On shifted intersecting families with respect to posets

Morimasa Tsuchiya

Department of Mathematical Sciences

Tokai University

Hiratsuka, Kanagawa 259-12, JAPAN

Abstract. In this paper, we show that for a shifted complex $\mathscr{F} \subseteq 2^{P}$ with respect to a poset P with minimum element 0 and an intersecting subfamily $\mathscr{G} \subseteq \mathscr{F}, \# \mathscr{G} \leqq \#\{F \in \mathscr{F} ; \mathbf{0} \in F\}$.

We denote the set $\{1,2, \ldots, n\}$ by $[n]$, the family of all subsets of a set X by 2^{X}. \#F denotes the number of elements of a set F. Let \mathscr{F}^{H} be a family of subsets of $[n]$, i.e., $\mathscr{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ where F_{1}, \ldots, F_{m} are distinct subsets of [n]. A family \mathscr{F}^{\prime} is intersecting if for every F_{i}, $F_{j} \in \mathscr{F}, \quad F_{i} \cap F_{j} \neq \varnothing$. For families $\mathscr{G}, \mathscr{F} \subseteq 2^{[n]}, \mathscr{G}$ and \mathscr{F} are cross-intersecting if $G \cap F \neq \varnothing$ for $\forall G \in \mathscr{H}$ and $\forall F \in \mathscr{F}$. A family $\mathscr{F} \subseteq 2^{[n]}$ is called a complex if $G \subseteq F \in \mathscr{F}$ implies $G \in \mathscr{F}$. We already know the following results. For an intersecting family $\mathscr{F} \subseteq$ $2^{[n]}, \# \mathscr{F} \leqq 2^{n-1}([1])$ and for a complex $\mathscr{F} \subseteq 2^{[n]}$ and cross-intersecting subfamilies $\mathscr{G}, \mathcal{H} \subseteq \mathscr{F}, \# \mathscr{H}+\# \mathscr{H} \leqq \# \mathscr{F}$ ([4]).

For $F, G \subseteq[n]$, if there exists a one-to-one mapping $f: \mathrm{F}-->G$ with $x \leqq f(x)$ for each $x \in F$, then we write $F \leqq G . \mathscr{F}^{F} \subseteq 2^{[n]}$
is V-hereditary if $G \leqq F \in \mathscr{F}$ implies $G \in \mathscr{F}$. V.Chvatal introduced this notion and proved the next result.

Theorem A (1974 [2]). Let $\mathcal{F} \subseteq 2^{[n]}$ be a V-hereditary family and \mathscr{G} be an intersecting subfamily of \mathscr{F}. Then $\# \mathscr{Y} \leqq \#\{F \in \mathscr{F} ; 1 \in F\}$.
H.Era extended the notion of V.Chvatal and also showed the following result. Let P be a finite ranked poset with the minimum element 0 . For $F, G \subseteq P$, if there exists a one-to-one mapping $f: \mathrm{F} \rightarrow G$ with $x \leqq f(x)$ in P or x and $f(x)$ are incomparable for each $x \in \mathrm{~F}$, then we write $F \leqq_{P} G$. FF $\subseteq 2^{P}$ is P-hereditary if $G \leqq_{P} F \in \mathscr{F}$ implies $G \in \mathscr{F}$.

Theorem B ([3]). Let P be a finite ranked poset with the minimum element 0 and $\mathscr{F} \subseteq 2^{P}$ be a P-hereditary family. For an intersecting subfamily \mathscr{G} of $\mathscr{F}, \# \mathscr{G} \leqq \#\{F \in \mathscr{F} ; \mathbf{0} \in F\}$.

Let P be a finite poset with the minimum element 0 . For a family $\mathscr{F} \subseteq 2^{P}$ and $\alpha \leq \beta$ in P, we define

$$
S_{\alpha, \beta}(F)=\left\{\begin{array}{c}
(F-\{\beta\}) \cup\{\alpha\} \\
F \\
F \\
\text { if } \alpha \notin F, \beta \in F,(F-\{\beta\}) \cup\{\alpha\} \notin \mathscr{F} \\
\text { otherwise }
\end{array}\right.
$$

for each $F \in \mathscr{F}$ and $S_{\alpha, \beta}(\mathscr{F})=\left\{S_{\alpha, \beta}(F) ; F \in \mathscr{F}\right\}$. Then $\# S_{\alpha, \beta}(\mathscr{F})$ $=\# \mathscr{F}$ and if \mathscr{F} is complex and intersecting, then $S_{\alpha, \beta}(\mathscr{F})$ is also complex and intersecting.

Proposition 1. For a finite poset P and $\alpha \leqq \beta$ in P, if $\mathscr{F} \subseteq 2^{P}$ is complex, then $S_{\alpha, \beta}\left(\mathscr{F}^{F}\right)$ is also complex.
Proof. We suppose that there exist $G, F \subseteq P$ such that $G \subseteq F \in$ $S_{\alpha, \beta}(\mathscr{F})$ and $G \notin S_{\alpha, \beta}(\mathscr{F})$.
Case 1. $F \in \mathscr{F}$.

Since \mathscr{F} is complex, $G \in \mathscr{F}$. So $\alpha \notin G, \beta \in G,(G-\{\beta\}) \cup\{\alpha\}$ $\notin \mathscr{F}$ and $\beta \in F$. If $\alpha \in F$, then $(G-\{\beta\}) \cup\{\alpha\} \subseteq F$, which contradicts the property that \mathscr{F} is complex. If $\alpha \notin F$, then $(F-\{\beta\}) \cup\{\alpha\}$ $\in \mathscr{F}$ and $(G-\{\beta\}) \cup\{\alpha\} \subseteq(F-\{\beta\}) \cup\{\alpha\}$, which contradicts the property that \mathscr{F} is complex.
Case 2. F $\notin \mathscr{F}$.
Then $\alpha \in F, \beta \notin F$ and $(F-\{\alpha\}) \cup\{\beta\} \in \mathscr{F}$. If $G \in \mathscr{F}$, then $\alpha \notin G, \beta \in G$ and $(G-\{\beta\}) \cup\{\alpha\} \notin \mathscr{F}$. So $G \notin F$, which is a contradiction. If $G \notin \mathscr{F}$, then $(G-\{\alpha\}) \cup\{\beta\} \subseteq(F-\{\alpha\}) \cup\{\beta\}$ and $G^{\prime}=(G-\{\alpha\}) \cup\{\beta\} \in \mathcal{F}^{\prime}$. Since $G^{\prime} \cap\{\alpha, \beta\}=\{\beta\},\left(G^{\prime}-\{\beta\}\right) \cup\{\alpha\}$ $=G \in S_{\alpha, \beta}\left(\mathcal{F}^{F}\right)$, which is a contradiction.

Proposition 2. For a finite poset P and $\alpha \leqq \beta$ in P, if $\mathscr{F} \subseteq 2^{P}$ is intersecting, then $S_{\alpha, \beta}(\mathscr{F})$ is also intersecting.
Proof. We suppose that there exist $G, F \in S_{\alpha, \beta}(F)$ such that $G \cap F$ $=\varnothing$. Since \mathscr{F} is intersecting, both of G and F do not belong to \mathscr{F}. We assume that $F \notin \mathscr{F}$. Thus there exists $H \in \mathscr{F}$ such that $S_{\alpha, \beta}(H)$ $=F$ and $H \neq F$. By the definition of (α, β)-shifting, $H=(F-\{\alpha\}) \cup\{\beta\}$ $\in \mathscr{F}, \alpha \in F$ and $\beta \notin F$. If $G \notin \mathcal{F}$, then $\alpha \in G$ and $F \cap G \neq$ \varnothing, which is a contradiction. Thus $G \in \mathscr{F}, \beta \in G$ and $\alpha \notin G$. Since $S_{\alpha, \beta}(G)=G,(G-\{\beta\}) \cup\{\alpha\} \in \mathscr{F}$ by the definition of (α, β)-shifting. Then $((F-\{\alpha\}) \cup\{\beta\}) \cap((G-\{\beta\}) \cup\{\alpha\})=$ $((F-\{\alpha\}) \cap(G-\{\beta\})) \quad \cup \quad(\{\beta\} \cap(G-\{\beta\})) \quad \cup \quad((F-\{\alpha\}) \cap\{\alpha\}) \quad \cup$ $(\{\alpha\} \cap\{\beta\})=(F-\{\alpha\}) \cap(G-\{\beta\})=\varnothing$, contradicting the fact that \mathscr{F} is an intersecting family.

A family \mathscr{F} is shifted if $S_{\alpha, \beta}(\mathscr{F})=\mathscr{F}$ for all α, β such that α $<\beta$ in P. We obtain the following result which is concerned with shifted complexes and intersecting families.

Theorem 3. Let P be a finite poset with the minimum element 0 and $\mathscr{F} \subseteq 2^{P}$ be a shifted complex. For an intersecting subfamily \mathscr{G} of \mathscr{F}, $\# \mathscr{G} \leqq \#\{F \in \mathscr{F} ; \mathbf{0} \in F\}$.
Proof. Let $\mathscr{F}(0)=\{F-\{0\} ; \mathbf{0} \in F \in \mathscr{F}\}$ and $\mathscr{F}_{0}=\{F \in \mathscr{F} ; \mathbf{0} \notin F\}$. By Proposition 2, we can assume that \mathscr{H} is shifted. Then we define the family $\mathscr{G}_{*}=\{H ; H \subseteq \exists G \in \mathscr{G}\}$, that is, if $G \in \mathscr{G}$ and $H \subseteq G$, then $H \in \mathscr{Y}_{*}$. In the following we show that $\mathscr{L}_{*}=\{H ; H \subseteq \exists G \in \mathscr{G}\}$ is a shifted complex.

Suppose that \mathscr{G}. is not a shifted complex. Then there exist α, β $\in P$ and $H \in \mathscr{G}_{*}$ such that $\alpha \leqq \beta, H \cap\{\alpha, \beta\}=\{\beta\}$ and $(H-\{\beta\}) \cup\{\alpha\} \notin \mathscr{G}_{*}$. By definition of \mathscr{G}_{*}, there exists $G \in \mathscr{G}$ such that $H \subseteq G$. If $G \cap\{\alpha, \beta\}=\{\beta\}$, then $(G-\{\beta\}) \cup\{\alpha\} \in \mathscr{Y}$ because \mathscr{G} is shifted. Since $(H-\{\beta\}) \cup\{\alpha\} \subseteq(G-\{\beta\}) \cup\{\alpha\} \in \mathscr{G}$, $(H-\{\beta\}) \cup\{\alpha\} \in \mathscr{G}_{*}$, which is a contradiction. If $G \cap\{\alpha, \beta\} \neq\{\beta\}$, then $\alpha, \beta \in G$. Since $(H-\{\beta\}) \cup\{\alpha\} \subseteq(G-\{\beta\}) \cup\{\alpha\} \subseteq G \in \mathscr{G}$, $(H-\{\beta\}) \cup\{\alpha\} \in \mathscr{G}_{*}$, which is a contradiction.

Thus $\mathscr{E}_{*}=\{H ; H \subseteq \exists G \in \mathscr{G}\}$ is a shifted complex and $\mathscr{G} \subseteq \mathscr{G}_{*} \subseteq$ \mathscr{F}. So for $\mathscr{G}_{*}(\mathbf{0})=\left\{G-\{\mathbf{0}\} ; \mathbf{0} \in G \in \mathscr{H}_{*}\right\}, \# \mathscr{S}_{*}(\mathbf{0}) \leqq \# \mathscr{F}(\mathbf{0})$. Therefore without loss of generality we can assume that $\mathscr{G}_{*}=\mathscr{F}_{\text {. }}$. For $\forall H \in$ $\mathscr{Y}_{*}-\mathscr{Y}_{\mathcal{H}} H \subset \exists G \in \mathscr{G}$. Since \mathscr{U}_{*} is shifted, $0 \notin H$ implies $H \cup\{0\}$ $\in \mathscr{G}_{*}$ Let $\mathscr{Y}_{0}=\{G \in \mathscr{G} ; 0 \notin G\}$ and $\mathscr{C}=\left\{C \in \mathscr{F}_{0} ; \exists G \in \mathscr{G}_{0}, C \cap G=\varnothing\right\}$. Since $\mathscr{\mathscr { L }}_{0}$ and $\mathscr{F}_{0}-\mathscr{C}$ are cross-intersecting, $\# \mathscr{L}_{0}+\#\left(\mathscr{F}_{0}-\mathscr{C}\right) \leqq \# \mathscr{F}_{0}$ and therefore $\# \mathscr{C} \geqq \# \mathscr{G}_{0}$. For $\mathscr{C}^{+}=\{C \cup\{0\} ; C \in \mathscr{C}\}, \# \mathscr{C}^{+}=\# \mathscr{C}$. For $C \in \mathscr{C}$ and $G \in \mathscr{G}_{0}$, since $0 \notin G$ and $C \cap G=\varnothing,(\{0\} \cup C) \cap G$ $=\varnothing$. By the fact that $\mathscr{\mathscr { L }}$ is intersecting, $\{0\} \cup C \notin \mathscr{G}$. So $\mathscr{C}^{+} \cap \mathscr{Y}$ $=\varnothing$. Since every element of $\left(\mathscr{\mathscr { G }} \mathscr{\mathscr { G }}_{0}\right) \cup \mathscr{C}^{+}$contains 0 and $\mathscr{C}^{+} \subseteq \mathscr{F}$, $\# \mathscr{Y} \leqq \# \mathscr{\mathscr { C }}-\# \mathscr{G}_{0}+\# \mathscr{C}=\#\left(\left(\mathscr{Y}-\mathscr{G}_{0}\right) \cup \mathscr{C}^{+}\right) \leqq \# \mathcal{F}^{(0)}$.

Proposition 4. Let P be a finite poset with the minimum element 0 . If
$\mathscr{F} \subseteq 2^{P}$ is a P-hereditary family, then \mathcal{F} is a shifted complex. Proof. We assume that $G \subseteq 2^{P}$ and $G \subseteq \exists F \in \mathscr{F}$. Since the mapping f from G to F such that $f(x)=x$ is a one-to-one mapping, $G \leqq \leqq_{P} F$. By the property that \mathscr{F} is a P-hereditary family, $G \in \mathscr{F}$. Thus \mathscr{F} is complex.

We assume that \mathcal{F} is not shifted. Then there exist α and β such that $\alpha, \beta \in P$ and $\alpha \leqq \beta$ and $F \in \mathscr{F}$ such that $F \cap\{\alpha, \beta\}=\{\beta\}$ and $(F-\{\beta\}) \cup\{\alpha\} \notin \mathcal{F}$. We define the mapping f from $(F-\{\beta\}) \cup\{\alpha\}$ to F as follows:

$$
f(x)= \begin{cases}x & \text { if } x \neq \alpha \\ \beta & \text { if } x=\alpha\end{cases}
$$

Since $\alpha \leqq \beta$ in $P, x \leqq f(x)$ for $\forall x \in(F-\{\beta\}) \cup\{\alpha\}$. Thus f is a one-to-one mapping and $(F-\{\beta\}) \cup\{\alpha\} \leqq_{P} F$. By the property that \mathscr{F} is a P-hereditary family, $(F-\{\beta\}) \cup\{\alpha\} \in \mathscr{F}$, which is a contradiction.

By Proposition 4 and Theorem 3, we also obtain Theorem B. However the converse of Proposition 4 does not hold. For example, for the poset of Figure $1, \mathscr{F}=\{\{0,1,2\},\{0,1\},\{0,2\},\{1,2\},\{0\},\{1\},\{2\}\}$ is a shifted complex. Since $\{3\} \leqq_{P}\{2\}$ and $\{3\} \notin \mathscr{F}, \mathscr{F}$ is not P-hereditary. So we do not obtain Theorem 3 from Theorem B.

We can easily see that \mathscr{F} is a V-hereditary family if and only if \mathscr{F} is a shifted family with respect to a linear order set. Let P be a poset with the minimum element and $l(P)$ be a liner extension of P. If \mathscr{F} is a shifted family with respect to $l(P)$, then \mathcal{F} is a shifted family with respect to P. So we also obtain Theorem A by Theorem 3. But the converse does not hold. For example, $\mathscr{F}=\{\{0,1,2\},\{0,3,4\}\}$ is a shifted family with respect to the poset of Figure 1 and is not a shifted family with respect to the liner extension $0 \leqq 1 \leqq 2 \leqq 3 \leqq 4$.

Figure 1.

References.

[1] I., Anderson, Combinatorics of finite sets, Oxford Univ. Press, (1987). [2] V., Chvatal, Intersecting families of edges in hypergraphs having the hereditary property,Hypergraph Seminar, LNM 411,Springer (1974) 61-66.
[3] H., Era, A comment on a Chvátal's conjecture, preprint.
[4] J., Marica and J., Schönheim, Differences of sets and a problem of Graham, Can. Math. Bull, 12 (1969) 635-637.

