as $\operatorname{cost}(f)=\sum_{v \in V(G)} f(v)$, and the

[^0]broadcast number of G is $\gamma_{b}(G)=\min \{\operatorname{cost}(f): f$ is a dominating broadcast of $G\}$. If f is a dominating broadcast such that $f(v)=1$ for each $v \in V_{f}^{+}$, then V_{f}^{+} is a dominating set of G, and the minimum cost of such a broadcast is the usual domination number $\gamma(G)$.

The eccentricity of a vertex v of a graph G is $e(v)=\max \{d(u, v): u \in V(G)\}$. The radius and diameter of G are defined as $\operatorname{rad} G=\min \{e(v): v \in V(G)\}$ and $\operatorname{diam} G=\max \{e(v): v \in V(G)\}$, respectively.

Erwin $[7,8]$ was the first to consider the broadcast domination problem, and to observe the trivial bound $\gamma_{b}(G) \leq \min \{\operatorname{rad} G, \gamma(G)\}$ for any graph G. This bound immediately suggests the following questions:

For which graphs G is $\gamma_{b}(G)=\operatorname{rad} G ? \quad$ For which graphs is $\gamma_{b}(G)=\gamma(G)$?
Graphs for which $\gamma_{b}(G)=\operatorname{rad} G$ are called radial graphs. The problem of characterizing radial trees was first addressed by Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi in [5] and also studied in [6, 13]. It was solved by Herke and Mynhardt [12] (see Theorem 2.1), who also showed that a tree T can be split into radial subtrees by deleting edges on a diametrical path of T.

Here we consider the second question for trees. A graph (tree) G such that $\gamma_{b}(G)=\gamma(G)$ is called a 1-cap graph (tree) - there exists a minimum cost broadcast where each tower broadcasts with a capacity equal to one. Heggernes and Lokshtanov [10] showed that minimum broadcast domination is solvable in polynomial time for any graph, while computing the domination number is NP-hard in general. Both the domination and broadcast numbers of a tree can be determined in linear time (see [2] and [4], respectively), but knowing that $\gamma(T)=\gamma_{b}(T)$ for some tree T (or for finitely many given trees) does not adequately reveal the properties of 1-cap trees, which merits investigation in its own right.

Seager [13] initiated this investigation and characterized 1-cap caterpillars. Cockayne, Herke and Mynhardt [3] showed that a tree is 1-cap if and only if it can be split into radial subtrees, each of which is 1-cap. However, their result does not show how such a split can be accomplished. There could be several ways of splitting a tree into radial subtrees, and while one split may yield 1-cap subtrees, another split may not. An example of such a 1-cap tree is given in [3, Figure 2]. In addition, the characterization of even radial 1-cap trees appears to be a difficult problem. We investigate this problem for a large class \mathcal{H}^{*} of trees that contains the caterpillars.

We denote the class of all 1-cap trees T by \mathcal{T} and let $\mathcal{T}_{k}=\{T \in \mathcal{T}: \gamma(T)=$ $\left.\gamma_{b}(T)=k\right\}$. We apply results from [3] and characterize the trees in \mathcal{H}^{*} that are in \mathcal{T}, thus generalizing the results in [13].

After giving a few more definitions and earlier results in Section 2, we discuss the use of a special class of trees, called shadow trees, and isosceles right triangles in Section 3. Cockayne et al. [3] showed that one only needs to consider shadow trees when studying the class \mathcal{T}. A shadow tree consists of a longest path P with other paths, called boughs, attached to distinct vertices of P. In Section 4 we consider the subclass \mathcal{H} of shadow trees where the boughs have length congruent to $1(\bmod 3)$,

Figure 1: A tree with split-sets $\{u v\}$ and $\{x y\}$
which contains the shadow trees of caterpillars. We state some properties of trees in $\mathcal{H} \cap \mathcal{T}$ as lemmas. We also state and prove our main theorem, the characterization of the class $\mathcal{H} \cap \mathcal{T}$. Section 5 concerns the application of the characterization to caterpillars and to general trees in \mathcal{H}^{*}. Finally, the proofs of the lemmas in Section 4 are given in Section 6.

2 Definitions and background

For undefined concepts see $[1,9]$. A dominating broadcast f of a graph G for which $\operatorname{cost}(f)=\gamma_{b}(G)$ is called a γ_{b}-broadcast, and a dominating set D such that $|D|=$ $\gamma(G)$ is called a γ-set. The open neighbourhood $N(v)$ of $v \in V(G)$ is the set of vertices adjacent to v and the closed neighbourhood of v is $N[v]=N(v) \cup\{v\}$. For $v \in D$, the private neighbourhood of v relative to D, denoted by $\operatorname{pn}(v, D)$, is the set $N[v]-N[D-\{v\}]$. Define the subset $D_{\text {spn }}$ of a dominating set D by $D_{\mathrm{spn}}=\{v \in D: \operatorname{pn}(v, D)=\{v\}\}$.

A diametrical path (abbreviated d-path) of a tree T is a path of length diam T. A path is even or odd, corresponding to the parity of its length. A central vertex of a graph G is a vertex v such that $e(v)=\operatorname{rad} G$. A tree is either central or bicentral, depending on whether it has one or two (adjacent) central vertices; any d-path of a tree contains its centre, the set of all central vertices.

A set M of edges of a d-path P is a split- P set if, for each component T^{\prime} of $T-M$, the path $P \cap T^{\prime}$ is a d-path of T^{\prime} of even positive length. A split-set of T is a split- P set for some d-path P of T, and a maximum split-set of T is a split-set of maximum cardinality. For example, the sets $\{u v\}$ and $\{x y\}$ are maximum split- P sets of the tree in Fig. 1, where P is the path of black vertices. Radial trees are characterized as follows.

Theorem $2.1[11,12]$ A tree T is radial if and only if it has no nonempty split-set.
Split-sets are used to determine the broadcast number of a tree.
Theorem $2.2[11,12]$ If M is a split-set of maximum cardinality m of the tree T, and T_{1}, \ldots, T_{m+1} are the components of $T-M$, then

$$
\gamma_{b}(T)=\left\lceil\frac{\operatorname{diam}(T)-m}{2}\right\rceil=\operatorname{rad} T-\left\lceil\frac{m}{2}\right\rceil=\sum_{i=1}^{m+1} \gamma_{b}\left(T_{i}\right) .
$$

Theorem 2.1 was used in [3] to prove the following result.
Theorem 2.3 [3] A tree $T \in \mathcal{T}$ if and only if it has a maximum split-set M such that $T_{i} \in \mathcal{T}$ for each component T_{i} of $T-M$.

3 Shadow trees and isosceles right triangles

Cockayne et al. [3] showed that one only needs to consider certain types of trees, called shadow trees, when studying the class \mathcal{T}. They used isosceles right triangles to describe the positions of the boughs on P and showed that the actual lengths of the boughs are not important, only their congruence classes modulo 3 and the number of edges by which two consecutive triangles overlap.

3.1 Shadow trees

Let $P=v_{1}, \ldots, v_{n}$ be a d-path of the tree T. For each i, let A_{i} be the set of all vertices of T that are connected to v_{i} by a (possibly trivial) path that is internally disjoint from P. Let B_{i} be a longest path in $T\left[A_{i}\right]$ that has initial vertex v_{i}. The shadow tree of T with respect to P, denoted $S_{T, P}$, is the subtree of T induced by $\bigcup_{i=1}^{n} V\left(B_{i}\right)$.

A tree T with d-path P is depicted in Fig. 2, which illustrates the construction of the shadow tree $S_{T, P}$. The path B_{i} is called a bough of $S_{T, P}$ at v_{i}. If $T=S_{T, P}$, we also call T a shadow tree; any shadow tree is the shadow tree of infinitely many trees. Note that if P and P^{\prime} are different d-paths of T, then it is possible that $S_{T, P} \not \neq S_{T, P^{\prime}}$. If the d-path P is understood or irrelevant, we abbreviate $S_{T, P}$ to S_{T}. Herke and Mynhardt [12] demonstrated the relevance of shadow trees to the study of broadcast domination.

Theorem 3.1 [12] For any shadow tree S_{T} of $T, \gamma_{b}\left(S_{T}\right)=\gamma_{b}(T)$.
The following results show that shadow trees are of interest in the study of the class \mathcal{T}.

Corollary 3.2 [3] (i) If $T \in \mathcal{T}_{k}$, then $\gamma(T)=\gamma\left(S_{T}\right)$.
(ii) If $T \in \mathcal{T}_{k}$, then $S_{T} \in \mathcal{T}_{k}$.
(iii) If $S_{T} \in \mathcal{T}_{k}$ and $\gamma(T)=k$, then $T \in \mathcal{T}_{k}$.

The relatively simple structure of shadow trees suggests the following approach to the study of the sets \mathcal{T}_{k}.

Step 1 Find subsets of \mathcal{T}_{k} containing only shadow trees.
Step 2 If T is a shadow tree in \mathcal{T}_{k}, use Corollary $3.2(i i i)$ to find all trees in \mathcal{T}_{k} that have T as shadow tree.

Figure 2: Shadow-tree construction

Necessary and sufficient conditions for a tree T and a subtree T^{\prime} to have equal domination numbers were given in [3]. Let W_{1}, \ldots, W_{t} be the nontrivial components of $T-E\left(T^{\prime}\right)$. For $i=1, \ldots, t$, let u_{i} be the unique vertex of $V\left(T^{\prime}\right) \cap V\left(W_{i}\right)$. We call u_{i} the hinge of W_{i} and also say that W_{i} is hinged at u_{i}. Let U_{1} (respectively U_{2}) be the set of hinges of subtrees W_{i} that are stars hinged at their centres, or at one of their leaves if $W_{i}=K_{2}$ (respectively at one of their leaves, where $W_{i} \neq K_{2}$). Note that $U_{1} \cap U_{2}=\varnothing$.

Proposition 3.3 [3] Let T^{\prime} be a subtree of the tree T. Then $\gamma(T)=\gamma\left(T^{\prime}\right)$ if and only if
(i) each subtree W_{i} is either a star hinged at its centre or a star hinged one of its leaves, and
(ii) T^{\prime} has a γ-set D with $U_{1} \subseteq D$ and $U_{2} \subseteq D_{\text {spn }}$.

3.2 Isosceles right triangles

Let T be a shadow tree with d-path $P=v_{1}, \ldots, v_{n}$. Draw T in the positive $X-Y$ plane with P on the X-axis, v_{1} at the origin, each edge of unit length, and each edge not on P parallel to the Y-axis. We henceforth assume that all shadow trees are drawn as described above. We may thus describe a vertex v_{i} as being to the left of v_{j}, or v_{j} as being to the right of v_{i}, if $i<j$. Further, v_{i} is the leftmost vertex of a sequence σ of vertices if it is to the left of all other vertices in σ; the rightmost vertex in a sequence is defined similarly.

Let $H(t)$ be the tree obtained from $K_{1,3}$ by subdividing each edge $t-1$ times. If $H(t)$ is a subtree of T, then the leaves of $H(t)$ lie at the (geometric) vertices of an

Figure 3: The triangles of a shadow tree
isosceles right triangle Δ whose hypotenuse lies on P and has length $2 t$; we say that Δ has radius t. We use this observation below to better describe the positions of the boughs of T.

The vertices of the bough B_{i} of length t that begins at the vertex v_{i} are labelled $v_{i}, u_{i, 1}, \ldots, u_{i, t}$. If $t \geq 1$, we place an isosceles right triangle Δ of radius t with its hypotenuse on P, centred at v_{i}, with B_{i} on the median and $u_{i, t}$ at the apex of Δ (see Fig. 3). We say that the vertices $v_{i-t}, \ldots, v_{i+t}, u_{i, 1}, \ldots, u_{i, t}$ are vertices of Δ, and that Δ is a triangle of T. Thus we consider Δ to be a subtree of T isomorphic to $H(t)$.

An edge $v_{i} v_{i+1}$ of P is free if it does not lie on a triangle of T; in this case $\operatorname{deg} v_{i}, \operatorname{deg} v_{i+1} \leq 2$. Note that all split-edges of T are free, but not all free edges are split-edges. Also, $v_{i} v_{i+1}$ is free if and only if v_{1}, \ldots, v_{i} and v_{i+1}, \ldots, v_{n} are d-paths of the two subtrees of $T-v_{i} v_{i+1}$.

3.3 Properties of shadow trees

We now consider a shadow tree T with d-path $P=v_{1}, \ldots, v_{n}$. A triangle Δ of T is a nested triangle if it is contained in another triangle of T. Suppose Δ is a nested triangle of T of radius r and let T^{\prime} be the tree obtained by deleting the vertices on the bough of Δ. An edge is a split-edge of T if and only if it is a split-edge of T^{\prime}, hence $\gamma_{b}\left(T^{\prime}\right)=\gamma_{b}(T)$ by Theorem 2.2. However, $\gamma\left(T^{\prime}\right)=\gamma(T)$ if and only if T and T^{\prime} satisfy Proposition 3.3. Thus we assume henceforth that T does not contain nested triangles and deal with them later, when considering general trees (Section 5).

Let $v_{c_{1}}, \ldots, v_{c_{k}}$ be the branch vertices on P, let B_{i} be the branch of length (say) x_{i} of T at $v_{c_{i}}$ and let Δ_{i} be the triangle of T with centre $v_{c_{i}}$ and radius x_{i} associated with B_{i}. The sequence $\underline{x}=x_{1}, \ldots, x_{k}$ is called the branch length sequence of T. Let $v_{\ell_{i}}\left(v_{r_{i}}\right.$, respectively) be the vertex on P at distance x_{i} to the left (right) of $v_{c_{i}}$; that is, $v_{\ell_{i}}$ is the first and $v_{r_{i}}$ is the last vertex of Δ_{i} on P. Further, let $\eta_{1}\left(\eta_{k+1}\right.$, respectively) be the number of edges on P preceding Δ_{1} (succeeding Δ_{k}, respectively), and define $h_{1}=-\eta_{1}, h_{k+1}=-\eta_{k+1}$. Then $h_{1}=-\left(\ell_{1}-1\right)$ and $h_{k+1}=-\left(n-r_{k}\right)$. Also define $h_{i}=r_{i-1}-\ell_{i}$ for $i=2, \ldots, k$; in this instance h_{i} is called the overlap of Δ_{i-1} and Δ_{i}. See Fig. 4.

Note that $h_{1}, h_{k+1} \leq 0$, but for $i=2, \ldots, k, h_{i}$ may be positive, zero or negative. Thus Δ_{i-1} and Δ_{i} may have a negative overlap, which indicates that there are free

Figure 4: A tree with overlap sequence $\underline{h}=-1,0,3,-2,0$
edges on the $v_{r_{i-1}}-v_{\ell_{i}}$ path in T (edges of neither Δ_{i-1} nor Δ_{i}). Similarly, if $h_{1}<0$ (or $h_{k+1}<0$), then Δ_{1} is preceded by free edges (or Δ_{k+1} is succeeded by free edges). The sequence $\underline{h}=h_{1}, \ldots, h_{k+1}$ is called the overlap sequence of T. Note that T is uniquely determined by its branch length sequence \underline{x} and overlap sequence \underline{h}, and we also write $T=T(\underline{x}, \underline{h})$.

Cockayne et al. [3] showed that whether $T \in \mathcal{T}$ does not depend on the size of the radii of the triangles of T, but only on their least residues modulo 3 and on the number of common edges of two consecutive triangles.

Theorem $3.4[3]$ If $T(\underline{x}, \underline{h}) \in \mathcal{T}$, then any shadow tree $T^{\prime}\left(\underline{x^{\prime}}, \underline{h}\right)$, where $\underline{x^{\prime}}=x_{1}^{\prime}, \ldots$, x_{k}^{\prime} such that $x_{i}^{\prime} \equiv x_{i}(\bmod 3)$ for each $i=1, \ldots, k$, is also in \mathcal{T}.

By Theorem 3.4 we may assume that, for each $i \geq 1, \ell_{i+1} \geq c_{i}$, for otherwise we may replace Δ_{i} by a triangle Δ_{i}^{\prime} with radius $x_{i}+3 t$ for some suitable integer $t \geq 1$, thus replacing T by the tree T^{\prime} with branch length sequence $\underline{x^{\prime}}=x_{1}, \ldots, x_{i}+3 t, \ldots, x_{k}$ and the same overlap sequence as T, where now $\ell_{i+1}^{\prime} \geq \overline{c_{i}^{\prime}}$. The exact procedure is described fully in [3]. We may similarly assume that $r_{i} \leq c_{i+1}$.

4 Branches of length congruent to $1(\bmod 3)$

Assume henceforth that the length of each branch is congruent to $1(\bmod 3)$. Let \mathcal{H} be the class of shadow trees with this property and without nested triangles. Let $\sigma=$ $\Delta_{i}, \ldots, \Delta_{j}, j \geq i$, be a sequence of consecutive triangles of T, with branch vertices $v_{c_{i}}, \ldots, v_{c_{j}}$, such that $h_{i+1}, \ldots, h_{j} \geq 0$. We call σ a nonnegative overlap sequence. A nonnegative overlap sequence σ is a maximal nonnegative overlap sequence (MNOS) if it is not contained in a larger nonnegative overlap sequence. Let T_{σ} be the subtree of T induced by σ. We call T_{σ} the subtree of T associated with σ. Since T_{σ} has no free edges, it is radial. We now state a number of properties of trees in $\mathcal{H} \cap \mathcal{T}$, deferring their proofs to Section 6.

Lemma 4.1 If σ is an MNOS of $T \in \mathcal{T}$, then $T_{\sigma} \in \mathcal{T}$.

Lemma 4.2 If σ is an MNOS, then $T_{\sigma} \in \mathcal{T}$ if and only if σ contains only overlaps of cardinality $0,1,2,3$ or 5 , and at most one overlap has odd cardinality.

If σ is an MNOS containing only overlaps of size 0 or 2 , then σ has even diameter and is called an even MNOS, otherwise, by Lemma 4.2, σ has odd diameter and is called an odd MNOS.

Now let $\sigma_{i}, \ldots, \sigma_{j}, j \geq i$, be a sequence of consecutive MNOS's of T, with h_{s}^{\prime}, $s=i+1, \ldots, j$, the length of the negative overlap joining σ_{s-1} and σ_{s}, and assume that $h_{s}^{\prime}=-1$ for each s. Such a sequence $\sigma_{i}, \ldots, \sigma_{j}$ is called a tight sequence. Let $S_{i, j}$ be the subtree of T associated with $\sigma_{i}, \ldots, \sigma_{j}$. For each $s=i, \ldots, j$ we simplify the notation to denote the subtree $T_{\sigma_{s}}$ of T associated with σ_{s} by T_{s}.

Lemma 4.3 If $\sigma_{i}, \ldots, \sigma_{j}$ is a tight sequence of T and $T_{s} \in \mathcal{T}$ for each $s=i, \ldots, j$, then $S_{i, j} \in \mathcal{T}$.

The next lemma is clear from the proof of Lemma 4.3 (see Section 6).
Lemma 4.4 If S is the subtree of T associated with the tight sequence $\sigma_{1}, \ldots, \sigma_{t}$, then S is radial if and only if at most one of the sequences $\sigma_{1}, \ldots, \sigma_{t}$ is even.

A tight sequence is a maximal tight sequence (MTS) if it is not contained in a larger tight sequence. Let S_{1}, \ldots, S_{r} be the MTS's of T. For simplicity we also consider the S_{i} to be subtrees of T, i.e., S_{i} is the subtree of T associated with the MTS S_{i}. (Hence $S_{i}=S_{i^{\prime}, j}$ for some i^{\prime}, j.) We also call S_{i} even or odd depending on the parity of its diameter.

Let $Q_{1}\left(Q_{r+1}\right.$, respectively) be the subpath of P induced by the free edges preceding S_{1} (following S_{r}, respectively), and for $i=1, \ldots, r$, let Q_{i} be the subpath of P induced by the free edges that join S_{i-1} to S_{i}. Say Q_{i} contains q_{i} vertices that do not lie on S_{i-1} or S_{i}. By the maximality of the S_{i}, each $Q_{i}, i=2, \ldots, r$, has at least two edges and thus $q_{i} \geq 1$, while Q_{1} and Q_{r+1} may have any nonnegative number of edges, and so $q_{1}, q_{r+1} \geq 0$.

Lemma 4.5 Let S_{1}, \ldots, S_{r} be the MTS's of the shadow tree T. Then $T \in \mathcal{T}$ if and only if $S_{1}, \ldots, S_{r} \in \mathcal{T}$ and the following conditions hold.
(i) If S_{k} is odd and radial, then $q_{k} \not \equiv 1(\bmod 3)$ and $q_{k+1} \not \equiv 1(\bmod 3)$.
(ii) If S_{k} is even and radial, then $q_{k} \not \equiv 1(\bmod 3)$ or $q_{k+1} \not \equiv 1(\bmod 3)$.
(iii) Suppose $j \geq 1$ and S_{k}, \ldots, S_{k+j} are radial. If S_{k+s} is even for each integer s such that $0<s<j$, and
(a) S_{k} and S_{k+j} are odd, or
(b) (without loss of generality) S_{k} is odd, S_{k+j} is even and $q_{k+j+1} \equiv 1(\bmod 3)$, or
(c) S_{k} and S_{k+j} are even and $q_{k} \equiv q_{k+j+1} \equiv 1(\bmod 3)$,
then $q_{k+s} \equiv 0(\bmod 3)$ for at least one $s \in\{1, \ldots, j\}$.
We are now ready to state and prove the characterization of trees in $\mathcal{H} \cap \mathcal{T}$. Note that each condition in the characterization concerns only the size of the overlaps of the triangles.

Theorem 4.6 Let T be a shadow tree in \mathcal{H} with MTS's S_{1}, \ldots, S_{r} and define q_{1}, \ldots, q_{r+1} as above. For each $k \in\{1, \ldots, r\}$, let $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ be the MNOS's of S_{k}. Then $T \in \mathcal{T}$ if and only if the following conditions hold.

1. Each $\sigma_{k, i}$ contains only overlaps of size $0,1,2,3,5$, and at most one odd overlap.
2. If $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ are all odd, then $q_{k} \not \equiv 1(\bmod 3)$ and $q_{k+1} \not \equiv 1(\bmod 3)$.
3. If exactly one of $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ is even, then $q_{k} \not \equiv 1(\bmod 3)$ or $q_{k+1} \not \equiv$ $1(\bmod 3)$.
4. Suppose $k^{\prime} \geq k+1$ and consider the MTS's $S_{k}, S_{k+1}, \ldots, S_{k^{\prime}}$. If exactly one of $\sigma_{i, 1}, \ldots, \sigma_{i, t_{i}}$ is even for each i such that $k<i<k^{\prime}$, and
(a) $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}, \sigma_{k^{\prime}, 1}, \ldots, \sigma_{k^{\prime}, t_{k^{\prime}}}$ are all odd, or
(b) (without loss of generality) $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ are all odd, exactly one of $\sigma_{k^{\prime}, 1}$, $\ldots, \sigma_{k^{\prime}, t_{k^{\prime}}}$ is even and $q_{k^{\prime}+1} \equiv 1(\bmod 3)$, or
(c) exactly one of $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ and exactly one of $\sigma_{k^{\prime}, 1}, \ldots, \sigma_{k^{\prime}, t_{k^{\prime}}}$ are even, and $q_{k} \equiv q_{k^{\prime}+1} \equiv 1(\bmod 3)$,
then $q_{i} \equiv 0(\bmod 3)$ for at least one i such that $k<i \leq k^{\prime}$.

Proof. Suppose $T \in \mathcal{T}$. By Lemma 4.1, each $T_{k, i} \in \mathcal{T}$ and (1) holds by Lemma 4.2. The other conditions hold by Lemmas 4.4 and 4.5.

Conversely, suppose (1) - (4) hold. By Lemma 4.2, each $T_{k, i} \in \mathcal{T}$, and so each $S_{k} \in \mathcal{T}$ by Lemma 4.3. Now Lemmas 4.4 and 4.5 imply that $T \in \mathcal{T}$.

5 Conclusions

We first apply Theorem 4.6 to caterpillars. Let C be any caterpillar, i.e. C consists of a d-path $P=v_{1}, \ldots, v_{n}$ together with any positive number of leaves attached to the branch vertices $v_{c_{1}}, \ldots, v_{c_{k}}$ of P, where $1<c_{1}<\cdots<c_{k}<n$. Since the number of leaves attached to each $v_{c_{i}}$ is unimportant, we may assume without loss of generality that C is a shadow tree, and we thus continue to use the notation of Section 4. The only possible positive overlap is 1 and C contains no nested triangles. The MNOS's of C are maximal sequences of triangles just touching or overlapping in a single edge. If two triangles overlap in an edge, then the corresponding branch vertices are adjacent; we call these two vertices a branching pair. A pairfree MNOS is one without a branching pair. The following result is an immediate corollary of Theorem 4.6.

Figure 5: Caterpillars C and C^{\prime} with $\gamma_{b}(C)=9<\gamma(C)=11$ and $\gamma\left(C^{\prime}\right)=\gamma_{b}\left(C^{\prime}\right)=10$

Corollary 5.1 Let C be a caterpillar with MTS's S_{1}, \ldots, S_{r} and define q_{1}, \ldots, q_{r+1} as before. For each $k \in\{1, \ldots, r\}$, let $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ be the MNOS's of S_{k}. Then $\gamma(C)=\gamma_{b}(C)$ if and only if the following conditions hold.

1. Each $\sigma_{k, i}$ contains at most one branching pair.
2. If each $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ has a branching pair, then $q_{k} \not \equiv 1(\bmod 3)$ and $q_{k+1} \not \equiv$ $1(\bmod 3)$.
3. If exactly one of $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ is pairfree, then $q_{k} \not \equiv 1(\bmod 3)$ or $q_{k+1} \not \equiv$ $1(\bmod 3)$.
4. Suppose $k^{\prime} \geq k+1$ and consider the MTS's $S_{k}, S_{k+1}, \ldots, S_{k^{\prime}}$. If exactly one of $\sigma_{i, 1}, \ldots, \sigma_{i, t_{i}}$ is pairfree for each i such that $k<i<k^{\prime}$, and
(a) each $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}, \sigma_{k^{\prime}, 1}, \ldots, \sigma_{k^{\prime}, t_{k^{\prime}}}$ contains a branching pair, or
(b) (without loss of generality) each $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ contains a branching pair, exactly one of $\sigma_{k^{\prime}, 1}, \ldots, \sigma_{k^{\prime}, t_{k^{\prime}}}$ is pairfree and $q_{k^{\prime}+1} \equiv 1(\bmod 3)$, or
(c) exactly one of $\sigma_{k, 1}, \ldots, \sigma_{k, t_{k}}$ and exactly one of $\sigma_{k^{\prime}, 1}, \ldots, \sigma_{k^{\prime}, t_{k^{\prime}}}$ is pairfree, and $q_{k} \equiv q_{k^{\prime}+1} \equiv 1(\bmod 3)$,
then $q_{i} \equiv 0(\bmod 3)$ for at least one i such that $k<i \leq k^{\prime}$.
Fig. 5 shows two caterpillars C and C^{\prime} with $C \notin \mathcal{T}$ and $C^{\prime} \in \mathcal{T}$. The MTS S_{1} of C has exactly one pairfree MNOS, yet $q_{1} \equiv q_{2} \equiv 1(\bmod 3)$, thus violating Corollary 5.1(3). For $S_{1}^{\prime}, q_{1} \equiv 0(\bmod 3)$, hence Corollary $5.1(3)$ is satisfied. None of the conditions (2) - (4) of Corollary 5.1 applies to S_{2} or S_{2}^{\prime}.

Now let T be an arbitrary tree with shadow tree S_{T}^{\prime}, and let S_{T} be the shadow tree obtained by deleting all nested triangles of S_{T}^{\prime}. Then $\gamma_{b}(T)=\gamma_{b}\left(S_{T}^{\prime}\right)=\gamma_{b}\left(S_{T}\right)$. Let W_{1}, \ldots, W_{t} be the nontrivial components of $T-E\left(S_{T}\right)$. If W_{i} is not a star for some i, then by Theorem 3.1 and Proposition 3.3 $(i), \gamma(T)>\gamma\left(S_{T}\right) \geq \gamma_{b}\left(S_{T}\right)=\gamma_{b}(T)$ and thus $T \notin \mathcal{T}$. Assume that each W_{i} is a star, where (for some r) $W_{i}, i=1, \ldots, r$, is hinged at its centre u_{i} or at a leaf if $W_{i}=K_{2}$, and for $i=r+1, \ldots, t, W_{i} \neq K_{2}$ is hinged at a leaf l_{i}. If S_{T} has no γ-set D such that $\left\{u_{i}: 1 \leq i \leq r\right\} \subseteq D$ and $\left\{l_{i}: r+1 \leq i \leq t\right\} \subseteq D_{\text {spn }}$, then by Theorem 3.1 and Proposition 3.3(ii), $T \notin \mathcal{T}$. On the other hand, if S_{T} does have a γ-set that satisfies Proposition 3.3(ii), then $T \in \mathcal{T}$ if and only if $S_{T} \in \mathcal{T}$, as determined by Theorem 4.6.

6 Proofs of Lemmas

Assume the bough $B_{i}=v_{c_{i}}, u_{i, 1}, \ldots, u_{i, x_{i}}$ of T has length $x_{i}=3 m_{i}+1, i=1, \ldots, k$. If D is a γ-set of T, we may assume without loss of generality that D contains the vertex $u_{i, 3 m_{i}}$ of B_{i}, and then precisely every third vertex along the bough; thus $v_{c_{i}} \in D$. We may also assume that if $\sigma=\Delta_{i}, \ldots, \Delta_{j}$ is an MNOS of T, then D contains every third vertex to the left of $v_{c_{i}}$, so that D contains $v_{\ell_{i}+1}$, and every third vertex to the right of $v_{c_{j}}$, so that D contains $v_{r_{j}-1}$. A γ-set with this property is called a natural γ-set of T.

Before proceeding with the proofs of the lemmas stated in Section 4, we determine an expression for $\gamma(T), T \in \mathcal{H}$.

Lemma 6.1 If D is a natural γ-set of $T \in \mathcal{H}$, then

$$
|D|=3 \sum_{i=1}^{k} m_{i}+k-\sum_{i=2}^{k}\left\lfloor\frac{h_{i}+1}{3}\right\rfloor-\left\lfloor\frac{h_{1}}{3}\right\rfloor-\left\lfloor\frac{h_{k+1}}{3}\right\rfloor .
$$

Proof. Define $P_{1}=v_{1}, \ldots, v_{c_{1}}, P_{k+1}=v_{c_{k}}, \ldots, v_{n}$ and $P_{i}=v_{c_{i-1}}, \ldots, v_{c_{i}}$ for $i=$ $2, \ldots, k$. By the choice of $D, v_{c_{i}} \in D$ and $\left|D \cap V\left(B_{i}\right)\right|=m_{i}+1$. Note that $d\left(v_{c_{i-1}}, v_{c_{i}}\right)=c_{i}-c_{i-1}=x_{i-1}+x_{i}-h_{i}$, and the number of vertices on the $v_{c_{i-1}}-v_{c_{i}}$ path P_{i} is $x_{i-1}+x_{i}-h_{i}+1$. Of these vertices, $v_{c_{i-1}}$ and its successor $v_{c_{i-1}+1}$, and $v_{c_{i}}$ and its predecessor $v_{c_{i}-1}$, are dominated by $\left\{v_{c_{i-1}}, v_{c_{i}}\right\} \subseteq D$. Let $D^{*}=D-\bigcup_{i=1}^{k} V\left(B_{i}\right)$. Thus $x_{i-1}+x_{i}-h_{i}-3$ vertices on P_{i} are dominated by $D^{*}, i=2, \ldots, k$.

- If $d\left(v_{c_{i-1}}, v_{c_{i}}\right) \geq 3$, then $x_{i-1}+x_{i}-h_{i}-3 \geq 0$. Hence at least

$$
\left\lceil\left(x_{i-1}+x_{i}-h_{i}-3\right) / 3\right\rceil
$$

vertices in D^{*} are needed to dominate these remaining vertices on P_{i}. By the minimality of D,

$$
\begin{equation*}
\left|D^{*} \cap V\left(P_{i}\right)\right|=\left\lceil\left(x_{i-1}+x_{i}-h_{i}-3\right) / 3\right\rceil . \tag{1}
\end{equation*}
$$

- If $1 \leq d\left(v_{c_{i-1}}, v_{c_{i}}\right) \leq 2$, then $x_{i-1}+x_{i}-h_{i}-3=-2$ or $x_{i-1}+x_{i}-h_{i}-3=-1$ and $\left\lceil\left(x_{i-1}+x_{i}-h_{i}-3\right) / 3\right\rceil=\lceil-1 / 3\rceil=0$. Obviously in this case no vertices on P_{i} need to be dominated by D^{*}, and by the minimality of $D,\left|D^{*} \cap V\left(P_{i}\right)\right|=0$.
Thus (1) holds for each $i=2, \ldots, k$. Since $d\left(v_{1}, v_{c_{1}}\right)=x_{1}-h_{1}$, a similar argument shows that $\left|D^{*} \cap V\left(P_{1}\right)\right|=\left\lceil\left(x_{1}-h_{1}-1\right) / 3\right\rceil$ and, correspondingly, $\left|D^{*} \cap V\left(P_{k+1}\right)\right|=$ $\left\lceil\left(x_{k}-h_{k+1}-1\right) / 3\right\rceil$. Hence

$$
\begin{aligned}
\left|D^{*}\right| & =\sum_{i=2}^{k}\left\lceil\frac{x_{i-1}+x_{i}-h_{i}-3}{3}\right\rceil+\left\lceil\frac{x_{1}-h_{1}-1}{3}\right\rceil+\left\lceil\frac{x_{k}-h_{k+1}-1}{3}\right\rceil \\
& =\sum_{i=2}^{k}\left\lceil\frac{3\left(m_{i-1}+m_{i}\right)-\left(h_{i}+1\right)}{3}\right\rceil+\left\lceil\frac{3 m_{1}-h_{1}}{3}\right\rceil+\left\lceil\frac{3 m_{k}-h_{k+1}}{3}\right\rceil \\
& =2 \sum_{i=1}^{k} m_{i}-\sum_{i=2}^{k}\left\lfloor\frac{h_{i}+1}{3}\right\rfloor-\left\lfloor\frac{h_{1}}{3}\right\rfloor-\left\lfloor\frac{h_{k+1}}{3}\right\rfloor,
\end{aligned}
$$

so that

$$
\begin{aligned}
|D| & =\left|D^{*}\right|+\sum_{i=1}^{k}\left|D \cap V\left(B_{i}\right)\right| \\
& =2 \sum_{i=1}^{k} m_{i}-\sum_{i=2}^{k}\left\lfloor\frac{h_{i}+1}{3}\right\rfloor-\left\lfloor\frac{h_{1}}{3}\right\rfloor-\left\lfloor\frac{h_{k+1}}{3}\right\rfloor+\sum_{i=1}^{k} m_{i}+k \\
& =3 \sum_{i=1}^{k} m_{i}+k-\sum_{i=2}^{k}\left\lfloor\frac{h_{i}+1}{3}\right\rfloor-\left\lfloor\frac{h_{1}}{3}\right\rfloor-\left\lfloor\frac{h_{k+1}}{3}\right\rfloor
\end{aligned}
$$

as required.
Proof of Lemma 4.1. Assume that $T \in \mathcal{T}$ and that D is a natural γ-set of T. Let $\sigma=\Delta_{i}, \ldots, \Delta_{j}$ and $D_{\sigma}=D \cap V\left(T_{\sigma}\right)-\left\{v_{\ell_{i}}, v_{r_{j}}\right\}$. By the choice of D, D_{σ} dominates T_{σ} but no vertices of $T-T_{\sigma}$. Since D is a γ-set of T, D_{σ} is a γ-set of T_{σ}. By Lemma 6.1,

$$
\begin{equation*}
\gamma\left(T_{\sigma}\right)=\left|D_{\sigma}\right|=3 \sum_{s=i}^{j} m_{s}+j-i+1-\sum_{s=i+1}^{j}\left\lfloor\frac{h_{s}+1}{3}\right\rfloor . \tag{2}
\end{equation*}
$$

Since T_{σ} contains no nested triangles,

$$
\begin{equation*}
\operatorname{rad} T_{\sigma}=\sum_{s=i}^{j} x_{s}-\left\lfloor\sum_{s=i}^{j} \frac{h_{s}}{2}\right\rfloor=3 \sum_{s=i}^{j} m_{s}+j-i+1-\left\lfloor\frac{1}{2} \sum_{s=i+1}^{j} h_{s}\right\rfloor . \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha=\left\lfloor\frac{1}{2} \sum_{s=i+1}^{j} h_{s}\right\rfloor \quad \text { and } \quad \beta=\sum_{s=i+1}^{j}\left\lfloor\frac{h_{s}+1}{3}\right\rfloor \tag{4}
\end{equation*}
$$

and note that $\alpha \geq \beta$ because $h_{i+1}, \ldots, h_{j} \geq 0$. Suppose $\alpha>\beta$. Then $\operatorname{rad} T_{\sigma}<\left|D_{\sigma}\right|$. Let v be a central vertex of T_{σ} and note that v lies on the path $v_{\ell_{i}}, \ldots, v_{r_{j}}$. Define the broadcast f on T by

$$
f(u)= \begin{cases}1 & \text { if } u \in D-D_{\sigma} \\ \operatorname{rad} T_{\sigma} & \text { if } u=v \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, v broadcasts to all of T_{σ}, while $D-D_{\sigma}$ dominates $T-T_{\sigma}$, hence f is a dominating broadcast of T. But $\operatorname{cost}(f)=|D|-\left|D_{\sigma}\right|+\operatorname{rad} T_{\sigma}<|D|=\gamma(T)$, contradicting $T \in \mathcal{T}$. Therefore $\alpha=\beta$, i.e. $\operatorname{rad} T_{\sigma}=\gamma\left(T_{\sigma}\right)$, and since T_{σ} is radial it follows that $\gamma_{b}\left(T_{\sigma}\right)=\gamma\left(T_{\sigma}\right)$, i.e., $T_{\sigma} \in \mathcal{T}$.

Proof of Lemma 4.2. Assume that $T_{\sigma} \in \mathcal{T}$ and suppose $h_{i^{\prime}}=4$ for some $i^{\prime} \in$ $\{i+1, \ldots, k\}$. With α and β as defined in (4), this implies that

$$
\alpha=\left\lfloor\frac{1}{2} \sum_{s=i+1, s \neq i^{\prime}}^{j} h_{s}+\frac{4}{2}\right\rfloor=\left\lfloor\frac{1}{2} \sum_{s=i+1, s \neq i^{\prime}}^{j} h_{s}\right\rfloor+2
$$

and

$$
\beta=\sum_{s=i+1, s \neq i^{\prime}}^{j}\left\lfloor\frac{h_{s}+1}{3}\right\rfloor+\left\lfloor\frac{5}{3}\right\rfloor=\sum_{s=i+1, s \neq i^{\prime}}^{j}\left\lfloor\frac{h_{s}+1}{3}\right\rfloor+1<\alpha .
$$

By (2) and (3), $\gamma\left(T_{\sigma}\right)>\operatorname{rad} T_{\sigma}=\gamma_{b}\left(T_{\sigma}\right)$, contradicting $T_{\sigma} \in \mathcal{T}$. Therefore $h_{i^{\prime}} \neq 4$ for all $i^{\prime} \in\{i+1, \ldots, k\}$. Similarly, $h_{i^{\prime}} \notin\{6,7,8, \ldots\}$ for all $i^{\prime} \in\{i+1, \ldots, k\}$.

Suppose next that σ contains two odd overlaps; say $h_{z}, h_{z^{\prime}} \in\{1,3,5\}$ for some z, z^{\prime}, while $h_{t} \in\{0,2\}$ otherwise. Assume there are r values of t such that $h_{t}=2$, and that $h_{z}=2 w+1, h_{z^{\prime}}=2 w^{\prime}+1$. Then $\alpha=r+w+w^{\prime}+1$. But $w, w^{\prime} \in\{0,1,2\}$, and for these values, $\left\lfloor\frac{2 w+2}{3}\right\rfloor=w$, so that $\beta=w+r+w^{\prime}<\alpha$. Now (2) and (3) imply that $\gamma_{b}\left(T_{\sigma}\right)<\gamma\left(T_{\sigma}\right)$, which is a contradiction as above.

Conversely, if σ contains only the stated overlaps, then it is easy to verify that $\alpha=\beta$ and the result follows from (2) and (3).

Proof of Lemma 4.3. Abbreviate the notation $D_{\sigma_{s}}$ (defined as in the proof of Lemma 4.1) to D_{s}; as before D_{s} is a γ-set of T_{s}. Since $h_{s}^{\prime}=-1$ for each $s=i+1, \ldots, j$, Lemma 6.1 applied to $S_{i, j}$ shows that

$$
\begin{equation*}
\gamma\left(S_{i, j}\right)=\sum_{s=i}^{j}\left|D_{s}\right|-\sum_{s=i+1}^{j}\left\lfloor\frac{h_{s}^{\prime}+1}{3}\right\rfloor=\sum_{s=i}^{j} \gamma\left(T_{s}\right) . \tag{5}
\end{equation*}
$$

Further, since each $T_{s} \in \mathcal{T}$ and each T_{s} is radial, $\operatorname{rad} T_{s}=\gamma_{b}\left(T_{s}\right)=\gamma\left(T_{s}\right)$ for each $s=i, \ldots, j$. Substitution in (5) gives

$$
\begin{equation*}
\gamma\left(S_{i, j}\right)=\sum_{s=i}^{j} \operatorname{rad} T_{s} \tag{6}
\end{equation*}
$$

Let $\Sigma=\sigma_{i}, \ldots, \sigma_{j}$ and say δ of the sequences in Σ are even and $j+1-i-\delta$ are odd. Then

$$
\begin{aligned}
\operatorname{diam} S_{i, j} & =\sum_{\sigma_{s} \text { even }} \operatorname{diam} T_{s}+\sum_{\sigma_{s} \text { odd }} \operatorname{diam} T_{s}-\sum_{s=i+1}^{j} h_{s}^{\prime} \\
& =2 \sum_{\sigma_{s} \text { even }} \operatorname{rad} T_{s}+2 \sum_{\sigma_{s} \text { odd }} \operatorname{rad} T_{s}-(j+1-i-\delta)+j-i \\
& =2 \sum_{s=i}^{j} \operatorname{rad} T_{s}+\delta-1
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{rad} S_{i, j}=\sum_{s=i}^{j} \operatorname{rad} T_{s}+\left\lceil\frac{\delta-1}{2}\right\rceil . \tag{7}
\end{equation*}
$$

For each $s=i, \ldots, j-1$, let e_{s} be the edge joining σ_{s} to σ_{s+1}. Let m be the number of edges in a maximum split-set of $S_{i, j}$. Note that any split-set is contained in $\left\{e_{i}, \ldots, e_{j-1}\right\}$. We prove that either $m=0$ and $\delta \in\{0,1\}$, or $m=\delta-1$.

If $\sigma_{k}, \ldots, \sigma_{k^{\prime}}$ are consecutive odd sequences for some $k, k^{\prime} \in\{i, \ldots, j\}$, then $S_{k, k^{\prime}}$ has odd diameter, because each h_{s}^{\prime} is odd. Now, if $M \neq \varnothing$ is a split-set of $S_{i, j}$, then each component of $S_{i, j}-M$ has even diameter and thus contains an even σ_{k}. Let $\sigma_{\ell_{1}}, \ldots, \sigma_{\ell_{\delta}}$ be the even sequences in Σ. If $\delta \geq 2$, then $\left\{e_{\ell_{1}}, \ldots, e_{\ell_{\delta-1}}\right\}$ is a maximum split-set and thus $m=\delta-1$. If $\delta \in\{0,1\}$, then $S_{i, j}$ has no split-edges and thus $m=0$. By (7),

$$
\operatorname{rad} S_{i, j}=\sum_{s=i}^{j} \operatorname{rad} T_{s}+\left\lceil\frac{m}{2}\right\rceil .
$$

By Theorem 2.2, $\gamma_{b}\left(S_{i, j}\right)=\operatorname{rad} S_{i, j}-\left\lceil\frac{m}{2}\right\rceil$, from which it follows that $\gamma_{b}\left(S_{i, j}\right)=$ $\sum_{s=i}^{j} \operatorname{rad} T_{s}$. Thus by (6), $\gamma_{b}\left(S_{i, j}\right)=\gamma\left(S_{i, j}\right)$, as required.

Proof of Lemma 4.5. Suppose $T \in \mathcal{T}$ and let D be a natural γ-set of T. Let α_{i} and ω_{i} be the first and last vertices, respectively, of S_{i} on P, and let α_{i}^{-}and α_{i}^{+} (ω_{i}^{-}and ω_{i}^{+}) be the vertices to the left and right of $\alpha_{i}\left(\omega_{i}\right.$, respectively). Then D contains α_{i}^{+}and ω_{i}^{-}. Let $X_{i}=\left(D \cap S_{i}\right)-\left\{\alpha_{i}, \omega_{i}\right\}$. Then X_{i} dominates S_{i} but no vertices of $T-S_{i}$ and is a γ-set of S_{i}. Therefore $\left|X_{i}\right|=\gamma\left(S_{i}\right)$. By Lemmas 4.1 and 4.3, $S_{1}, \ldots, S_{r} \in \mathcal{T}$, hence $\left|X_{i}\right|=\gamma\left(S_{i}\right)=\gamma_{b}\left(S_{i}\right)$ and thus (similar to Lemma 6.1)

$$
\begin{equation*}
|D|=\sum_{i=1}^{r}\left|X_{i}\right|+\sum_{i=1}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil=\sum_{i=1}^{r} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil . \tag{8}
\end{equation*}
$$

We prove that $(i),(i i)$ and (iii) hold. In each case we broadcast to T with a cost of one from each vertex in D, except where otherwise stated.
(i) Let S_{k} be odd and radial and suppose $q_{k} \equiv 1(\bmod 3)$; say $q_{k}=3 a+1$. By (8), D contains $\left\lceil\frac{3 a+1}{3}\right\rceil=a+1$ vertices of Q_{k}. Since S_{k} is odd, it is bicentral. Let c be the leftmost central vertex of S_{k} and broadcast from c with a cost of $\operatorname{rad} S_{k}=\left|X_{k}\right|$. Then the internal vertex α_{k}^{-}of Q_{k} hears this broadcast, and the remaining internal vertices of Q_{k} can be reached by broadcasting from $\left\lceil\frac{3 a}{3}\right\rceil=a$ vertices on Q_{k}, with a cost of 1 in each case. Hence

$$
\gamma_{b}(T) \leq \sum_{i=1}^{r} \gamma_{b}\left(S_{i}\right)+\sum_{\substack{i=1 \\ i \neq k}}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil+\left\lceil\frac{q_{k}}{3}\right\rceil-1<|D| \text { by }(8)
$$

in contradiction to $T \in \mathcal{T}$. Hence $q_{k} \not \equiv 1(\bmod 3)$. By symmetry, $q_{k+1} \not \equiv 1(\bmod 3)$.
(ii) Let S_{k} be even and radial and suppose $q_{k}=3 a+1$ and $q_{k+1}=3 b+1$. As above D contains $a+1$ vertices of Q_{k} and $b+1$ vertices of Q_{k+1}. Let c be the central vertex of S_{k} and broadcast from c with a cost of $\operatorname{rad} S_{k}+1=\left|X_{k}\right|+1$. Then the internal vertices α_{k}^{-}of Q_{k} and ω_{k}^{+}of Q_{k+1} hear this broadcast. The remaining internal vertices of Q_{k} and Q_{k+1} can be reached by broadcasting from a vertices on Q_{k} and b vertices on Q_{k+1}, in each case with a cost of 1. Again,

$$
\gamma_{b}(T) \leq \sum_{\substack{i=1 \\ i \neq k}}^{r} \gamma_{b}\left(S_{i}\right)+\left(\gamma_{b}\left(S_{k}\right)+1\right)+\sum_{\substack{i=1 \\ i \neq k, k+1}}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil+\left(\left\lceil\frac{q_{k}}{3}\right\rceil-1\right)+\left(\left\lceil\frac{q_{k+1}}{3}\right\rceil-1\right)<|D|
$$

by (8), a contradiction.
(iii) Assume $j \geq 1, S_{k}, \ldots, S_{k+j}$ are radial and S_{k+s} is even for each $s \in\{1, \ldots, j-$ $1\}$.
(a) Suppose S_{k} and S_{k+j} are odd, but $q_{k+s} \not \equiv 0(\bmod 3)$ for each $s \in\{1, \ldots, j\}$. Let c_{k} be the rightmost central vertex of S_{k}, c_{k+j} be the leftmost central vertex of S_{k+j}, and for each s with $0<s<j$, let c_{k+s} be the central vertex of S_{k+s}. Broadcast from c_{k} and c_{k+j} with a cost of $\operatorname{rad} S_{k}$ and rad S_{k+j}, respectively, and from c_{i+s} with a cost of $\operatorname{rad} S_{k+s}+1,0<s<j$. If $q_{k+s}=1$, then the unique internal vertex of Q_{k+s} hears a broadcast from c_{k+s-1} and from c_{k+s}, otherwise, at least two vertices on Q_{k+s} hear broadcasts from c_{k+s-1} or c_{k+s}. Since $q_{k+s} \equiv 1$ or $2(\bmod 3)$, the remainder of the vertices of Q_{k+s} can be reached by a broadcast from at most $\left\lceil\frac{q_{k+s}}{3}\right\rceil-1$ vertices on Q_{k+s}, each with a cost of one. Hence

$$
\gamma_{b}(T) \leq \sum_{i=1}^{r} \gamma_{b}\left(S_{i}\right)+j-1+\sum_{i=1}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil-j<|D| \text { by }(8),
$$

a contradiction as before.
(b) Suppose S_{k} is odd, S_{k+j} is even and $q_{k+j+1} \equiv 1(\bmod 3)$, while $q_{k+s} \equiv 1$ or $2(\bmod 3)$ for each $s \in\{1, \ldots, j\}$. We proceed as in (a), except that we also broadcast from the unique central vertex of S_{k+j} with a cost of $\operatorname{rad} S_{k+j}+1$. Thus we increase the strength of the broadcast vertex of each of the j subtrees S_{k+1}, \ldots, S_{k+j} by one, and decrease the number of broadcast vertices on each of the $j+1$ paths $Q_{k+1}, \ldots, Q_{k+j+1}$ by one, resulting in a contradiction as above.
(c) Similar to (a) and (b).

Before proving the converse of Lemma 4.5, we formulate and prove two more lemmas.

Lemma 6.2 Let T be a radial shadow tree, R the subtree of T obtained by deleting all leading and trailing free edges on the d-path $P=v_{1}, \ldots, v_{n}$ of T, and ρ the cardinality of a maximum split-set of R. Then $\rho \leq 2$.

Proof. Let M_{R} be a maximum split-set of R and suppose $\left|M_{R}\right| \geq 3$; say $\left\{v_{i} v_{i+1}\right.$, $\left.v_{j} v_{j+1}, v_{k} v_{k+1}\right\} \subseteq M_{R}$. Let $P_{R}=v_{f}, \ldots, v_{t}$ be the d-path of R that is a subpath of the d-path $P=v_{1}, \ldots, v_{n}$ of T. Then $v_{f}, \ldots, v_{i} ; v_{i+1}, \ldots, v_{j} ; v_{j+1}, \ldots, v_{k}$ and v_{k+1}, \ldots, v_{t} are even. If v_{1}, \ldots, v_{f} is even, then $\left\{v_{i} v_{i+1}\right\}$ or $\left\{v_{i} v_{i+1}, v_{j} v_{j+1}\right\}$ (depending on the parity of the diameter of T) is a split-set of T, which is not the case, so v_{1}, \ldots, v_{f} is odd. Thus v_{1}, \ldots, v_{j} is even. Now either $\left\{v_{j} v_{j+1}\right\}$ or $\left\{v_{j} v_{j+1}, v_{k} v_{k+1}\right\}$ is a split-set of T, depending on whether v_{j+1}, \ldots, v_{n} is even or odd, contradicting the radiality of T

Lemma 6.3 If T is radial, $S_{1}, \ldots, S_{r} \in \mathcal{T}$ and (i), (ii) and (iii) hold, then $T \in \mathcal{T}$.

Proof. Define R, M_{R}, P_{R} and ρ as in the proof of Lemma 6.2; then $\rho \in\{0,1,2\}$. Since T is radial, $\gamma_{b}(T)=\operatorname{rad} T$. Since $S_{1}, \ldots, S_{r} \in \mathcal{T}, \gamma(T)=\sum_{i=1}^{r} \gamma_{b}\left(S_{i}\right)+$ $\sum_{i=1}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil$ by (8). We consider three cases, depending on the value of ρ, to prove that

$$
\begin{equation*}
\operatorname{rad} T=\sum_{i=1}^{r} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{r+1}\left\lceil\frac{q_{i}}{3}\right\rceil . \tag{9}
\end{equation*}
$$

Case $1 \rho=2$. By Theorem 2.2, $\gamma_{b}(R)=\operatorname{rad} R-1$, and P_{R} is even. Say $M_{R}=$ $\left\{v_{j} v_{j+1}, v_{j^{\prime}} v_{j^{\prime}+1}\right\}$. Then $v_{f}, \ldots, v_{j} ; v_{j+1}, \ldots, v_{j^{\prime}}$ and $v_{j^{\prime}+1}, \ldots, v_{t}$ are even. Since neither edge is a split-edge of T, v_{1}, \ldots, v_{j} and $v_{j^{\prime}+1}, \ldots, v_{n}$ are odd, so q_{1} and q_{r+1} are odd, and P is even. If $q_{1} \geq 3$, then $\left\{v_{3} v_{4}, v_{j} v_{j+1}\right\}$ is a split-set of T, which is impossible, hence $q_{1}=1$; similarly, $q_{r+1}=1$. Hence $\operatorname{rad} T=\operatorname{rad} R+1$.

If $\left\{e_{k}, e_{k+1}\right\}$ and $\left\{e_{\ell}, e_{\ell+1}\right\}$ are two sets of consecutive free edges of R separated by at least one S_{i}, then one of $\left\{e_{k}, e_{\ell}\right\},\left\{e_{k}, e_{\ell+1}\right\},\left\{e_{k+1}, e_{\ell}\right\},\left\{e_{k+1}, e_{\ell+1}\right\}$ is a split-set of T, which is not the case, so T contains at most one set Y of two or more consecutive free edges. A similar argument shows that $|Y| \leq 4$. In particular, R consists of at most two MTS's.

Case 1.1 R consists of one MTS S_{1}. Since $R=S_{1} \in \mathcal{T}, \gamma\left(S_{1}\right)=\gamma_{b}\left(S_{1}\right)=\gamma_{b}(R)=$ $\operatorname{rad} R-1$. Since $q_{1}=q_{2}=1, \gamma_{b}(T)=\gamma_{b}\left(S_{1}\right)+\sum_{i=1}^{2}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} R+1=\operatorname{rad} T$, hence (9) holds.

Case 1.2 R has two MTS's S_{1} and S_{2}. Since $2 \leq|Y| \leq 4,1 \leq q_{2} \leq 3$.

- If $q_{2}=1$, then $(i),(i i)$ and the fact that $q_{1}=q_{3}=1$ imply that neither S_{1} nor S_{2} is radial. Since $\rho=2$, each S_{i} therefore has a maximum split-set of cardinality 1 , and so has odd diameter. Thus $\operatorname{rad} R=\left(\operatorname{rad} S_{1}+\operatorname{rad} S_{2}-1\right)+$ $\operatorname{rad} Q_{2}=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}$. By Theorem 2.2, $\gamma_{b}\left(S_{i}\right)=\operatorname{rad} S_{i}-1, i=1,2$. Hence $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}-1+\operatorname{rad} S_{2}-1+3=\operatorname{rad} R+1=\operatorname{rad} T$, as required in (9).
- If $q_{2}=2$, then (i) implies that if S_{i} is radial, then it is even. If S_{1} and S_{2} are both radial, then $(i i i)(c)$ applies (with $k=j=1$) and we obtain a contradiction because $q_{2} \not \equiv 0(\bmod 3)$. Hence at most one of S_{1} and S_{2} is radial. If neither S_{1} nor S_{2} is radial, then each S_{i} has a maximum split-set of cardinality 1 (since $\rho=2$), and so has odd diameter. But Q_{2} is odd, hence P_{R} is odd, a contradiction. Hence assume without loss of generality that S_{1} is radial and S_{2} is not. Then S_{1} is even. Since Q_{2} is odd and P_{R} is even, S_{2} is odd and has a maximum split-set of cardinality one. Hence $\operatorname{rad} R=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+1$ and, by Theorem $2.2, \gamma_{b}\left(S_{2}\right)=\operatorname{rad} S_{2}-1$. Therefore $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}-1+3=\operatorname{rad} R+1=\operatorname{rad} T$, hence (9) holds.
- Say $q_{2}=3$. Since P_{R} and Q_{2} are even, S_{1} and S_{2} are either both even or both odd. Say $Q_{2}=u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$, where $u_{1} \in V\left(S_{1}\right)$ and $u_{5} \in V\left(S_{2}\right)$.
If S_{1} and S_{2} are both even, then $\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$ is a maximum split-set of R, hence S_{1} and S_{2} are radial (for otherwise R has a larger split-set). In this case

$$
\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+3=\operatorname{rad} R+1=\operatorname{rad} T, \text { hence }(9)
$$ holds.

Assume S_{1} and S_{2} are both odd. Then $\operatorname{rad} R=\left(\operatorname{rad} S_{1}+\operatorname{rad} S_{2}-1\right)+\operatorname{rad} Q_{2}=$ $\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+1$. If both S_{1} and S_{2} are nonradial, let $v_{j} v_{j+1}$ be a splitedge of S_{1} and $v_{j^{\prime}} v_{j^{\prime}+1}$ a split-edge of S_{2}. Then v_{j+1}, \ldots, u_{1} is even, as is $u_{5}, \ldots, v_{j^{\prime}}$. But then $\left\{v_{j} v_{j+1}, u_{1} u_{2}, u_{4} u_{5}, v_{j^{\prime}} v_{j^{\prime}+1}\right\}$ is a split-set of R, which is not the case. If both S_{1} and S_{2} are radial, then R has no nonempty splitset, which is also not the case. Hence S_{1} (say) is radial and S_{2} is nonradial. Therefore $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}-1+3=\operatorname{rad} R+1=\operatorname{rad} T$, as required.

This completes the proof of Case 1.
Case $2 \rho=1$. By Theorem 2.2, $\gamma_{b}(R)=\operatorname{rad} R-1$, and P_{R} is odd. Say $M_{R}=$ $\left\{v_{j} v_{j+1}\right\}$. If q_{1} and q_{r+1} are both even, then M_{R} is a split-set of T, which is not the case, so assume without loss of generality that q_{1} is odd. If $q_{1} \geq 3$, then either $\left\{v_{3} v_{4}\right\}$ (if q_{r+1} is odd) or $\left\{v_{3} v_{4}, v_{j} v_{j+1}\right\}$ (if q_{r+1} is even) is a split-set of T, which is impossible, hence $q_{1}=1$. Similarly, if q_{r+1} is odd, then $q_{r+1}=1$.

Case 2.1 q_{r+1} is odd. Then P is odd and $q_{r+1}=1$. If e_{k}, e_{k+1} are two consecutive free edges of R, then one of e_{k} and e_{k+1} is a split-edge of T; hence R has no consecutive free edges and consists of one MTS S_{1}, which is nonradial. Therefore $\gamma_{b}\left(S_{1}\right)+$ $\sum_{i=1}^{2}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} R-1+2=\operatorname{rad} T$ and (9) holds.

Case 2.2 q_{r+1} is even. Then P is even and $\operatorname{rad} T=\operatorname{rad} R+\frac{1}{2} q_{r+1}$. Since $\rho=1$, R contains at most one set Y of two or more consecutive free edges; if there exists such a Y, then $|Y| \leq 4$. Thus R consists of at most two MTS's. If $q_{r+1} \geq 6$, then $\left\{v_{n-6} v_{n-5}, v_{n-3} v_{n-2}\right\}$ is a split-set of T, so $q_{r+1} \in\{0,2,4\}$.

If R consists of one MTS S_{1}, then $\gamma_{b}\left(S_{1}\right)+\sum_{i=1}^{2}\left\lceil\frac{q_{i}}{3}\right\rceil=(\operatorname{rad} R-1)+1+\left\lceil\frac{q_{2}}{3}\right\rceil=$ $\operatorname{rad} T$, as required. Hence assume R consists of two MTS's S_{1} and S_{2}, together with Q_{2} (where $E\left(Q_{2}\right)=Y$), and $1 \leq q_{2} \leq 3$. Now if $q_{3}=4$ and $e_{k}, e_{k+1} \in Y$, then $\left\{e_{k}, v_{n-3} v_{n-2}\right\}$ or $\left\{e_{k+1}, v_{n-3} v_{n-2}\right\}$ is a split-set of T, a contradiction. Assume therefore that $q_{3} \in\{0,2\}$. We only consider the case $q_{3}=2$; the case $q_{3}=0$ is similar.

- Say $q_{2}=1$. Then Q_{2} and exactly one of S_{1} and S_{2} are even. If S_{1} is even and S_{2} is odd, then by (i) and (ii), neither S_{1} nor S_{2} is radial. Since Q_{2} is even, the union of a split-set of S_{1} and a split-set of S_{2} is a split-set of R containing more than one edge, a contradiction. Hence S_{1} is odd and S_{2} is even. By (i), S_{1} is nonradial, and thus, following the same reasoning as above, S_{2} is radial. Since P_{R} is odd, $\operatorname{rad} R=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+\operatorname{rad} Q_{2}=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+1$. Now $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}-1+\operatorname{rad} S_{2}+3=\operatorname{radS}_{1}+\operatorname{rad} S_{2}+2=\operatorname{rad} R+1$, as required.
- Say $q_{2}=2$. Then Q_{2} is odd, so S_{1} and S_{2} are both odd or both even. Assume firstly that both are odd. Then by $(i i i)$ with $j=1$, one of them is nonradial. If
S_{2} is nonradial, let $v_{j} v_{j+1}$ be a split-edge of S_{2} and let $u_{1} u_{2}$ be the first edge of Q_{2} (i.e., $\left.u_{1} \in V\left(S_{1}\right)\right)$. Then $\left\{u_{1} u_{2}, v_{j} v_{j+1}\right\}$ is a split-set of T, a contradiction. Hence S_{1} is nonradial while S_{2} is radial, so that $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=$ $\operatorname{rad} S_{1}-1+\operatorname{rad} S_{2}+3=\operatorname{rad} T$ as above.
Now assume that S_{1} and S_{2} are even. Then both are radial, for otherwise we obtain a split-set of T. Then $\operatorname{rad} R=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+2$, so that $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+$ $\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+3=\operatorname{rad} T$, and again (9) is satisfied.
- Say $q_{2}=3$ and let $Q_{2}=u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$, where $u_{1} \in V\left(S_{1}\right)$ and $u_{5} \in V\left(S_{2}\right)$. Since Q_{2} is even, exactly one of S_{1} and S_{2} is even. If S_{1} is odd, then $\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$ is a split-set of T, contradicting the radiality of T. Thus S_{1} is even and S_{2} is odd. If e is a split-edge of S_{2}, then $\left\{u_{4} u_{5}, e\right\}$ is a split-set of T, which is not the case, hence S_{2} is radial. Similarly, S_{1} is radial. Hence $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=$ $\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+3=\operatorname{rad} R+1=\operatorname{rad} T$.

The proof of Case 2 is now complete.
Case $3 \rho=0$, i.e., R is radial. Now P_{R} may be even or odd.
Case 3.1 P_{R} is odd. Then R consists of a single MTS S_{1}, for if e_{1} and e_{2} are consecutive free edges, then one of them is a split-edge of R. Necessarily, S_{1} is radial. By $(i), q_{1}, q_{2} \not \equiv 1(\bmod 3)$. By symmetry we may assume without loss of generality that $q_{1} \leq q_{2}$. If $\min \left\{q_{1}, q_{2}\right\} \geq 3$, then $\left\{v_{3} v_{4}\right\}$ or $\left\{v_{3} v_{4}, v_{n-3} v_{n-2}\right\}$ is a split-set of T, so we may assume that $q_{1} \leq 2$ and hence that $q_{1} \in\{0,2\}$. Similarly, $q_{2} \leq 5$. Now if $q_{1}=0$ and

$$
q_{2}=\left\{\begin{array}{l}
2 \\
3, \\
5
\end{array} \quad \text { then } \gamma_{b}\left(S_{1}\right)+\sum_{i=1}^{2}\left\lceil\frac{q_{i}}{3}\right\rceil=\left\{\begin{array}{l}
\operatorname{rad} S_{1}+1 \\
\operatorname{rad} S_{1}+1 \\
\operatorname{rad} S_{1}+2
\end{array}\right\}=\operatorname{rad} T\right.
$$

A similar argument works if $q_{1}=2$.
Case 3.2 P_{R} is even. As in Case $1, R$ contains at most one set Y of two or more consecutive free edges, where $|Y| \leq 4$, and R consists of at most two MTS's. As above we may assume that $q_{1} \leq q_{r+1} \leq 5$ and $q_{1} \leq 2$. Moreover, if q_{1} is even and $q_{r+1} \geq 3$ is odd, then P is odd and $v_{n-3} v_{n-2}$ is a split-edge of T, a contradiction. Thus if q_{1} is even, then $q_{r+1} \in\{0,1,2,4\}$.

- Suppose firstly that R consists of a single MTS S_{1}. Since R is radial, S_{1} is radial. By $(i i), q_{1} \not \equiv 1(\bmod 3)$ or $q_{2} \not \equiv 1(\bmod 3)$. Using this and various parity arguments for the radii of R and T, we see that, for $a \in\{0,1\}$ and $b \in\{0,1,2\}$,
if $q_{1}=\left\{\begin{array}{l}1 \\ 1 \\ 1 \\ 0 \\ 2 a\end{array}\right.$ and $q_{2}=\left\{\begin{array}{l}2 \\ 3 \\ 5, \\ 1 \\ 2 b\end{array}\right.$ then $\gamma_{b}\left(S_{1}\right)+\sum_{i=1}^{2}\left\lceil\frac{q_{i}}{3}\right\rceil=\left\{\begin{array}{l}\operatorname{rad} S_{1}+2 \\ \operatorname{rad} S_{1}+2 \\ \operatorname{rad} S_{1}+3 \\ \operatorname{rad} S_{1}+1 \\ \operatorname{rad} S_{1}+a+b\end{array}\right\}=\operatorname{rad} T$.
- Now suppose that R consists of two MTS's S_{1} and S_{2}, and the path Q_{2}. Let e_{1} and e_{2} be adjacent edges of Q_{2}. If $q_{3} \geq 4$, then $\left\{v_{n-3} v_{n-2}\right\},\left\{e_{1}, v_{n-3} v_{n-2}\right\}$ or $\left\{e_{2}, v_{n-3} v_{n-2}\right\}$ is a split-set of T, which is impossible. Thus $q_{3} \leq 3$.
\star Say $q_{2}=1$. Since P_{R} and Q_{2} are even, S_{1} and S_{2} are both even or both odd. If both are odd, then by (i) neither is radial. But then the union of split-sets of S_{1} and S_{2} is a split-set of R, which is impossible. Hence S_{1} and S_{2} are even. A split-set of either S_{1} or S_{2} is also a split-set of R. But R is radial, hence S_{1} and S_{2} are radial. By $(i i), q_{1}, q_{3} \not \equiv 1(\bmod 3)$. Thus $q_{1}=2 a, a \in\{0,1\}$, and by the above analysis, $q_{3}=2 b, b \in\{0,1\}$. Now $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+a+1+b=\operatorname{rad} R+a+b=\operatorname{rad} T$.
\star Say $q_{2}=2$. Then exactly one of S_{1} and S_{2} is even, hence $\operatorname{rad} R=$ $\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+1$. If S_{i} is odd, then a split-edge e of S_{i} together with a suitably chosen edge of Q_{2} is a split-set of R. If S_{i} is even, then any split-set of S_{i} is a split-set of R, a contradiction. Thus both S_{1} and S_{2} are radial. Now if S_{1} is odd, then by $(i), q_{1}=2 a, a \in\{0,1\}$, and as shown above, $q_{3} \in\{0,1,2\}$. However, if $q_{3}=1$, then the middle edge of Q_{2} is a split-edge of T, a contradiction. Hence $q_{3}=2 b, b \in\{0,1\}$. Therefore $\sum_{i=1}^{2} \gamma_{b}\left(S_{i}\right)+\sum_{i=1}^{3}\left\lceil\frac{q_{i}}{3}\right\rceil=\operatorname{rad} R+a+b=\operatorname{rad} T$.
On the other hand, if S_{2} is odd, then by $(i), q_{3} \in\{0,2,3\}$. It is routine to verify that (9) holds for all possible choices of $\left(q_{1}, q_{3}\right)$.
\star Finally, say $q_{2}=3$ and let $Q_{2}=u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$, where $u_{1} \in V\left(S_{1}\right)$ and $u_{5} \in V\left(S_{2}\right)$. Then S_{1} and S_{2} have the same parity. But if S_{1} and S_{2} are even, then $\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$ is a split-set of R, which is not the case. Hence S_{1} and S_{2} are odd, and both are radial, otherwise R has a nonempty split-set. Therefore $\operatorname{rad} R=\left(\operatorname{rad} S_{1}+\operatorname{rad} S_{2}-1\right)+\operatorname{rad} Q_{2}=\operatorname{rad} S_{1}+\operatorname{rad} S_{2}+1$. By $(i), q_{1}, q_{3} \not \equiv 1(\bmod 3)$, and by the above restrictions on q_{1} and q_{3} we thus have $q_{1}, q_{3} \in\{0,2\}$. In all cases (9) is satisfied.

This completes the proof of Case 3 and also the proof of the lemma.

Proof of the converse of Lemma 4.5. Assume that $S_{1}, \ldots, S_{r} \in \mathcal{T}$ and that (i), (ii) and (iii) hold. Let M be a maximum split-set of T with $|M|=m$. Let T_{1}, \ldots, T_{m+1} be the (radial) components of $T-M$. By Theorem 2.2, $\gamma_{b}(T)=$ $\sum_{i=1}^{m+1} \gamma_{b}\left(T_{i}\right)$. By Lemma 6.3, $T_{i} \in \mathcal{T}$ for each i. Obviously, $\gamma(T) \leq \sum_{i=1}^{m+1} \gamma\left(T_{i}\right)$, and since $T_{i} \in \mathcal{T}$ for each i, it follows that $\gamma(T) \leq \sum_{i=1}^{m+1} \gamma_{b}\left(T_{i}\right)=\gamma_{b}(T)$. The result follows from the trivial bound $\gamma_{b}(T) \leq \gamma(T)$.

Acknowledgement

We are indebted to the referees of this paper for many corrections and helpful suggestions.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman \& Hall, Boca Raton, 2005.
[2] E. J. Cockayne, S. Goodman and S. T. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975), 41-44.
[3] E. J. Cockayne, S. Herke and C. M. Mynhardt, Broadcasts and domination in trees, Discrete Math. 311 (2011), 1235-1246.
[4] J. Dabney, B. C. Dean and S. T. Hedetniemi, A linear-time algorithm for broadcast domination in a tree, Networks 53 (2009), 160-169.
[5] J. Dunbar, D. Erwin, T. Haynes, S. M. Hedetniemi and S. T. Hedetniemi, Broadcasts in graphs, Discrete Applied Math. 154 (2006), 59-75.
[6] J. Dunbar, S. M. Hedetniemi and S. T. Hedetniemi, Broadcasts in trees, Manuscript, 2003.
[7] D. Erwin, Cost domination in graphs, Dissertation, Western Michigan University, 2001.
[8] D. Erwin, Dominating broadcasts in graphs, Bull. Inst. Combin $\dot{\mathcal{E}}$ Applic. 42 (2004), 89-105.
[9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[10] P. Heggernes and D. Lokshtanov, Optimal broadcast domination in polynomial time, Discrete Math. 36 (2006), 3267-3280.
[11] S. Herke, Dominating broadcasts in graphs, Master's Dissertation, University of Victoria, 2009.
[12] S. Herke and C. M. Mynhardt, Radial Trees, Discrete Math. 309 (2009), 59505962.
[13] S. M. Seager, Dominating broadcasts of caterpillars, Ars Combin. 88 (2008), 307-319.

[^0]: * Supported by an NSERC discovery grant.
 \dagger Supported by an NSERC undergraduate student award.

