On shifted intersecting families with respect to posets

Morimasa Tsuchiya

Department of Mathematical Sciences

Tokai University

Hiratsuka, Kanagawa 259-12, JAPAN

Abstract. In this paper, we show that for a shifted complex $\mathcal{F} \subseteq 2^P$ with respect to a poset P with minimum element 0 and an intersecting subfamily $\mathcal{G} \subseteq \mathcal{F}$, $\#\mathcal{G} \cong \#\{F \in \mathcal{F}; 0 \in F\}$.

We denote the set $\{1,2,..,n\}$ by [n], the family of all subsets of a set X by 2^X . #F denotes the number of elements of a set F. Let \mathcal{F} be a family of subsets of [n], i.e., $\mathcal{F} = \{F_1,..,F_m\}$ where F_1 ,..., F_m are distinct subsets of [n]. A family \mathcal{F} is *intersecting* if for every F_i , $F_j \in \mathcal{F}, F_i \cap F_j \neq \emptyset$. For families $\mathcal{G}, \mathcal{F} \subseteq 2^{[n]}, \mathcal{G}$ and \mathcal{F} are cross-intersecting if $G \cap F \neq \emptyset$ for $\forall G \in \mathcal{G}$ and $\forall F \in \mathcal{F}$. A family $\mathcal{F} \subseteq 2^{[n]}$ is called a *complex* if $G \subseteq F \in \mathcal{F}$ implies $G \in \mathcal{F}$. We already know the following results. For an intersecting family $\mathcal{F} \subseteq$ $2^{[n]}, \#\mathcal{F} \leq 2^{n-1}$ ([1]) and for a complex $\mathcal{F} \subseteq 2^{[n]}$ and cross-intersecting subfamilies $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}, \#\mathcal{G} + \#\mathcal{H} \leq \#\mathcal{F}$ ([4]).

For F, $G \subseteq [n]$, if there exists a one-to-one mapping $f: F \longrightarrow G$ with $x \leq f(x)$ for each $x \in F$, then we write $F \leq G$. $\mathcal{F} \subseteq 2^{[n]}$

Australasian Journal of Combinatorics 5(1992), pp.53-58

is V-hereditary if $G \leq F \in \mathcal{F}$ implies $G \in \mathcal{F}$. V.Chvatal introduced this notion and proved the next result.

Theorem A (1974 [2]). Let $\mathcal{F} \subseteq 2^{[n]}$ be a V-hereditary family and \mathcal{G} be an intersecting subfamily of \mathcal{F} . Then $\#\mathcal{G} \leq \#\{F \in \mathcal{F}; 1 \in F\}$.

H.Era extended the notion of V.Chvatal and also showed the following result. Let P be a finite ranked poset with the minimum element 0. For F, $G \subseteq P$, if there exists a one-to-one mapping $f: F \longrightarrow G$ with $x \leq f(x)$ in P or x and f(x) are incomparable for each $x \in F$, then we write $F \leq_P G$. $\mathcal{F} \subseteq 2^P$ is P-hereditary if $G \leq_P F \in \mathcal{F}$ implies $G \in \mathcal{F}$.

Theorem B ([3]). Let P be a finite ranked poset with the minimum element 0 and $\mathcal{F} \subseteq 2^P$ be a P-hereditary family. For an intersecting subfamily \mathcal{G} of \mathcal{F} , $\#\mathcal{G} \leq \#\{F \in \mathcal{F}; 0 \in F\}$.

Let P be a finite poset with the minimum element 0. For a family $\mathscr{F} \subseteq 2^{P}$ and $\alpha \leq \beta$ in P, we define $S_{\alpha,\beta}(F) = \begin{cases} (F - \{\beta\}) \cup \{\alpha\} \text{ if } \alpha \notin F, \beta \in F, (F - \{\beta\}) \cup \{\alpha\} \notin \mathcal{F} \\ F & \text{otherwise} \end{cases}$ for each $F \in \mathscr{F}$ and $S_{\alpha,\beta}(\mathscr{F}) = \{S_{\alpha,\beta}(F); F \in \mathscr{F}\}$. Then $\#S_{\alpha,\beta}(\mathscr{F}) = \#\mathscr{F}$ and if \mathscr{F} is complex and intersecting, then $S_{\alpha,\beta}(\mathscr{F})$ is also complex and intersecting.

Proposition 1. For a finite poset P and $\alpha \leq \beta$ in P, if $\mathcal{F} \subseteq 2^{P}$ is complex, then $S_{\alpha,\beta}(\mathcal{F})$ is also complex. *Proof.* We suppose that there exist G, $F \subseteq P$ such that $G \subseteq F \in$ $S_{\alpha,\beta}(\mathcal{F})$ and $G \notin S_{\alpha,\beta}(\mathcal{F})$. Case 1. $F \in \mathcal{F}$. Since \mathcal{F} is complex, $G \in \mathcal{F}$. So $\alpha \notin G$, $\beta \in G$, $(G - \{\beta\}) \cup \{\alpha\}$ $\notin \mathcal{F}$ and $\beta \in F$. If $\alpha \in F$, then $(G - \{\beta\}) \cup \{\alpha\} \subseteq F$, which contradicts the property that \mathcal{F} is complex. If $\alpha \notin F$, then $(F - \{\beta\}) \cup \{\alpha\}$ $\in \mathcal{F}$ and $(G - \{\beta\}) \cup \{\alpha\} \subseteq (F - \{\beta\}) \cup \{\alpha\}$, which contradicts the property that \mathcal{F} is complex.

Case 2. $F \notin \mathcal{F}$.

Then $\alpha \in F$, $\beta \notin F$ and $(F-\{\alpha\}) \cup \{\beta\} \in \mathcal{F}$. If $G \in \mathcal{F}$, then $\alpha \notin G$, $\beta \in G$ and $(G-\{\beta\}) \cup \{\alpha\} \notin \mathcal{F}$. So $G \notin F$, which is a contradiction. If $G \notin \mathcal{F}$, then $(G-\{\alpha\}) \cup \{\beta\} \subseteq (F-\{\alpha\}) \cup \{\beta\}$ and $G' = (G-\{\alpha\}) \cup \{\beta\} \in \mathcal{F}$. Since $G' \cap \{\alpha,\beta\} = \{\beta\}$, $(G'-\{\beta\}) \cup \{\alpha\}$ $= G \in S_{\alpha,\beta}(\mathcal{F})$, which is a contradiction.

Proposition 2. For a finite poset P and $\alpha \leq \beta$ in P, if $\mathcal{F} \subseteq 2^P$ is intersecting, then $S_{\alpha,\beta}(\mathcal{F})$ is also intersecting.

Proof. We suppose that there exist G, $F \in S_{\alpha,\beta}(\mathcal{F})$ such that $G \cap F$ = \emptyset . Since \mathcal{F} is intersecting, both of G and F do not belong to \mathcal{F} . We assume that $F \notin \mathcal{F}$. Thus there exists $H \in \mathcal{F}$ such that $S_{\alpha,\beta}(H)$ = F and $H \neq F$. By the definition of (α,β) -shifting, $H = (F - \{\alpha\}) \cup \{\beta\}$ $\in \mathcal{F}, \alpha \in F$ and $\beta \notin F$. If $G \notin \mathcal{F}$, then $\alpha \in G$ and $F \cap G \neq \emptyset$, which is a contradiction. Thus $G \in \mathcal{F}, \beta \in G$ and $\alpha \notin G$. Since $S_{\alpha,\beta}(G) = G$, $(G - \{\beta\}) \cup \{\alpha\} \in \mathcal{F}$ by the definition of (α,β) -shifting. Then $((F - \{\alpha\}) \cup \{\beta\}) \cap ((G - \{\beta\}) \cup \{\alpha\}) =$ $((F - \{\alpha\}) \cap (G - \{\beta\})) \cup (\{\beta\} \cap (G - \{\beta\})) \cup ((F - \{\alpha\}) \cap \{\alpha\}) \cup$ $(\{\alpha\} \cap \{\beta\}) = (F - \{\alpha\}) \cap (G - \{\beta\}) = \emptyset$, contradicting the fact that \mathcal{F} is an intersecting family.

A family \mathcal{F} is *shifted* if $S_{\alpha,\beta}(\mathcal{F}) = \mathcal{F}$ for all α , β such that $\alpha < \beta$ in *P*. We obtain the following result which is concerned with shifted complexes and intersecting families.

Theorem 3. Let P be a finite poset with the minimum element 0 and $\mathcal{F} \subseteq 2^P$ be a shifted complex. For an intersecting subfamily \mathcal{G} of \mathcal{F} , $\#\mathcal{G} \cong \#\{F \in \mathcal{F}; 0 \in F\}.$

Proof. Let $\mathcal{F}(\mathbf{0}) = \{F - \{\mathbf{0}\}; \mathbf{0} \in F \in \mathcal{F}\}\$ and $\mathcal{F}_{\mathbf{0}} = \{F \in \mathcal{F}; \mathbf{0} \notin F\}$. By Proposition 2, we can assume that \mathcal{G} is shifted. Then we define the family $\mathcal{G}_{*} = \{H; H \subseteq \exists G \in \mathcal{G}\}\$, that is, if $G \in \mathcal{G}$ and $H \subseteq G$, then $H \in \mathcal{G}_{*}$. In the following we show that $\mathcal{G}_{*} = \{H; H \subseteq \exists G \in \mathcal{G}\}\$ is a shifted complex.

Suppose that \mathscr{G}_* is not a shifted complex. Then there exist α , $\beta \in P$ and $H \in \mathscr{G}_*$ such that $\alpha \leq \beta$, $H \cap \{\alpha, \beta\} = \{\beta\}$ and $(H - \{\beta\}) \cup \{\alpha\} \notin \mathscr{G}_*$. By definition of \mathscr{G}_* , there exists $G \in \mathscr{G}$ such that $H \subseteq G$. If $G \cap \{\alpha, \beta\} = \{\beta\}$, then $(G - \{\beta\}) \cup \{\alpha\} \in \mathscr{G}$ because \mathscr{G} is shifted. Since $(H - \{\beta\}) \cup \{\alpha\} \subseteq (G - \{\beta\}) \cup \{\alpha\} \in \mathscr{G}$, $(H - \{\beta\}) \cup \{\alpha\} \in \mathscr{G}_*$, which is a contradiction. If $G \cap \{\alpha, \beta\} \neq \{\beta\}$, then $\alpha, \beta \in G$. Since $(H - \{\beta\}) \cup \{\alpha\} \subseteq (G - \{\beta\}) \cup \{\alpha\} \subseteq G \in \mathscr{G}$, $(H - \{\beta\}) \cup \{\alpha\} \in \mathscr{G}_*$, which is a contradiction.

Thus $\mathscr{G}_* = \{H; H \subseteq \exists G \in \mathscr{G}\}\$ is a shifted complex and $\mathscr{G} \subseteq \mathscr{G}_* \subseteq \mathscr{F}_*$. So for $\mathscr{G}_*(\mathbf{0}) = \{G - \{\mathbf{0}\}; \mathbf{0} \in G \in \mathscr{G}_*\}, \#\mathscr{G}_*(\mathbf{0}) \cong \#\mathscr{F}(\mathbf{0}).$ Therefore without loss of generality we can assume that $\mathscr{G}_* = \mathscr{F}$. For $\forall H \in \mathscr{G}_{*-}\mathscr{G}, H \subset \exists G \in \mathscr{G}$. Since \mathscr{G}_* is shifted, $\mathbf{0} \notin H$ implies $H \cup \{\mathbf{0}\} \in \mathscr{G}_{*-}\mathscr{G}, H \subset \exists G \in \mathscr{G} \in \mathscr{G}, \mathbf{0} \notin G\}$ and $\mathscr{C} = \{C \in \mathscr{F}_0; \exists G \in \mathscr{G}_0, C \cap G = \mathscr{O}\}.$ Since \mathscr{G}_0 and $\mathscr{F}_0 - \mathscr{C}$ are cross-intersecting, $\#\mathscr{G}_0 + \#(\mathscr{F}_0 - \mathscr{C}) \cong \#\mathscr{F}_0$ and therefore $\#\mathscr{C} \cong \#\mathscr{G}_0$. For $\mathscr{C}^+ = \{C \cup \{\mathbf{0}\}; C \in \mathscr{C}\}, \#\mathscr{C}^+ = \#\mathscr{C}.$ For $C \in \mathscr{C}$ and $G \in \mathscr{G}_0$, since $\mathbf{0} \notin G$ and $C \cap G = \mathscr{O}, (\{\mathbf{0}\} \cup C) \cap G$ $= \mathscr{O}.$ By the fact that \mathscr{G} is intersecting, $\{\mathbf{0}\} \cup C \notin \mathscr{G}.$ So $\mathscr{C}^+ \cap \mathscr{G}$ $= \mathscr{O}.$ Since every element of $(\mathscr{G} - \mathscr{G}_0) \cup \mathscr{C}^+$ contains $\mathbf{0}$ and $\mathscr{C}^+ \subseteq \mathscr{F},$ $\#\mathscr{G} \cong \#\mathscr{G} - \#\mathscr{G}_0 + \#\mathscr{C} = \#((\mathscr{G} - \mathscr{G}_0) \cup \mathscr{C}^+) \cong \#\mathscr{F}(\mathbf{0}).$

Proposition 4. Let P be a finite poset with the minimum element 0. If

 $\mathcal{F} \subseteq 2^{P}$ is a *P*-hereditary family, then \mathcal{F} is a shifted complex. *Proof.* We assume that $G \subseteq 2^{P}$ and $G \subseteq \exists F \in \mathcal{F}$. Since the mapping f from G to F such that f(x) = x is a one-to-one mapping, $G \leq_{P} F$. By the property that \mathcal{F} is a *P*-hereditary family, $G \in \mathcal{F}$. Thus \mathcal{F} is complex.

We assume that \mathcal{F} is not shifted. Then there exist α and β such that α , $\beta \in P$ and $\alpha \leq \beta$ and $F \in \mathcal{F}$ such that $F \cap \{\alpha, \beta\} = \{\beta\}$ and $(F - \{\beta\}) \cup \{\alpha\} \notin \mathcal{F}$. We define the mapping f from $(F - \{\beta\}) \cup \{\alpha\}$ to F as follows:

 $f(x) = \begin{cases} x & \text{if } x \neq \alpha \\ \beta & \text{if } x = \alpha \end{cases}$

Since $\alpha \leq \beta$ in P, $x \leq f(x)$ for $\forall x \in (F - \{\beta\}) \cup \{\alpha\}$. Thus f is a one-to-one mapping and $(F - \{\beta\}) \cup \{\alpha\} \leq_P F$. By the property that \mathcal{F} is a P-hereditary family, $(F - \{\beta\}) \cup \{\alpha\} \in \mathcal{F}$, which is a contradiction.

By Proposition 4 and Theorem 3, we also obtain Theorem B. However the converse of Proposition 4 does not hold. For example, for the poset of Figure 1, $\mathcal{F} = \{ \{0,1,2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0\}, \{1\}, \{2\} \}$ is a shifted complex. Since $\{3\} \leq_P \{2\}$ and $\{3\} \notin \mathcal{F}, \mathcal{F}$ is not *P*-hereditary. So we do not obtain Theorem 3 from Theorem B.

We can easily see that \mathcal{F} is a V-hereditary family if and only if \mathcal{F} is a shifted family with respect to a linear order set. Let P be a poset with the minimum element and l(P) be a liner extension of P. If \mathcal{F} is a shifted family with respect to l(P), then \mathcal{F} is a shifted family with respect to l(P), then \mathcal{F} is a shifted family with respect to P. So we also obtain Theorem A by Theorem 3. But the converse does not hold. For example, $\mathcal{F} = \{\{0,1,2\}, \{0,3,4\}\}$ is a shifted family with respect to the poset of Figure 1 and is not a shifted family with respect to the liner extension $0 \leq 1 \leq 2 \leq 3 \leq 4$.

57

Figure 1.

References.

[1] I., Anderson, Combinatorics of finite sets, Oxford Univ. Press, (1987).
[2] V., Chvatal, Intersecting families of edges in hypergraphs having the hereditary property, Hypergraph Seminar, LNM 411, Springer (1974) 61-66.

[3] H., Era, A comment on a Chvatal's conjecture, preprint.

[4] J., Marica and J., Schonheim, Differences of sets and a problem of Graham, Can. Math. Bull. 12 (1969) 635-637.