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Abstract. In this paper, we show that for a shifted complex :Jr ~ 2P 

with respect to a poset P with minimum element 0 and an intersecting 

subfamily ~ ~ :Jr, #~ ~ #{FE:Jr;OEF}. 

We denote the set {1,2, .. ,n} by [n], the family of all subsets of a 

set X by 2x , #F denotes the number of elements of a set F. Let :Jr 

be a family of subsets of [n], i.e., :Jr = {F1, .. ,Fm } where F1 Fm 

are distinct subsets of [n]. A family g, is intersecting if for every F i , 

Fj E :Jr, Fi () Fj '* 0. For families ~, g, S;;; 2[n], ~ and :Jr are 

cross-intersecting if G () F '* 0 for V G E ~ and V F E :Jr. A 

family :Jr ~ 2[n] is called a complex if G S;;; F E g, implies G E :Jr. 

We already know the following results. For an intersecting family :Jr S;;; 

2[n J, #:Jr ~ 2n- 1 ([1]) and for a complex :Jr S;;; 2[n] and cross-intersecting 

subfamilies ~, Je ~ :Jr, #~ + #Je ~ # g, ([4]). 

For F, G ~ [n], if there exists a one-to-one mapping I: F --> G 

with x ~ I(x) for each x E F, then we write F ~ G. :Jr ~ 2[n] 
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is V-hereditary if G ~ FE ;} implies G E ;}. V.Chvatal introduced 

this notion and proved the next result. 

Theorem A (1974 [2]). Let;} ~ 2[n] be a V-hereditary family and ~ 

be an intersecting subfamily of ;}. Then # ~ ~ #{ FE;} ; 1 E F }. • 

H.Era extended the notion of V.Chvatal and also showed the following 

result. Let P be a finite ranked poset with the minimum element O. 

For F, G ~ P, if there exists a one-to-one mapping f: F --> G with 

x ~ f(x) in P or x and f(x) are incomparable for each x E F, then 

we write F ~p G. ;} ~ 2 P is P-hereditary if G ~ p FE;} 

implies G E ;}. 

Theorem B ([3]). Let P be a finite ranked poset with the minimum 

element 0 and ;} ~ 2P be a P-hereditary family. For an intersecting 

subfamily i:§ of:f, #~ ~#{FE;} ;OEF} .• 

Let P be a finite poset with the minimum element O. For a family 

;} ~ 2P and a ~ (3 in P, we define 

{ 
(F-{(3})u{a} if ai-F, (3EF,(F-{(3})U{a}i-;} 

S a,/3(F) = 
F otherwise 

for each FE;} and Sa,/3(;}) = {Sa,/3(F); FE:J}. Then #Sa,/3(;}) 

= #:J and if ;} is complex and intersecting, then Sa, /3 (;}) is also 

complex and intersecting.' 

Proposition 1. For a finite poset P and a, ~ (3 in P, if ;} ~ 2P is 

complex, then Sa, /3 (;}) is also complex. 

Proof. We suppose that there exist G, F ~ P such that G ~ F E 

Sa,/3(;}) and G i- Sa,/3(;})' 

Case 1. FE:;} 
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Since Y is complex, G E Y. So a ¢. G, (3 E G, (G-{ (3)) u { a} 

¢. Y and (3 E F. If a E F, then (G-{(3})u{a} ~ F, which 

contradicts the property that g; is complex. If a ¢. F, then (F - { (3 }) u { a } 

E Y and (G-{ (3}) u {a} ~ (F -{ (3}) u {a}, which contradicts the 

property that g, is complex. 

Case 2. F ¢. g; . 

Then a E F, (3 ¢. F and (F-{a})U{!3} E Y. If G E Y, then 

a ¢. G, !3 E G and (G-{!3})u{a} ¢. Y. So G i. F, which is a 

contradiction. If G ¢. Y, then (G-{ a}) u {!3} ~ (F -{ a}) u {!3} and 

G' = (G-{a})u{!3} E g;. Since G'n{a,!3} = {.B}, (G'-{!3})u{a} 

= G E Sa,(3(g;), which is a contradiction. • 

Proposition 2. For a finite poset P and a ~ !3 in P, if g; ~ 2P is 

intersecting, then Sa, (3 (Y) is also intersecting. 

Proof. We suppose that there exist G , F E Sa,(3(g;) such that GnF 

= O. Since Y is intersecting, both of G and F do not belong to Y. 

We assume that F ¢. g;. Thus there exists HEY such that Sa. (3 (H) 

= F and H =I F. By the definition of (a, !3)-shifting, H = (F-{ a}) u {(3} 

E Y, a E F and !3 ¢. F. If G ¢. :J, then a E G and F n G =I 

0, which is a contradiction. Thus G E :J, !3 E G and a ¢. G. 

Since Sa, (3(G) = G, (G-{(3})u{a} E g; by the definition of 

( a, !3 )-shifting. Then «F-{a))u{!3}) n «G-{!3})u{a}) 

«F-{ a })n(G-{ (3}» u ({(3}n(G-{!3}» u «F -{ a}) n { a }) u 

({a}n{(3}) = (F-{a})n(G-{!3}) = 0, contradicting the fact that Y 

is an intersecting family. • 

A family g; is shifted if Sa,(3(Y) = g; for all a, !3 such that a 

< (3 in P. We obtain the following result which is concerned with 

shifted complexes and intersecting families. 
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Theorem 3. Let P be a finite poset with the minimum element 0 and 

S S;;; 2P be a shifted complex. For an intersecting subfamily ~ of S, 

#~ ~ #{ FES; OEF}. 

Proof. Let :reO) = {F-{O}; OEFE fJ } and So = { FE S ; OiF}. By 

Proposition 2, we can assume that ~ is shifted. Then we define the 

family ~... = {H ; H S;;; :3 G E ~}, that is, if G E ~ and H S;;; G, then 

H E ~.... In the following we show that ~... = {H ; H s;;: :3 G E ~} is a 

shifted complex. 

Suppose that ~.. is not a shifted complex. Then there exist a, /3 

E P and H E ~.. such that a ;;;;;; /3 , H n { a, /3 } { /3} and 

(H- {/3})v{a} i ~ ... By definition of ~ .. , there exists G E ~ such 

that H S;;; G. If G n { a ,/3} = {/3}, then (G - {/3}) V { a} E ~ because 

~ is shifted. Since (H-{/3})V{a} S;;; (G- {/3})v{a} E ~, 

(H - { /3 }) V { a} E ~ .. , which is a contradiction. If G n { a , /3} ::/. {/3}, 

then a, /3 E G. Since (H - {/3}) V {a} S;;; (G - {/3}) V {a} S;;; G E ~, 

(H - {/3}) V { a} E ~ .. , which is a contradiction. 

Thus ~... = {H ; H S;;; :3 G E ~} is a shifted complex and ~ S;;; ~.. S;;; 

S. So for ~ .. (O) = {G-{O}; OEGE~ .. }, #~ .. (O) ~ #S(O). Therefore 

without loss of generality we can assume that ~.. == g;. For Y H E 

~ .. -~, H c :3G E ~. Since ~ .. is shifted, 0 i H implies RU{O} 

E ~... Let ~ 0 == { G E ~ ; 0 i G } and '{5 = { C E fJ 0; :3 G E ~ 0' C n G == 0'}. 

Since ~o and So- 'f3 are cross-intersecting, #~o + #(So- '(3) ;;;;;; #fJ o 

and therefore #'f3 ~ #~o. For '{5+ ={CV{O};C E 'f3}, #'f3+ =#'{5. 

For C E 'f3 and G E ~o' since 0 i G and enG = 0, ({O}vC)nG 

= 0'. By the fact that ~ is intersecting, {O} V c i ~ . So 'B + n ~ 

= 0. Since every element of (~- ~ 0) U '{5 + contains 0 and 'f3 + S;;; S, 

#~ ;;;;;; #~ - #~o + #'{5 == #«~ - ~o)U '(5+) ~ #S(O). • 

Proposition 4. Let P be a finite poset with the minimum element O. If 
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g. , 2P is a P-hereditary family, then g. is a shifted complex. 

Proof. We assume that G , 2P and G , J F E: g.. Since the mapping 

f from G to F such that f(x) = x is a one-to-one mapping, G ~ p F. 

By the property that g. is a P-hereditary family, G E: g.. Thus g. is 

complex. 

We assume that g. is not shifted. Then there exist a and /3 such 

that a .f3 E: P and a ~ /3 and F E: g. such that F n { a, /3} = {/3} 

and (F-{/3})V{a} i g.. We define the mapping f from (F-{/3})V{a} 

to F as follows: 

{

X if x -=I a 
f(x) = 

/3 if x = a. 
Since a ~ /3 in P, x ~ f(x) for \Ix E: (F-{/3})v{a}. Thus f is 

a one-to-one mapping and (F-{/3})v{a} ~p F. By the property that 

g. is a P-hereditary family, (F-{ /3}) u {a} E: g., which is a contradiction . 

• 
By Proposition 4 and Theorem 3, we also obtain Theorem B. However 

the converse of Proposition 4 does not hold. For example, for the poset 

of Figure 1, :J = {{O,1,2}, {O,l}, {O,2}, {1,2}, {a}, {I}, {2}} is a 

shifted complex. Since {3} ~P {2} and {3} i g., g. is not 

P-hereditary. So we do not obtain Theorem 3 from Theorem B. 

We can easily see that ,Cj is a V-hereditary family if and only if g. 

is a shifted family with respect to a linear order set. Let P be a poset 

with the minimum element and I(P) be a liner extension of P. If g. is 

a shifted family with respect to I(P), then g. is a shifted family with 

respect to P. So we also obtain Theorem; A by Theorem 3. But the 

converse does not hold. For example, :J = {{O,1,2}, {O,3,4}} is a 

shifted family with respect to the poset of Figure 1 and is not a shifted 

family with respect to the liner extension ° ~ 1 ~ 2 ~ 3 ~ 4. 
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Figure 1. 
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