
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 53 (2012), Pages 97–108

A time-constrained variation of the
Watchman’s Walk Problem

Danny Dyer∗

Department of Mathematics and Statistics
Memorial University of Newfoundland

St. John’s
Canada

Rebecca Milley†

Department of Mathematics and Statistics
Dalhousie University

Halifax
Canada

Abstract

Given a graph and a single watchman, the objective of the Watchman’s
Walk Problem is to find a closed dominating walk of minimum length
which the watchman can traverse to efficiently guard the graph. When
multiple guards are available, one natural variation is to assume fixed
time constraints on the monitoring of vertices and attempt to minimize
the number of guards required. We find upper bounds on the number of
guards required to monitor trees when no vertex is unobserved for more
than t units of time.

1 Introduction

In graph theory, a dominating set of a graph G is a set of vertices D ⊆ V (G) with
the property that every vertex of G is either in D or adjacent to a vertex of D.
The concept of graph domination is widely researched (see [6]), and many results
are known about the domination number of a graph: that is, the size of a smallest
dominating set, denoted γ(G).
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A common application of domination is to model some sort of network with a
graph and then use dominating sets to efficiently monitor the network. For example,
given a museum whose rooms must be monitored, we could represent each room as
a vertex and connect two vertices with an edge if there is a hallway between the
corresponding rooms. If we assume a guard can see from one room to an adjacent
room by looking down the hallway, then the museum can be constantly monitored
with guards stationed at the vertices of a dominating set in the constructed graph.

A variation on this method of network monitoring was introduced by Hartnell,
Rall, and Whitehead in [4]. Rather than placing one guard in each room of a dom-
inating set, they considered having a single guard (or ‘watchman’) walk around the
museum, beginning and ending in the same room, in such a way that the visited
rooms form a dominating set. Thus after one complete walk every room has been
either visited by the guard or seen by the guard from an adjacent room. In a graph,
such a walk (that is, an alternating sequence of vertices and edges) is said to be dom-
inating, and the stipulation that the walk begin and end on the same vertex means
that it is closed. The goal is to minimize either the amount of time that vertices
(rooms) are left unobserved or the length of the watchman’s walk. The latter has
been called the Watchman’s Walk Problem: given a graph G, find a minimum
closed dominating walk (MCDW) in G. The length of a MCDW in a graph G is
denoted by w1(G) (where the 1 refers to the number of watchmen on the graph.)

Results for the original watchman’s walk problem can be found in [4] and [5]. In
the present paper we consider the variant of the problem dealing with the maximum
time any vertex is left unguarded, first explored in detail in [2]. Here we have more
than one guard available, but we wish to ensure that no vertex remains unobserved
for more than some fixed time t. Our goal becomes to respect this time constraint
while using as few guards as possible.

2 Preliminaries

We consider only simple graphs with no loops and no multiple edges. Recall that a
spanning tree of a graph G is a tree containing all vertices of G and a subset of the
edges of G. We refer to vertices of degree 1 in a tree as leaves and to a leaf’s single
neighbouring vertex as a stem. If T is a tree then L(T ) denotes the set of leaves of
T , and we use T0 to denote the leaf-deleted subtree T \ L(T ).

We denote the closed neighbourhood of a vertex v ∈ V (G) by N [v]. We say a
vertex u is unobserved if no vertex in N [u] is occupied by a guard. Hence for a given
graph G and length of time t, we are interested in finding the minimum number of
guards needed to dominate the graph such that no vertex is unobserved for more
than t consecutive units of time. More formally, for fixed time t ∈ N, a graph G can
be t-monitored by a set S of guards if there exists a function f : S×N → V (G) such
that

(i) for every guard g ∈ S and at every time τ ∈ N, f(g, τ + 1) ∈ N [f(g, τ)], and
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(ii) for every vertex v ∈ V (G) and every interval I ⊂ N of length t+1, there exists
a guard g ∈ S and a time τ ∈ I such that f(g, τ) ∈ N [v].

Note that f(g, τ) is the vertex occupied by the guard g at time τ . Essentially,
condition (i) ensures that in one unit of time, guards may move from a vertex to one
of its neighbours (i.e., no ‘jumping’ is allowed), and condition (ii) ensures that every
vertex has a guard within its closed neighbourhood at least once every t + 1 units of
time.

Although there is no such stipulation in the definition of t-monitoring, we may
assume that each guard traverses a closed walk. To see this, let G be a graph
t-monitored by guards and suppose one or more of these guards traverse a walk
W that is not closed. At any fixed point in time, label a vertex 0∗ if it is currently
occupied by a guard, label a vertex 0 if it is unoccupied but adjacent to a vertex with
a guard, and label every other vertex with a positive integer (at most t) according
to the length of time that has elapsed since the vertex was last observed. Since both
t and |V (G)| are finite, there are only finitely many such labellings, and so at some
point a vertex labelling will be repeated. When this happens, we can truncate W and
have it repeat the sequence of vertices and edges that followed the first occurrence
of that labelling. The new walk is closed and does not disrupt the t-monitoring of
G. This proves the following theorem.

Theorem 1. If a graph G can be t-monitored by m guards then G can be t-monitored
by m guards whose walks are closed.

For a given graph G and length of time t, denote by Wt(G) the minimum value
of |S|, the number of guards needed to t-monitor a graph. Note that W0(G) =
γ(G), since if vertices cannot be unobserved for even a single unit of time then the
guards must dominate all vertices while remaining stationary. When t > 0, efficient
strategies for multiple guards are not clear for graphs in general, or even for an
arbitrary tree. For trees that are paths, however, the strategy is simple. First, place
one guard at an end of the path, beginning at a stem. If this guard is to ensure that
the adjacent leaf is observed at least once every t + 1 units of time then his walk
must have length at most t + 1 (or at most t, when t is even, since closed walks are
necessarily of even length). Such a walk includes t+1

2
(or t

2
) edges and t+1

2
+ 1 (or

t
2

+ 1) vertices, and additionally the guard can monitor the two vertices adjacent
to the ends of his walk. A second guard can in the same way monitor the next
t+1
2

+ 3 ( t
2

+ 3) vertices on the path. If we divide the total number of vertices n by
the number of vertices monitored by each guard, taking the ceiling of this value if
necessary, then we find that the minimum number of guards required to t-monitor a
path is as presented in Theorem 2 below.

Theorem 2. If T is a path on n vertices then

Wt(T ) =

⎧⎨
⎩

⌈
2n
t+7

⌉
when t is odd,

⌈
2n
t+6

⌉
when t is even.
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For any graph G, if m guards can (minimally) monitor G such that no vertex
is unobserved for more than t units of time, then with those m guards no vertex is
being unobserved for more than t + 1 units of time; that is, Wt(G) ≥ Wt+1(G), and
we have the following lemma.

Lemma 3. For any graph G, W0(G) ≥ W1(G) ≥ W2(G) ≥ . . ..

It was shown in [4] that cut vertices in a graph must be visited by any MCDW
and that vertices of degree 1 are never visited in such a walk. Theorem 4 follows
immediately. For a given tree T , we denote by 2T0 the multigraph formed by doubling
every edge of T0; note that such a multigraph is necessarily Eulerian.

Theorem 4. [4] If T is a tree then w1(T ) = 2|E(T0)|, and an Eulerian circuit in the
tree 2T0 is a MCDW for T .

This extends to the following result for multiple guards.

Corollary 5. For any tree T ,

Wt(T ) ≤
⌈

2|E(T0)|
t + 1

⌉
.

Proof. From Theorem 4 we know a MCDW in T is obtained by doubling every edge
of T0 and walking an Eulerian circuit W in the multigraph 2T0. Place guards at most
distance t + 1 apart on W and have them follow one another around the Eulerian
circuit; this ensures no vertex is unobserved for more than t consecutive units of
time. Since the total length of the circuit is 2|E(T0)|, the number of guards required
to place one at least at every (t + 1)th position is

⌈
2|E(T0)|

t + 1

⌉
.

Since T can be t-monitored by
⌈

2|E(T0)|
t+1

⌉
guards, the minimum number of guards

required is at most this number.

It will be useful to know when a single guard is enough to t-monitor an arbitrary
tree. Since every tree has at least two leaves, |E(T0)| ≤ (n − 1) − 2 for any tree

T . Using Corollary 5,
⌈

2|E(T0)|
t+1

⌉
≤

⌈
2(n−3)

t+1

⌉
= 1 if 2n − 6 ≤ t + 1. This gives the

following corollary.

Corollary 6. If T is a tree on t+7
2

or fewer vertices then T can be t-monitored with
one guard.

In these last two corollaries, our strategy is to first find a single minimum closed
dominating walk and then have our guards ‘share’ this walk by spacing them along
it as equally as possibly. Contrast this with our strategy for t-monitoring paths; in
some sense paths form the opposite extreme, as each guard has his own closed walk
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which is disjoint from all others. For a general tree the problem of determining a
strategy for multiple guards really amounts to determining which parts of the tree
should be monitored by shared walks and which should be ‘split’ into disjoint walks.
We must deal with this question repeatedly in the proof of our main result.

In [2], the authors prove the following bounds on Wt(T ), which we generalize in
the next section.

Theorem 7. [2] For any tree T with n ≥ 3, W1(T ) ≤
⌊

n − 1

2

⌋
, W2(T ) ≤

⌊
2n

5

⌋
,

and W3(T ) ≤
⌊n

3

⌋
.

In each case there exist trees or families of trees attaining the upper bounds listed
above. Those trees for which W1(T ) =

⌊
n−1

2

⌋
are completely characterized in [2].

3 Main result

In this section we present generalized bounds for even and odd time t. The bulk of
the work is done in Theorem 9; however, we first require the following lemma.

Lemma 8. Suppose a tree T is dominated by guards sharing a single closed walk
(that is, an Eulerian circuit in 2T0). If j vertices are attached to T in such a way
that the resulting graph is still a tree then the existing guards can dominate the new
vertices by adding at most 2j edges to their closed walk.

Proof. We prove the result by induction on j. If only one vertex u is to be added
then attach u to T at v. Either v is a non-leaf in T and must already be included
in the original walk, in which case u is seen without any modification, or v is a leaf
in T and the original walk must include the stem of v; in this case u can be seen by
adding the edge from the stem to v, once in each direction. Here j = 1 vertex was
added and at most 2 · j = 2 additional edges were required.

Assume the lemma holds for all k where 1 ≤ k < j, and suppose we add j
vertices to T . Remove one of these, a leaf �; by the induction hypothesis the guards
can observe the j−1 additional vertices by increasing the length of their shared walk
by at most 2(j − 1). This walk must include either the stem s of � or a neighbour
of s. If s is already on the walk then no extra edges need to be traversed to monitor
�; if only a neighbour of s is on the walk then one additional edge must be traversed
(twice) to get to s and back, thereby increasing the length of the walk by 2 edges. In
total all j additional vertices can be dominated by adding at most 2(j − 1) + 2 = 2j
edges to the shared closed walk.

An upper bound for Wt(T ) with odd t will follow as a consequence of Theorem 9
below. Notice that the induction hypothesis includes two conditions on the structure
of guards’ walks; these conditions allow us to more easily obtain the proposed bound
during the inductive step.
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Theorem 9. If t is odd then any tree T on n ≥ 3 vertices can be t-monitored by⌊
2n+t−3

t+3

⌋
guards such that

(1) the closed walks of any two guards are either identical or edge-disjoint, and
(2) a closed walk shared by p ≥ 1 guards has length at most p(t + 1).

Proof. Let k = t+3
2

, so that
⌊

2n+t−3
t+3

⌋
=

⌊
n+k−3

k

⌋
. It is easy to verify the theorem

when 3 ≤ n ≤ k + 2; in this case

1 =
3 + k − 3

k
≤ n + k − 3

k
≤ (k + 2) + k − 3

k
=

2k − 1

k
< 2,

so
⌊

n+k−3
k

⌋
= 1 and we must show any tree T on n vertices can be t-monitored with

one guard satisfying properties (1) and (2). Since T has at most k + 2 = t+3
2

+ 2
vertices, one guard can t-monitor T by following an Eulerian circuit through T0 with
doubled edges, by Corollary 6. This also demonstrates property (2), and since only
one guard is involved, property (1) follows trivially.

Assume inductively that any tree on m vertices, 3 ≤ m ≤ n − 1, can be t-
monitored by

⌊
m−3+k

k

⌋
guards whose walks satisfy properties (1) and (2). Let T

be an arbitrary tree on n vertices. We will find k suitable vertices to remove from
T , forming a subtree T ′ that by the induction hypothesis can be t-monitored by⌊

(n−k)+k−3
k

⌋
=

⌊
n−3

k

⌋
guards. If we can show that including the k vertices requires

only one additional guard, whose walk preserves properties (1) and (2), then T can
be t-monitored by

⌊
n−3

k

⌋
+ 1 =

⌊
n+k−3

k

⌋
guards and the theorem will be proved by

induction. We select the k vertices as follows.

Find a non-leaf vertex v0 such that T \ v0 has at least one component with more
than k vertices, and let S1 be one such component. Let v1 be the vertex in S1 that
is adjacent to v0 in T , and root S1 at v1. If all branches of v1 in S1 have less than k
vertices, relabel v1 as v; otherwise, choose a branch with k or more vertices and call it
S2. Root S2 at v2, the vertex adjacent to v1. If all branches of v2 in S2 have less than
k vertices, relabel v2 as v; otherwise, choose a branch with k or more vertices and call
it S3. We can repeat this procedure until eventually a vertex v = vi is found whose
branches are all of size less than k. Furthermore, the subtree Si (containing vi and
these branches) has at least k vertices, since Si was chosen from the branches of vi−1

with precisely that property. Select k vertices from Si beginning in one branch of v,
ensuring that after each selection the unselected vertices are connected, and selecting
from a second branch only after the first has been entirely selected, selecting from a
third branch only if the second has been entirely selected, and so on.

If Si has exactly k vertices then we select the entire component, including v, and
let the tree T ′ be T with these k vertices removed. Then Si is a tree with k = t+3

2

vertices, so by Corollary 6 it can be t-monitored by one guard. By the induction
hypothesis the tree T ′ on n− k vertices can be t-monitored by

⌊
n−3

k

⌋
guards, whose

walks satisfy properties (1) and (2). The one additional guard required for Si gives
a total of

⌊
n−3

k

⌋
+ 1 = 	n+k−3

k

 guards, and since the new guard does not enter T ′

and walks at most 2(k − 2) = t − 1 edges, his walk does not violate properties (1)
and (2).
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If Si has more than k vertices then we will not select the vertex v. At least one
branch of Si is entirely selected, since no single branch contains k or more vertices,
and at most one branch is partially selected, since we are choosing the vertices one
branch at a time. Let S be the subtree of T containing v and all completely selected
branches. There are two cases.

Case 1: There is no partially selected branch; that is, S contains all k selected
vertices. Since v is not selected, S is a subtree with k + 1 vertices, at least two of
which are leaves in T (S cannot have only a single branch because each branch of v
has less than k vertices). Hence by Corollary 6, S can be t-monitored by one guard
who traverses at most 2(k − 2) = t − 1 edges. By the same reasoning as used above
when |V (Si)| = k, the theorem holds in this case.

Case 2: There is a partially-selected branch; call this branch B. Let T ′ be T with
the k selected vertices removed. Since only some of the vertices of B are selected, part
of this branch will be in the tree T ′. By the induction hypothesis, T ′ on n−k vertices
can be t-monitored by

⌊
n−3

k

⌋
guards whose walks are identical or edge-disjoint, where

a closed walk shared by p guards has length at most p(t + 1). In the following two
sub-cases, let B′ be the branch B of v contained in T ′.

Case 2a: The edges of B′ belong to multiple edge-disjoint walks. At most one
of these walks includes edges outside of B′, because a single edge joins B′ to the
rest of T ′. So at least one walk has edges only in B′, and consequently at least one
guard never leaves B in T ′. Let one guard remain in B′ and let any other guards
whose walks were entirely in B′ sit stationary at the vertex v. If there was a walk
in B′ involving edges outside of B′, truncate this walk by excluding all edges of B′.
The guard(s) on this walk can remain at v instead of entering B′, and can resume
the remainder of the walk at the appropriate time. These alterations do not affect
the monitoring of any vertex in T ′ \ B′, and properties (1) and (2) are clearly not
violated. The single guard remaining in B′ can t-monitor all of the branch B in T ,
by Corollary 6, because B has less than k = t+3

2
vertices. This walk is edge-disjoint

from all others and has length at most 2[(k− 2)− 1] = t− 3 (because B has at most
k − 2 edges and at least one vertex which is a leaf in T ).

We now need to dominate the remainder of the k selected vertices, which are in
S. Because S has at most k = t+3

2
vertices, one new guard can t-monitor S with a

walk which is edge-disjoint from all others, because S and T ′ have only the vertex
v in common. Thus property (1) is preserved. The walk has one guard and length
at most 2[(k − 1) − 1] = t − 1 (S has at most k − 1 edges and at least one leaf), so
property (2) is also preserved, and we see that the theorem holds in this case.

Case 2b: The edges of B′ belong to a single walk. If this walk does not include
edges outside of B′ then its guard(s) can monitor all of B in T , as in case 2a, so the
result follows as above. Otherwise, we have a single closed walk W which necessarily
visits the vertex v. Suppose p guards share W , so that W has length at most p(t+1),
and suppose |B \ B′| = j (i.e., j vertices of B were selected). By Lemma 8, at most
2j edges must be added to the walk W in order for the guards on W to also dominate
the j vertices of B that are not in T ′.
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Now, if j of the k selected vertices are in B then S has k−j+1 vertices, including
v. At least one of these is a leaf of T , so at most 2(k− j− 1) = t+1− 2j edges must
be traversed to visit all non-leaf vertices of S, including v. If we also add these edges
to the walk W , which visits v, then in total we have a closed walk of length at most
p(t + 1) + (2j) + (t + 1− 2j) = (p + 1)(t + 1). We can therefore place one additional
guard on the expanded walk, so that p+ 1 guards are now spaced along it as equally
as possible. Every vertex on or adjacent to this walk, including each of the k selected
vertices, is then seen at least once every t units of time. Thus with one new guard
and the described additions to W , the entire tree T can be t-monitored with

⌊
n+k−3

k

⌋
guards; since the new guard is joining a walk of length at most (p + 1)(t + 1) shared
by p + 1 guards, properties (1) and (2) are preserved. Thus the theorem holds in all
cases.

We now have as an immediate corollary the following upper bound for odd t.

Corollary 10. If T is a tree of order n and t > 0 is an odd integer then

Wt(T ) ≤
⌊

2n + t − 3

t + 3

⌋
=

⌊
n + k − 3

k

⌋
,

for k = t+3
2

.

Recall from Lemma 3 that Wt(G) ≤ Wt−1(G) for any time t and any graph G.
If t is even then from this inequality and Corollary 10 we have Wt(G) ≤ Wt−1(G) ≤⌊

2n+(t−1)−3
(t−1)+3

⌋
. The resulting upper bound for even t, presented below in Corollary 11,

is notably weaker than the bound for odd t.

Corollary 11. If G is a connected graph of order n and t > 0 is an even integer
then

Wt(G) ≤
⌊

2n + t − 4

t + 2

⌋
.

4 Analysis of the bound

In this section we explore the utility of Corollary 10 and construct a family of trees
for which this upper bound is attained. Note that for t = 1 and t = 3, the upper
bound presented here matches those found by [2].

We compare the bound of Corollary 5 with that of Corollary 10. The former
has the disadvantage of requiring some specific knowledge of the tree, besides its
order: namely, we need to know the number of non-leaf edges in the tree. If we
know nothing of the graph we could assume only that T has at least two leaves, thus
giving |E(T0)| ≤ n− 3. With only this assumption, how does the bound of

⌊
2n+t−3

t+3

⌋
compare to

⌈
2|E(T0)|

t+1

⌉
?
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It is straightforward to check that
2n + t − 3

t + 3
<

2(n − 3)

t + 1
if and only if t2 + 4t +

15 < 4n. For n ≥ 10 and t ≤ √
n we see that t2 + 4t + 15 < n + 4

√
n + 15 <

n + 3n
2

+ 3n
2

= 4n.

Hence with these conditions, and without knowing |L(T )|, the bound of Corollary
10 is strictly better than the bound of Corollary 5. Of course, to assume T has only
2 leaves is rather strong. Suppose we allow for T having up to

√
n leaves. Let

L = |L(T )|; then 2n+t−3
t+3

< 2(n−1−L)
t+1

if and only if t2 + 2tL + 6L + 3 < 4n, which is

true if n > 45 and t, L ≤ √
n. Thus for reasonable assumptions on n, |L(T )|, and t,

the bound Wt(T ) ≤ ⌊
2n+t−3

t+3

⌋
is an improvement upon the bound Wt(T ) ≤

⌈
2|E(T0)|

t+1

⌉
.

A final point for the strength of Corollary 10 is that the bound is sharp in its
current form; specifically, if the denominator is kept as k = t+3

2
then the numerator

cannot be reduced. Theorem 12 partly demonstrates this, by identifying an infinite
family of trees for which the bound of Corollary 10 is attained. To prove the sharpness
claim, however, we have to further demonstrate that there is a tree attaining the
bound for given t which also satisfies

⌊
n+k−4

k

⌋
<

⌊
n+k−3

k

⌋
; the tree T in Figure 1

suffices, since as a tree in the family of Theorem 12 we know W3(T ) =
⌊

n+k−3
k

⌋
= 3,

but with n = 9 and k = t = 3 we have
⌊

n+k−4
k

⌋
= 2.

T

t = 3

Figure 1: A tree T with W3(T ) = 3 >
⌊

n+k−4
k

⌋
.

Theorem 12. Let t be an odd integer, let k = t+3
2

, and let j be an integer satisfying
2 ≤ j ≤ k + 1. If T is formed by identifying one endpoint of any number of (k + 1)-
vertex paths and a single (j + 1)-vertex path, then Wt(T ) =

⌊
2n+t−3

t+3

⌋
=

⌊
n+k−3

k

⌋
.

Proof. Let T be formed as described (see Figure 2), say with m + 1 branches off a
central vertex v. Fix a set of t-monitoring walks on T . With some interchanging of
guards – but without any alteration in the sequence of guard-occupied vertices – we
show that at least m + 1 guards are involved in any t-monitoring of T .

Let B be a k-vertex branch with stem s. Note that the length of B (and all
k-vertex branches) is such that it takes exactly t + 1 units of time to get from the
stem s to the central vertex v and back again to s. We claim that (possibly with
some switching of guards) there is a guard who never leaves B ∪{v}. At some point
in time, a guard g1 visits s in order to monitor the neighbouring leaf. If the guard
never leaves B∪{v} then we are done; otherwise, let g2 be the next guard that visits
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s, as there is not enough time for g1 to walk from s to v, to a vertex off of B, and
back again to s. For this same reason, the guards g1 and g2 meet at the latest at v,
or else too much time passes between consecutive visits of s.

Now, at the meeting point of the two guards g1 and g2, have them swap places
with one another: let each turn around and resume the other’s walk from that time
on. We do not change the timing or the sequence of edges traversed; indeed, at
any given time, the set of occupied vertices of T is exactly as it was before, and so
T is still t-monitored with the same number of guards. If we repeat this swapping
strategy again when (if) a third guard enters B to visit s, and continue for each that
follows, then the guard g1 never leaves B ∪ {v}. Applying the same argument to all
other k-vertex branches, we find each branch has a unique guard who is restricted to
that single branch (and possibly v). This accounts for at least m guards; but none
of these enters the j-vertex branch, the leaf of which cannot be seen from v because
j ≥ 2. Thus there is at least one additional guard walking the tree.

We have shown that at least m + 1 guards are required to t-monitor T . Since
j ≤ k+1, one guard is enough to monitor the entire j-vertex branch; so m+1 guards
(one on each branch) are in fact sufficient to t-monitor T . That is, Wt(T ) = m + 1.

It remains to show that
⌊

n+k−3
k

⌋
= m + 1 for this tree. We know that |V (T )| =

n = mk + j + 1, so we have⌊
n + k − 3

k

⌋
=

⌊
mk + k + j − 2

k

⌋
=

⌊
(m + 1)k

k
+

j − 2

k

⌋
= m + 1,

since j ≤ k+1 ⇒ j−2
k

< 1. Hence, these trees attain the bound of Corollary 10.

... .
.. ...

jv v

u

u

u k

2

1

1

. . .

. . .

Figure 2: An infinite family of trees that attain the upper bound of Corollary 10,
where t is odd, k = t+3

2
, and 2 ≤ j ≤ k + 1.

5 Conclusions and open questions

Although our upper bounds are presented for trees, they are also valid for graphs in
general. This is because the number of guards required for a general graph is always
bounded above by the number of guards required for any spanning tree of the graph.
This bound can be optimized by picking the “best” spanning tree – for our purposes,
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the spanning tree with as many leaves as possible, a problem which is known to be
NP-hard [3].

The following question repeatedly arises when we are monitoring with multiple
guards: if m guards can t-monitor a tree, can they do so with closed walks that are
pairwise edge-disjoint or identical? We know the answer is yes for certain families of
graphs (e.g., those described in Theorem 12), and we have never seen this restriction
increase the required number of guards.

Another natural question is whether or not there exists a result analogous to
Theorem 9 for even values of t. We have the following conjecture.

Conjecture 13. If T is a tree of order n and t > 0 is an even integer then

Wt(G) ≤
⌊

2n + t − 2

t + 3

⌋
.

This has been shown to hold for t = 2 [2] and t = 4 [7], using induction as in the
proof of Theorem 9. However, when we analyze cases as we did for that theorem,
there are certain instances when a general argument is not apparent; the proofs for
t = 2, 4 rely instead on exhaustive checking of subcases. We note two reasons for
the problems that arise when t is even. Firstly, our approach of removing k = t+3

2

vertices in the inductive step is no longer possible, since this k is not an integer.
There are various ways to avoid this, but even the most practical — namely, setting
k = t+4

2
and proceeding as with odd t— has the disadvantage that a relatively larger

number of vertices are removed, making it harder for only one additional guard to
monitor them.

Secondly, and more generally, a subtle problem arises when t is even that is unre-
lated to our method of proof. As mentioned in the discussion leading to Theorem 2,
a guard who is solely responsible for the vertices he dominates must have a walk of
length at most t+1; but if t is even then this value is odd, and since any closed walk
on a tree has even length, the maximum length is actually only t. In certain cases
of our attempted proof, this loss means that a single guard is unable to monitor the
desired number of vertices.

The authors are pleased to hear that as of the writing of this paper, Conjecture
13 has been verified [1].
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