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ABSTRACT: A balanced ternary design of order v with block size three, 
index 2 and P2 = 1 is a collection of multi-subsets of size 3 (of type 
{ x, y, z} or {x, x, y }) called blocks, in which each unordered pair of dis­
tinct elements occurs twice - possibly in one block and in which each 
element is repeated in just one block. So there are precisely v blocks 
of type {x, x, y}. Necessarily v == 0 (mod 3). We denote such a design 
by BTD( Vj P2 = 1; 3,2). It is called simple if all its blocks are distinct. 
Let I1(v) denote the set of numbers k so that there exist two simple 
BTD(v; P2 = 1; 3, 2) with precisely k blocks in common. (Here the sub­
script 1 refers to the value of P2.) In this paper we determine the set h (v) 
for all admissible v == 0 (mod 3). 

1 Some preliminaries 

1.1 Introduction 

A balanced ternary design is one possible generalisation of a balanced incomplete 
block design, and was essentially first introduced by Tocher [10]. For a survey of 
such designs see Billington [1] and the update [3]. However, in order to make tche 
present paper self-contained, we now define a balanced ternary design or BTD. This is 
a collection of multi-subsets of size k, chosen from a v-set in such a way that each pair 
of distinct elements {x, y} occurs A times, each pair of non-distinct elements {x, x} 
occurs P2 times, and each element occurs 0, 1 or 2 times in a block (hence "ternary"). 
These parameters we denote by BTD(v; P2j k, A). It is straightforward to show that 
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each element must occur singly in a constant number of blocks, say Pl blocks, and so 
each element occurs altogether r = PI + 2P2 times. Also there are b blocks altogether, 
where vr = bk, and the identity 

>.( v-I) = r( k - 1) - 2P2 

is easily obtained by counting distinct pairs. (Of course in a block such as {x, x, y, y, z} 
the pair {x, y} is said to occur 4 times, and the pairs {x, z} and h', z} twice each, 
while {x, x} occurs once and {y, y} once.) It is clear that >. ~ 2 for a genuine BTD, 
that is, one with P2 > O. (For further necessary constraints see [1, 2, 3].) 

Here we shall only consider block size k equal to three, .A (the index) equal to 
two, and P2 = 1. So there are precisely v blocks of type {x,x,y} in such a BTD. 
Altogether, a BTD(v; 1; 3, 2) has v 2 /3 blocks, and a necessary and sufficient condition 
for existence if' that v 0 (mod 3). (See, for example, [2].) We can consider such a 
BTD( Vi 1; 3,2) to be an edge-disjoint decomposition of 2KJ, the complete graph on 
v vertices with two edges between each pair of vertices and with a loop on each vertex 
(denoted by the + sign), into triangles and tadpoles. Here a tadpole, corresponding 
to the block aab, is as follows: 

The question "How many blocks may two designs with the same parameters, based 
on the same set of elements, have in common?" has been considered in the past 
for Steiner triple systems (Lindner and Rosa [8]), for Steiner quadruple systems 
(Gionfriddo and Lindner [7] and Fu [6]) and also for group divisible triple systems 
(Butler and Hoffman [4]). Related work has also appeared in [9]. The difference here, 
for BTDs, is that the least possible value for the index, >., is 2. Consequently, to avoid 
any diffi.cu~ty concerning interpretation of numbers of common blocks, in the event 
that some blocks might be repeated, in this paper we shall restrict our attention to 
BTDs with no repeated blocks; such BTDs are called simple. (In the decomposition 
of 2KJ there will be no repeated triangles.) 

We define 

h(v) = {k I there exist 2 simple BTD(v; 1; 3, 2) with k blocks in common}. 

(The subscript 1 refers to the value of P2.) 
The purpose of this paper is to prove: 

MAIN THEOREM 

h(v) = {k 10 ::::;; k :::; v2/3 - 3 or k = v2/3} for all v == 0 (mod 3) with the one 
exception: 5 tJ. h(6). 

For convenience, we define J1 (v) = {k I 0 ::::;; k :::; v2 /3 - 3} U {v 2/3}. Certainly 
h(v) ~ h(v); we omit the easy proof. So we aim to prove that h(v) = J1(v) for 
v =/-6, and h(6) = J1(6) \ {5}. 
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First we deal with the cases v = 3,6 and 9. We shall also need to deal with some of 
the values in 11(12) and h(15) separately, but we leave those until after our general 
constructions. 

From now on, we write blocks such as {x, y, z} and {x, x, y} as xy z and xxy for 
brevity. 

1.2 The case v = 3 

Jl(3) = {O,3}. 
The two designs 

0 0 1 0 0 2 
1 1 2 1 1 0 
2 2 0 2 2 1 

provide us with h (3) = {O, 3}, by taking the same design twice (three common blocks) 
or these two designs (no common blocks). 

1.3 The case v = 6 

Jl(6) = {O,I,2,3,4,5,6, 7,8,9,12}. 
An exhaustive computer search has shown that 5 1:. h(6). Up to isomorphism, 

there are precisely two BTD(6j 1; 3, 2) (see Donovan [5]), and only one of these is 
simple; call it design A: 

112 
223 
331 
443 
553 
663 

A 

145 
1 4 6 
1 5 6 
245 
246 
256 

Consider the (isomorphic) designs got from A by permuting elements; let 

Al = (12)A, A2 = (123)A, A3 = (14)A, 
A5 = (25)A, A6 = (14)(23)A, 

A4 = (14)(25)(36)A, 
A7 = (24)A. 

Then it is easy to check that lAnAI = 12, IAnAll = 9, IA5 nA71 = 8, IA3 nA51 = 7, 
IAnA2 1 = 6, IAnA6 1 = 4, IA1nA21 = 3, IA2nA31 2, IA3nA41 = 1, and 
IA4 n AI = O. So h(6) = Jl(6) \ {5}. 

1.4 The case v = 9 

Jl(9) = {O,I,2, ... ,23,24,27}. 
To construct a simple BTD(9; P2 = 1; 3,2), we need to partition 2K; into triangles 

and tadpoles, with no triangles repeated. We do this in different ways, so that we can 
have two such BTDs with a prescribed number of blocks in common. For the vertices 
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of 2K; we take Z6 = {0,1,2,3,4,5} and {a,b,c}. The edges of 2K; we partition 
into three parts: 

Firstly, the graph G1 is 2Kt on vertices a, band c. Secondly, G2 is the graph 
on {O, 1,2,3,4, 5} with edges obtained by joining vertices i and j with one edge if 
Ii - jl = 1 or 2 (mod 6) and with two edges if Ii - jl = 3 (mod 6). Finally, G3 is the 
graph consisting of all the remaining edges of 2K;. 

For i = 1,2,3, let 8i be the set of possible numbers of common blocks in two 
partitions of the edges of Gi into triangles and tadpoles. Then It(9) contains 81 + 
82 + 83 . 

3 

Clearly, 81 = It(3) = {O, 3}. 
Now G2 has 18 edges; it is K6 together with the edges {O, 3}, {I, 4}, {2,5}. There 

is essentially only one way to partition G2 into six triangles, and we can 'label' this 
in just two ways: 

031, 034, 142, 145, 253, 250 or 
032, 035, 143, 140, 254, 251. 

Thus 82 = {O, 6}. 
So far we have 81 + 82 {O, 3, 6, 9}. 
Now consider the graph G3 consisting of the remaining edges of 2K:. It is in 

fact the octahedron graph G4 , together with a loop on each vertex, with three more 
vertices, a, b, c, each· of which is joined to each vertex of G4 by two edges. 

62 



We claim that S3 contains {O, 6, 10, 14, 18}. If we take the set 

a13 b12 cOO 
a15 b23 ell 
a35 b34 c22 T 
a02 b45 c33 
a04 b50 c44 
a24 bOl c55 

and then consider (abc)T = Tl, (ab)T = T2, we find that IT n TIl = 0, IT n T21 = 6 
and of course IT n TI = 18. 

Now let 
a13 b21 cOO 
a32 b10 ell 
a20 b05 c22 U. 
a04 b53 c33 
a45 b34 c44 
a51 b42 c55 

Then IT n UI = 14. 
Finally, if V is obtained from T by removing the blocks (or triangles) a15, a35, 

a02, a24, b12, b23, b45, b50 and replacing them with a12, a32, a05, a45, b15, b35, b02, 
b24, we see that IV n TI = 10. So 

SI + S2 + S3 2 {O, 3, 6, 9} + {O, 6,10,14, 18} 

= {0,3,6,9,10,12,13, ... ,21,23,24,27}. 

It remains to show that {I, 2, 4, 5, 7, 8,11, 22} ~ h(9). 
Let Dl be the design generated modulo 9 from the starter blocks {112, 136, 137}, 

and let D2 = (12)Dl' D3 = (13)Dl, D4 = (124)Dl, D5 = (135)Dl and D6 = 

(1357)Dl. Then ID4 n D61 = 2, ID4 n D51 = 4, ID2 n D51 = 7, ID3 n D41 = 8, and 
IDI n D51 = 11. 

N ow let D* be the design: 

112 
138 
356 

223 
139 
359 

334 
148 
367 

445 
149 
378 

551 
246 
468 

661 
247 
479 

771 
256 
578 

882 
257 
589 

992 
679 
689. 

By removing the five blocks 112, 223, 334, 445, 551 and replacing them by 
115, 221, 332, 443, 554, we have 22 E h(9). Also ID* n D41 = 5. 

Finally, 1 E h(9) because IDI n (45)(23)D*1 = 1. Hence 11(9) = J1(9). 

2 Construction of designs 

2.1 v to 2v, v odd 

We shall use the idea of a BTD with a hole. A BTD of order w with a hole of size v 
can be thought of as a triple (Q, P, B) where Q is a w-set, P is a v-subset of Q and 
B is a collection of blocks (multi-sets of size k) of Q such that: 
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(i) each pair of distinct elements of Q not both in P occurs exactly). times in the 
blocks of Bj 

(ii) each element of Q \ P occurs twice in exactly P2 blocks, and never more than 
twice in any block; 

(iii) each pair of elements of P, distinct or not, occurs in no blocks. 

From now on BTD shall mean a BTD with block size three, index two and P2 = 1. 

In this section we shall describe how to construct a simple BTD of order 2v from 
one of order v in the case that v is odd. We do this by constructing a BTD of order 
2v with a hole of order v. This means that by changing the BTD of order v that is 
put in the hole, we can fine-tune the number of blocks in common to two of these 
BTDs of order 2v. Moreover, we shall be able to coarse-tune the number of common 
blocks in two such BTDs of order 2v by adjusting the way in which we "sew" the 
BTD of order v into the hole. 

So now let v be odd, and consider the multi-set of v differences 

1) = {0,1,1,2,2, ... l(V - 1)/2,(v 1)j2}. 

Each one of these differences corresponds to a 2-factor in 2K:;;. 
For example, if v = 9, we have 1) {O, 1, 1,2,2,3,3,4, 4}, and the 2-factor cor-

responding to 0 is the set of 9 loops on the vertices, while in general the 2-factor 
cOlrresp<)n(ims! to difference d joins the vertices at distance d. So for difference 3 
(when v = 9) we have three of length 3: (036), (147), (258), while for differ­
ence 4 we have the one cycle of length 9: (048372615). 

Let the original BTD of order v (which we put in the hole) be based on the 
set {x I, X2, ..• , Xv}. Now to each of the v differences in 1) we associate one of the v 
elements {x 1, X2, ... , xv}. For each edge ab in the 2-factor corresponding to difference 
d (where a b if d 0, in which case the 2-factor consists of v loops) we take the 
block abxi if Xi is the element associated with the difference d. Of course we also take 
the blocks of the simple BTD of order v based on the set {Xl, X2, ... ,xv}. Since no 
2-factor has a repeated edge (since v is odd here), the resulting BTD of order 2v has 
no blocks and so is simple. 

2.2 V to 2v, V even 

In this case we take the multi-set 1) of differences to be 

{O, 1, 1,2,2, ... ,(v - 2)/2, (v - 2)/2} \ {v /3, v /3}. 

This multi-set 1) contains v - 3 differences, each of which gives rise to a 2-factor 
of 2K:;; with no repeated edges. However, the differences {v/3,v/3,v/2} remain; we 
need to find three simple 2-factors corresponding to these differences. Call these three 
2-factors Fl, F2 and F3, and their union P. Each component of P (and there are v/6 
components) is in fact a triangular prism with all edges doubled; such a graph can 
be partitioned into three cycles of length 6. 

For example, when v = 6, the graph P is as follows: 
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5 a 

4 C=#=~!F==D=:7JDl or equivalently 

3 2 4 2 

and this can be partitioned into the three 2-factors 

FI = (031524), F2 = (035142), . F3 = (041352). 

3 

5 
J/J======;;. 

The differences are D = {O, 1, I} and the differences {2, 2, 3} are used in FI , F2 and 
F3. 

2K + 
6 

a 

at? 
It? 
2t? 
3t? 
4t? 
st? 

1 

a 1 

502 
4 3 

1 

a 1 

502 
4 3 

a 3 a 3 a 4 

401 205 201 

2 5 4 1 5 3 

Each edge in each2-factor is joined to the corresponding point Xi, making a triangle 
(that is, block)in the new design on 12 elerpents. 

2.3 V to 2v + 3, V even 
First we take the difference triple {I, 2., 3} which gives rise to the starter block 013 or 
023 (modulo v + 3). The remaining differences in this case are, since v + 3 is odd, 

< • I. 

{0,1,2,3,4,4,5,5, ... , (v/2) + 1, (v/2) + I}. 

These correspond to v 2-factors of 2K;;+31 and to each one we associate a vertex from 
the BTD of order. v. 
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The case v = 6 is illustrated below; here the multi-set of differences is {O, 1,2,3,4, 4}. 

o 1 2 3 4 4 

2K + 
9 

2K + 
6 

o 1 o 

2.4 V to 2v + 3, V odd 

o 4 o 

\ ! \! 

4 
013 
124 
235 
346 
457 
569 

7 670 
781 
802 

023 
134 
245 
356 

or 467 
578 
680 
701 
812 

In this case v + 3 is even, so we need to avoid the difference (v + 3)/2 in our multi­
set D in order to avoid repeated blocks arising. So we take the difference triple 
{I, (v + 1)/2, (v + 3)/2}. This gives v + 3 triples, either from the starter block 0 1 
(v + 3)/2 or else from 0 (v + 1)/2 (v + 3)/2. (These v + 3 blocks can be traded or 
switched in the final design of order 2v + 3.) 

The remaining v differences, {O,I,2,2,3,3, ... ,(v -1)/2,(v -1)/2,(v + 1)/2}, 
correspond to 2-factors in 2K:+3 • 

We illustrate this with the case v = 9: 

2K + 
9 

.0 1 2 

, 
i 

2 3 

: \ : 
i ! . : \ i 

~ i 

3 4 

\ I I ! \ 
\ : 

~ ~ 

66 

4 

\ : 
: 

i i 

~ 

5 

056 
167 
278 
389 
49T 

or 5TE 
6EO 
701 
812 
923 
T34 
E45 



3 Pairs of designs 

Since the order of any BTD(v*iP2 = 1;3,2) satisfies v* :::::: 0 (mod 3), we have v* = 
6m = 2(3m) or else v* = 6m + 3 = 2(3m) + 3, and 3m can be either odd or even. 
So the previous four constructions in Section 2 yield BTDs of all admissible orders 
(given a BTD of order 3). 

We use these constructions to produce two BTDs based on the same set of elements 
(of size 2v or 2v + 3). Having constructed one BTD, the number of common blocks 
in the second design can be adjusted by 

(i) changing the allocation of the v elements in the hole to the v 2-factorsj 
(ii) changing the embedded BTD of order v in the hole (11 (v) having been deter­

mined by induction); 
(iii) in the v to 2v + 3 cases, possibly trading the single orbit of v + 3 triples outside 

the hole. 
Explicitly, we have shown the following, for v :::::: ° (mod 3): If i E {a, 1, ... , v-2, v}, 

and j E h(v), then iv + j E h(2v). And if l ° or 1, then i(v + 3) + j + lev + 3) E 
h(2v + 3). 

For the induction to work, we must show that for all k E Jl(2v) (respectively, 
Jl(2v + 3)), the appropriate i and j (respectively, i, j and l), can be found so that 
k iv + j (respectively, k = i( v + 3) + j + l( v + 3)). This is easy, provided that both 
v ~ 6 and Il(V) = Jl(V). This is not true if v = 3, but we have determined h(6) and 
h(9). Also it is not quite true if v = 6, since 5 rt h(6). We fill the gaps in h(12) and 
h(15) in the next section. 

4 The cases v = 12 and v = 15 

4.1 v = 12 

Note that Jl(12) = {a, 1,2, ... ,45, 48}. Also 5 ~ h(6) and so the construction 
described above does not quite yield the full set of values in Jl(12). However, we 
can obtain all except 41 common blocks by using the above construction, if we 
note the following permutations giving the appropriate assignments of six elements 
{Xl, X2, ••. , xs} to the six 2-factors, three from the differences {a, 1, I} and three, FI, 
F2, Fa, from the differences {2, 2, 3} as described in Section 2.2. (Note that FI, F2 
and Fa in this case have, pairwise, three edges in common.) 
Let j E 11(6) = J1 (6) \ {5} = {a, 1,2,3,4,6, 7, 8, 9, 12}. 
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number of 
common blocks 

0 1 1 F1 F2 Fa 36 +j 
0 1 1 F2 F1 Fa changes 6 blocks 30 +j 
0 1 1 F2 Fa F1 changes 9 blocks 27 +j 
0 1 Fa F1 F2 1 changes 12 blocks 24 +j 
F1 1 1 F2 0 Fa changes 15 blocks 21 + j 
1 1 Fa F1 F2 0 changes 18 blocks 18 + j 
F1 0 1 F2 1 Fa changes 21 blocks 15 + j 
1 0 Fa F1 F2 1 changes 24 blocks 12 +j 
1 0 F1 F2 1 Fa changes 27 blocks 9+j 
F2 Fa 0 F1 1 1 changes 30 blocks 6+j 
F1 Fa 0 F2 1 1 changes 33 blocks 3+j 
Fl F2 Fa 0 1 1 changes 36 blocks O+j 

We see from the right-hand column in the above table that this construction yields 
J1(12) \ {41} C Jt(12). The following example deals with the case of 41 common 
blocks. 

EXAMPLE 4.1 41 E Jt(12). 

We use the vertex set {O, 1, 2, ... ,9, T, E}. One BTD is as follows. 

OOh 036* 137* 23T 
112* 039 13E 238 
220* 047* 146* 249 
334 04T 148 24E 
445 058 159 257 
553 05E 15T 256 
667 069 16E 26E 
778 07T 179 279 
886 08E 18T 28T 
99T 369 46T 56T 
TTE 37T 47E 57E 
EE9 38E 489 589 

By replacing the asterisked (*) blocks above by the set 

002 110 221 037 046 136 147 

we find that 41 E 11(12). 

4.2 v= 15 

We modify the construction given in Section 2.3 with v = 6. Instead of taking the 
collection of differences {O, 1,2,3,4,4} for the 2-factors, and {I, 2, 3} for the starter 
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triple 013 or 023, we take the collection D = {O, 1, 1,2,3, 4} and use {2, 3, 4} for the 
starter triple 025 or 035 (mod 9). We retain from D the differences 0, 2, 3, which 
give rise, respectively, to the following three 2-factors 

00, 
02, 
03, 

11, 
24, 
36, 

22, 
46, 
60, 

33, 
68, 
14, 

44, 
81, 
47, 

55, 
13, 
71, 

66, 
35, 
25, 

77, 
57, 
58, 

88; 
70; 
82. 

Then we rearrange the edges arising from the differences 1, 1 and 4, which are: 
01, 12, 23, 34, 45, 56, 67, 78, 80 (twice each) 

and 04, 48, 83, 37, 72, 26, 61, 15, 50, 
and take instead the following three 2-factors, each of which is a nine-cycle: 

01, 
12, 
23, 

12, 
23, 
34, 

26, 
37, 
48, 

67, 
78, 
80, 

78, 
80, 
01, 

83, 
04, 
15, 

34, 
45, 
56, 

45, 
56, 
67, 

50; 
61; 
72. 

(These use up precisely the same edges.) The advantage of doing this is that Oi 
and OJ (i =1= j) have 3 common edges. So any two of the six 2-factors arising from 
{O, 2, 3, 01, 02, 03}, say X and Y, have: 

9 edges in common if X = Y; 
3 edges in common if X = Oi, Y = OJ, i -# jj 
o edges in common otherwise. 

The following table, exhibiting suitable permutations of 0, 2, 3, 01, 021 03, shows 
that Jl(15) \ {68} C h(15). (Example 4.2 below deals with the case of 68 common 
blocks.) 
Here j E 11(6) = Jl(6) \ {5} = {O, 1,2,3,4,6,7,8,9, 12}. 

number of 
common blocks (l = 0 or 1) 

0 2 3 01 02 03 54 + j + 9l 
0 2 3 01 03 02 changes 12 blocks 42 + j + 9l 
2 0 3 01 02 03 changes 18 blocks 36 + j + 9l 
0 2 01 03 02 3 changes 24 blocks 30 + j + 9l 
2 3 0 01 02 03 changes 27 blocks 27 + j + 9l 
0 3 2 01 03 O2 changes 30 blocks 24 + j + 9l 
0 01 2 03 02 3 changes 33 blocks 21 + j + 9l 
0 02 03 01 2 3 changes 36 blocks 18 + j + 9l 
2 3 0 01 03 02 changes 39 blocks 15 + j + 9l 
2 01 0 03 02 3 changes 42 blocks 12 + j + 9l 
2 3 0 02 03 01 changes 45 blocks 9 + j + 9l 
2 0 Cl 3 03 C2 changes 48 blocks 6 + j + 9l 
01 02 0 C3 2 3 changes 51 blocks 3 + j + 9l 
Cl 02 C3 0 2 3 changes 54 blocks 0+ j + 9l 
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EXAMPLE 4.2 68 E It(15). 

OOh 036* 03E 047* 04B 
05A 050 06A 07D 089 
08D 09E OBO 112* 137* 
138 146* 14E 15B 15D 
169 17E 189 lAO lAD 
1BO 220* 239 230 24A 
24E 258 259 260 26E 
27B 27D 28A 2BD 334 
36A 370 38B 39D 3AD 
3BE 445 46B 47A 480 
48D 490 49D 553 56D 
56E 579 57B 580 5AE 
667 690 6BD 778 79E 
7AO 886 8AE 8BE 99A 
AAB BB9 OOD DDE EEO 

By replacing the asterisked (*) blocks above by the set 

037 046 136 147 002 110 221 

we find that 68 E It(15). 

5 Conclusion 

We now have our required result: 

MAIN THEOREM 

There exist two simple balanced ternary designs of order v :z: 0 (mod 3) with block size 
3, index 2 and P2 = 1, having k common blocks, for all k E {O, 1, ... , v2/3 - 3, v2/3}, 
with the one exception that there do not exist two such BTDs of order 6 having 5 
common blocks. 
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