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ABSTRACT: A balanced ternary design of order v with block size three,
index 2 and ps = 1 is a collection of multi-subsets of size 3 (of type
{z,y,2} or {z,z,y}) called blocks, in which each unordered pair of dis-
tinct elements occurs twice — possibly in one block — and in which each
element is repeated in just one block. So there are precisely v blocks
of type {z,z,y}. Necessarily v = 0 (mod 3). We denote such a design
by BTD(v; p2 = 1;3,2). It is called simple if all its blocks are distinct.
Let I;(v) denote the set of numbers k so that there exist two simple
BTD(v; pa = 1;3,2) with precisely k blocks in common. (Here the sub-
script 1 refers to the value of p3.) In this paper we determine the set I1(v)
for all admissible v = 0 (mod 3).

1 Some preliminaries

1.1 Introduction

A balanced ternary design is one possible generalisation of a balanced incomplete
block design, and was essentially first introduced by Tocher [10]. For a survey of
such designs see Billington {1] and the update [3]. However, in order to make the
present paper self-contained, we now define a balanced ternary design or BTD. This is
a collection of multi-subsets of size k, chosen from a v-set in such a way that each pair
of distinct elements {z,y} occurs A times, each pair of non-distinct elements {z, z}
occurs p3 times, and each element occurs 0, 1 or 2 times in a block (hence “ternary”).
These parameters we denote by BTD(v; p2; k, A). It is straightforward to show that
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each element must occur singly in a constant number of blocks, say p; blocks, and so
each element occurs altogether r = p; -+ 2p3 times. Also there are b blocks altogether,
where vr = bk, and the identity

Mv=1)=r(k—1)—2p

is easily obtained by counting distinct pairs. (Of course in a block such as {z, z,y,y, 2}
the pair {z,y} is said to occur 4 times, and the pairs {z,z} and {y, 2} twice each,
while {z,z} occurs once and {y,y} once.) It is clear that A > 2 for a genuine BTD,
that is, one with ps > 0. (For further necessary constraints see [1, 2, 3].)

Here we shall only consider block size k equal to three, X (the index) equal to
two, and ps = 1. So there are precisely v blocks of type {z,z,y} in such a BTD.
Altogether, a BTD(v;1;3,2) has v?/3 blocks, and a necessary and sufficient condition
for existence i¢ that v = 0 (mod 3). (See, for example, [2].) We can consider such a
BTD(v;1;3,2) to be an edge-disjoint decomposition of 2K;F, the complete graph on
v vertices with two edges between each pair of vertices and with a loop on each vertex
(denoted by the + sign), into triangles and tadpoles. Here a tadpole, corresponding

to the block aab, is as follows:

a b

The question “How many blocks may two designs with the same parameters, based
on the same set of elements, have in common?” has been considered in the past
for Steiner triple systems (Lindner and Rosa [8]), for Steiner quadruple systems
(Gionfriddo and Lindner [7] and Fu [6]) and also for group divisible triple systems
(Butler and Hoffman [4]). Related work has also appeared in [9]. The difference here,
for BTDs, is that the least possible value for the index, }, is 2. Consequently, to avoid
any difficulty concerning interpretation of numbers of common blocks, in the event
that some blocks might be repeated, in this paper we shall restrict our attention to
BTDs with no repeated blocks; such BTDs are called simple. (In the decomposition
of 2K there will be no repeated triangles.)

We define _
I1{v) = {k | there exist 2 simple BTD(v;1;3,2) with k blocks in common}.
(The subscript 1 refers to the value of p.)
The purpose of this paper is to prove:
MAIN THEOREM

L(v) ={k |0 <k <v¥3—-3o0rk =v2/3} for allv = 0 (mod 3) with the one
ezception: 5 ¢ I1(6).

For convenience, we define Ji(v) = {k | 0 < k < v?/3 — 3} U {v?/3}. Certainly
Ii(v) € Ji(v); we omit the easy proof. So we aim to prove that Ii(v) = Ji(v) for
v # 6, and I1(6) = J1(6) \ {5}.
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First we deal with the cases v = 3,6 and 9. We shall also need to deal with some of
the values in J1(12) and I;(15) separately, but we leave those until after our general
constructions.

From now on, we write blocks such as {z,y, 2} and {z,z,y} as zyz and zzy for
brevity.

1.2 The case v =3

Jl(3) = {01 3}
The two designs

0
1
2

N = O

1
2
0

N = O
N = O

2
0
1

Q.

provide us with I1(3) = {0, 3}, by taking the same
or these two designs (no common blocks).

esign twice (three common blocks)

1.3 The casev=2=6

J1(6) = {0,1,2,3,4,5,6,7,8,9,12}.

An exhaustive computer search has shown that 5 ¢ I1(6). Up to isomorphism,
there are precisely two BTD(6;1;3,2) (see Donovan [5]), and only one of these is
simple; call it design A: ‘

DD O B W DN
S O W N =
L W W W N
B DO DN = b
G O
OOt Oy Ot

A

Consider the (isomorphic) designs got from A by permuting elements; let

A =(12)4, Ay =(123)4, As=(14)4,  As = (14)(25)(36)4,
As=(25)4,  As=(14)(23)4,  Ar=(24)A.

Then it is easy to check that |[ANA| =12, |[ANAi| =9, |[AsNAr| =8, |[AsNA4s| =7,
|AN Az| = 6, [AN Ag| = 4, [A1N 4] = 3, [A43 N Ag| = 2, [43N Ag| = 1, and
|42 N Al = 0. So 1(6) = J1(6) \ {5}.

1.4 Thecasev =29

J1(9) = {0,1,2,...,23,24,27}.

To construct a simple BTD(9; p2 = 1;3,2), we need to partition 2K into triangles
and tadpoles, with no triangles repeated. We do this in different ways, so that we can
have two such BTDs with a prescribed number of blocks in common. For the vertices
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of 2Ky we take Zg = {0,1,2,3,4,5} and {a,b,c}. The edges of 2K we partition
into three parts:

Firstly, the graph Gy is 2K;" on vertices a, b and c. Secondly, Gy is the graph
on {0,1,2,3,4,5} with edges obtained by joining vertices i and j with one edge if
[¢ — 5] =1 or 2 (mod 6) and with two edges if |i — j| = 3 (mod 6). Finally, G3 is the
graph consisting of all the remaining edges of 2K

For 2 = 1,2,3, let S; be the set of possible numbers of cornmon blocks in two
partitions of the edges of G; into triangles and tadpoles. Then I1(9) contains S; +
Sy + S3.

G2:

=

Clearly, 51 = I;(3) = {0, 3}.

Now G2 has 18 edges; it is K¢ together with the edges {0, 3}, {1,4}, {2,5}. There
is essentially only one way to partition G into six triangles, and we can ‘label’ this
in just two ways:

031, 034, 142, 145, 253, 250 or
032, 035, 143, 140, 254, 251.

Thus Sy = {0,6}.

So far we have S + 53 = {0,3,6,9}.

Now consider the graph G3 consisting of the remaining edges of 2K It is in
fact the octahedron graph G4, together with a loop on each vertex, with three more
vertices, a, b, ¢, each of which is joined to each vertex of G4 by two edges.
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We claim that S3 contains {0, 6,10,14,18}. If we take the set

and then consider (abc)T = T, (ab)T = T3, we find that |TNTy| =0, [T NTy =6

and of course [T'N T} = 18.
Now let

al3
alb
a35
a02
a04
a24

all
a32
a20
a04
adb
abl

b12
523
b34
b45

c00
cll
c22
c33

b50 c44
b01 55

521 <00
510 cl1
05 22
b53 ¢33
b34 c44
b42 cb5

= U

Then |T' NU| = 14.

Finally, if V is obtained from T by removing the blocks (or triangles) al5, a35,
a02, a24, b12, 523, b45, b50 and replacing them with al2, a32, a05, a45, b15, 535, 502,
b24, we see that |V N T| = 10. So

S1+8:+S55 2 {0,3,6,9} +{0,6,10,14,18}
= {0,3,6,9,10,12,13,...,21,23,24,27}.

It remains to show that {1,2,4,5,7,8,11,22} C I1(9).

Let Dj be the design generated modulo 9 from the starter blocks {112, 136,137},
and let Dy = (12)D1, D3 = (13)D4, Dy = (124)D1, Ds = (135)Dy and Dg =
(1357)D1. Then [D4 n Dal =2, |Ds N Ds| =4, |Dyn Ds| =1, |D3 N Dy| = 8, and
|Dy N Ds| = 11.

Now let D* be the design:

112 223 334 445 551 661 771 882 992
138 139 148 149 246 247 256 257 679
356 359 367 378 468 479 578 589 689.

By removing the five blocks 112, 223, 334, 445, 551 and replacing them by
115, 221, 332, 443, 554, we have 22 € I1(9). Also |D* N Dy| = 5.
Finally, 1 € I1(9) because | Dy N (45)(23)D*| = 1. Hence I1(9) = J1(9).

2 Construction of designs

2.1 v to 2v, v odd

We shall use the idea of a BTD with a hole. A BTD of order w with a hole of size v
can be thought of as a triple (Q, P, B) where Q is a w-set, P is a v-subset of Q and
~ B is a collection of blocks (multi-sets of size k) of @ such that:
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(i) each pair of distinct elements of @ not both in P occurs exactly X times in the
blocks of B;

(ii) each element of @ \ P occurs twice in exactly ps blocks, and never more than
twice in any block;

(iii) each pair of elements of P, distinct or not, occurs in no blocks.

From now on BTD shall mean a BTD with block size three, index two and ps = 1.

In this section we shall describe how to construct a simple BTD of order 2v from
one of order v in the case that v is odd. We do this by constructing a BTD of order
2v with a hole of order v. This means that by changing the BTD of order v that is
put in the hole, we can fine-tune the number of blocks in common to two of these
BTDs of order 2u. Moreover, we shall be able to coarse-tune the number of common
blocks in two such BTDs of order 2v by adjusting the way in which we “sew” the
BTD of order v into the hole.

So now let v be odd, and consider the multi-set of v differences

D={0,1,1,2,2,..., (v — 1)/2,(v — 1)/2}.

Each one of these differences corresponds to a 2-factor in 2K .

For example, if v = 9, we have D = {0,1,1,2,2,3,3,4,4}, and the 2-factor cor-
responding to 0 is the set of 9 loops on the vertices, while in general the 2-factor
corresponding to difference d joins the vertices at distance d. So for difference 3
(when v = 9) we have three cycles of length 3: (036), (147), (258), while for differ-
ence 4 we have the one cycle of length 9: (048372615).

Let the original BTD of order v {which we put in the hole) be based on the
set {z1,%3,...,2Z4}. Now to each of the v differences in I we associate one of the v
elements {1, z3,...,2,}. For each edge ab in the 2-factor corresponding to difference
d (where a = b if d = 0, in which case the 2-factor consists of v loops) we take the
block abz; if z; is the element associated with the difference d. Of course we also take
the blocks of the simple BTD of order v based on the set {zy,z2,...,2,}. Since no
2-factor has a repeated edge (since v is odd here), the resulting BTD of order 2v has
no repeated blocks and so is simple.

2.2 v to 2u, v even

In this case we take the multi-set D of differences to be

{071a172)2s"':(’u"2)/27(1} “2)/2}\{'”/3)”/3}

This multi-set D contains v — 3 differences, each of which gives rise to a 2-factor
of 2K} with no repeated edges. However, the differences {v/3,v/3,v/2} remain; we
need to find three simple 2-factors corresponding to these differences. Call these three
2-factors Fy, Fp and F3, and their union P. Each component of P (and there are v/6
components) is in fact a triangular prism with all edges doubled; such a graph can
be partitioned into three cycles of length 6.

For example, when v = 6, the graph P is as follows:
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and this can be partitioned intpythe three 2-factors
Fy=(031524), Fp=(035142),  Fs = (041352).

The differences are D = {0,1,1} and the differences {2,2;3} are used in Fy, Fy and
Fs. ‘ a

o 1 1 Fy Fp . F3

ok ¥ 56 @2 | 50 @2 | 48 €1 | 26 &s | 26 @1
6 3ﬂ 1

2Kg_ ‘x

Each edge in each-2-factor is joined to the corresponding point z;, making a triangle
(that is, block) in the new design on 12 elements.
23 vto2v+3,veven

* First we take the differencé triple {1,2,3} which gives rise to the starter block 013 or
023 (modulo ¥ + 3). The remaining differences in this case are, since v + 3 is odd,

{0,1,2,3,4,4,5,5,...,(v/2) + 1,(v/2) + 1}.©  °

These correspond to v 2-factors of 2K +3, and to each one we associate a vertex from

the BTD of order v.
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The case v = 6 is illustrated below; here the multi-set of differencesis {0, 1,2, 3, 4, 4}.

0 1 2 3 4 4

0 3 .
0 ﬁ 3 | 8—3 ; o1 3—3 |03 023
' 6 124 134
1 8 217 4 5 85 gl 235 245
+ ﬂ 1v4 , 346 356

2K 2

9 7 3|5 6 1 3l 3| 457 or 467
. 7 : 568 578
. 6 43 81, 516 716 7] 670 680
. 1 v 781 701
o ; 802 812

2.4 vto2v+3,vodd

In this case v + 3 is even, so we need to avoid the difference (v +3)/2 in our multi-
set D ir order to avoid repeated blocks arising. So we take the difference triple
{1,(v +1)/2,(v + 3)/2}. This gives v + 3 triples, either from the starter block 0 1
(v +3)/2 or else from 0 (v+1)/2 (v + 3)/2. (These v + 3 blocks can be traded or
switched in the final design of order 2v +3.) »

The remaining v differences, {0,1,2,2,3,3,...,(v — 1)/2,(v — 1)/2,(v + 1)/2},
correspond to 2-factors in 2K g3

We illustrate this with the case v = 9:

056
167
278
389
49T
STE
6E0
701
812
923
T34
E45

2K

+
2K9
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3 Pairs of designs

Since the order of any BTD(v*; pg = 1;3,2) satisfies v* = 0 (mod 3), we have v* =
6m = 2(3m) or else v* = 6m + 3 = 2(3m) + 3, and 3m can be either odd or even.
So the previous four constructions in Section 2 yield BTDs of all admissible orders
(given a BTD of order 3).

We use these constructions to produce two BTDs based on the same set of elements
(of size 2v or 2v + 3). Having constructed one BTD, the number of common blocks
in the second design can be adjusted by

(i) changing the allocation of the v elements in the hole to the v 2-factors;

(ii) changing the embedded BTD of order v in the hole (I3(v) having been deter-
mined by induction); ‘

(iii) in the v to 2v+3 cases, possibly trading the single orbit of v+3 triples outside
the hole.

Explicitly, we have shown the following, for v = 0 (mod 3): Ifi € {0,1,...,v—2,v},
and j € Iy(v), then iv +j € I}(2v). Andif£=0or 1, then 4(v+3) +j + (v +3) €
Ii(2v + 3).

For the induction to work, we must show that for all k& € J1(2v) (respectively,
J1(2v + 3)), the appropriate ¢ and j (respectively, 4, j and £), can be found so that
k = 1v + j (respectively, k = i(v + 3) + j + £(v + 3)). This is easy, provided that both
v 2 6 and I1(v) = Ji(v). This is not true if v = 3, but we have determined I,(6) and
I3(9). Also it is not quite true if v = 6, since 5 ¢ I1(6). We fill the gaps in I;(12) and
I1(15) in the next section.

4 The cases v =12 and v = 15

4.1 v =12

Note that J1(12) = {0,1,2,...,45,48}. Also 5 ¢ I1(6) and so the construction
described above does not quite yield the full set of values in J1(12). However, we
can obtain all except 41 common blocks by using the above construction, if we
note the following permutations giving the appropriate assignments of six elements
{z1,22,...,z6} to the six 2-factors, three from the differences {0,1,1} and three, F,
Fy, F3, from the differences {2,2,3} as described in Section 2.2. (Note that Fy, Fy
and F3 in this case have, pairwise, three edges in common.)

Let j € 11(6) = Jl(ﬁ) \ {5} = {0) 1,2,3,4,6,7,8,9, 12}
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number of
common blocks

0 1 1 Fy Fy F3 36+ 7
0 1 1 F F F changes 6 blocks 30+
0 1 1 F, F3 R changes 9 blocks 27T +3
0 1 F F K1 changes 12 blocks 24+j
FF1 1 F, 0 Fy changes 15 blocks 21435
1 1 F3 Fy F, 0 changes 18 blocks 18+
FF 0 1 F 1 F changes 21 blocks 15+7
1 0 F; Fi Fp 1 changes 24 blocks 12475
1 0 F F; 1 Fs changes 27 blocks 947
Fp i 0 FR 1 1 changes 30 blocks 6+7
FF F5 0 F 1 1 changes 33 blocks 3+
F, F F3 0 1 1 changes 36 blocks 0+7

We see from the right-hand column in the above table that this construction yields
Ji1(12) \ {41} C I1(12). The following example deals with the case of 41 common
blocks. '

EXAMPLE 4.1 41 € I1(12).

We use the vertex set {0,1,2,...,9,T, E}. One BTD is as follows.

001% 036x 137« 23T
112+ 039 13E 238
220+ 047x 146+ 249
334 04T 148 2UE
445 058 159 257
553  O05E 15T 256
667 069 ~ 16E  26E
778 07T 179 219
886 08E 18T 28T
99T 369 46T 56T
TTE 31T ATE 5TE
EE9 38E 489 589

By replacing the asterisked () blocks above by the set
002 110 221 037 046 136 147

we find that 41 € I;(12).

4.2 v=15

We modify the construction given in Section 2.3 with v = 6. Instead of taking the
collection of differences {0,1,2,3,4,4} for the 2-factors, and {1,2,3} for the starter
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triple 013 or 023, we take the collection D = {0,1,1,2,3,4} and use {2, 3,4} for the
starter triple 025 or 035 (mod 9). We retain from D the differences 0, 2, 3, which
give rise, respectively, to the following three 2-factors

00, 11, 22, 33, 44, 55, 66, 77, 88
02, 24, 46, 68, 81, 13, 35 57, 70;
03, 36, 60, 14, 47, 71, 25 58,  82.

Then we rearrange the edges arising from the differences 1, 1 and 4, which are:
01, 12, 23, 34, 45, 56, 67, 78, 80 (twice each)
and 04, 48, 83, 37, 72, 26, 61, 15, 50,

and take instead the following three 2-factors, each of which is a nine-cycle:

Cr: 01, 12, 26, 67, 78, 83, 34, 45  50;
Cy: 12, 23, 37, 78, 80, 04, 45 56, 61
Cs: 23, 34, 48, 8, 01, 15 56, 67, T2

(These use up precisely the same edges.) The advantage of doing this is that C;
and Cj (i # j) have 3 common edges. So any two of the six 2-factors arising from
{0,2,3,C1,Cy,C3}, say X and Y, have:

9 edges in common if X =Y

3 edges in common if X = C;, Y = Cj, i # j;

0 edges in common otherwise.

The following table, exhibiting suitable permutations of 0, 2, 3, C1, Ca, C3, shows

that J1(15) \ {68} C I1(15). (Example 4.2 below deals with the case of 68 common
blocks.)

Here j € I1(6) = J1(6) \ {5} = {0,1,2,3,4,6,7,8,9,12}.

69

number of
common blocks (£ =0 or 1)

0 2 3 C1 Cy Cs 54+74+9¢
0 2 3 C1 C3 Oy changes 12 blocks 42 + 74 9¢
2 0 3 C Cp Cs changes 18 blocks 36 + 5+ 9¢
0 2 C C3 Cy 3 changes 24 blocks 30+7+9¢
2 3 0 C1 Cy Cs changes 27 blocks 2T +7+9¢
0 3 2 C C3 C changes 30 blocks 24437494
0 C1 2 C3 Cy 3 changes 33 blocks 21 +35+9¢
0 Cy C3 C; 2 3 changes 36 blocks 18 +7+9¢
2 3 0 C O3 Co changes 39 blocks 15+7+9¢
2 C1 0 Ci; Cy 3 changes 42 blocks 12+5+49¢
2 3 0 Cy C3 Oy changes 45 blocks 9+4+7+9
2 0 C 3 C3 O changes 48 blocks 6+ +9¢
Ci C; 0 C3 2 3 changes 51 blocks 3+7+%
Ci Co C3 0 2 3 changes 54 blocks 0+7+9



EXAMPLE 4.2 68 € I;(15).

001x 036 03E 047+ 04B
054 05C 064 07D 089
08D 09E 0BC 112x 137x
138 146 14E 15B 15D
169 178 189 1AC 1AD
1BC 220% 239 23C 244
24E 258 259 26C 26E
2TB 27D 284 2BD 334
364 37C 388 39D 3AD
3BE 445 46B 474 48C

48D 49C 49D 553 56D
56F 579 5TB 58C 5AE
667 69C 6BD 778 T9E

TAC 886 8AE 8BE 994
AAB BBY CCD DDE EEC

By replacing the asterisked () blocks above by the set
037 046 136 147 002 110 221

we find that 68 € I;(15).

5 Conclusion

We now have our required result:

MAIN THEOREM

There exist two simple balanced ternary designs of order v = 0 (mod 3) with block size
3, indez 2 and p3 = 1, having k common blocks, for all k € {0,1,...,2?/3 —3,v%/3},
with the one exception that there do not ezist two such BTDs of order 6 having 5

common blocks.
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