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Abstract 

We prove a new sufficient conditi()n on degrees for a bipartite tour
nament to be Hamiltonian, that is, if an n x n bipartite tournament T 
satisfies the condition dT(u) + dj;(v) ~ n - 1 whenever uv is an arc of T, 
then T is Hamiltonian, except for two exceptional graphs. This result is 
shown to be best possible in a sense. 

T(X, Y, E) denotes a bipartite tournament with bipartition (X, Y) and vertex-set 
VeT) = XuY and arc-set E(T). If IXI == m and IYI = n, such a bipartite tournament 
is called an m x n bipartite tournament. For a vertex v of T and a sub digraph S 
of T, we define N,I-(v) and N:(v) to be the set of vertices of S which, respectively, 
dominate and are dominated by, the vertex v. Put 

Ni(S) = UNi(v)i Ni(S) = UNi(v)j 
vEil vEil 

dT(v) = I Ni(v) I j dj:(v) = I N:i(v) I· 

Let P be a subset of X and Q a subset of Yj P --+ Q (resp. Q --. P) denotes pq E E(T) 
(resp. qp E E(T)) for all pEP and all q E Q. If P = {xl this becomes x --+ Q. To 
simplify notation, we denote also B1 --+ B2, B2 --+ Ba,' ", by B1 --+ B2 --+ Ba --+ .. '. 

Moreover, a fa.ctor of T is a spanning sub digraph H of T such that dir( v) = dk( v) = 1 
for all v E VeT). T is said to be strong if for any two vertices u and v, there is a 
path from u to v and a path from v to u. A component of T is a maximal strong 
subdigraph. 

T(bt, b2 , ba, b4 ) denotes the bipartite tournament, whose vertex-set may be par
titioned into four independent sets Bi , i = 1,2,3,4, such tha.t IBil = bi .. ~. 0 and 
B1 --+ B2 --. Ba --+ B4 --+ B1. Other terms and symbols not defined in this paper can 
be found in [1]. 

Up to now, there are very few conditions that imply the existence of Hamiltonian 
cycles for bipartite tournaments. An obvious necessary condition for an m X n bi
partite tournament to be Hamiltonian is m = n. Therefore, we are only interested in 
researching Hamiltonian properties in n x n bipartite tournaments. We recall now the 
well-known conditions for an n x n bipartite tournament to have Hamiltonian cycles. 
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Theorem 1 (Jackson (2}). If an n x n strong bipartite tournament T satisfies 

vu tf- E(T) => dT(u) +df(v) 2:: n, 

then T is Hamiltonian. 

Theorem 2 (Wang [3}). Ifan n x n bipartite tournament T satisfies 

vu tf- E(T) => dT(u) + df(v) 2:: n - 1, 

then T is Hamiltonian, unless n is odd and T is isomorphic to T(~,~, n;l ) n;l). 

Obviously, Theorem 2 improves Theorem 1. In this paper we prove another condi
tion that is weaker than the conditions of the two theorems above, ensuring an n x n 
bipartite tournament to be Hamiltonian, except for two described cases. In showing 
the main result we will use the following theorem: 

Theorem 3 (Haggkvist and Manoussakis [4}). A bipartite tournament T is Hamil
tonian if and only if T is strong and contains a factor. 

Theorem 4 If an n x n bipartite tournament T satisfies 

uv E E(T) => dT(u) + df(v) 2:: n - 1, 

then T is Hamiltonian, unless T is isomorphic to T(ntl,~, n;l, n;l) when n is odd 
T( n n-2 n!!.±l) h . or 2' -2-' 2' 2 W en n ~s even. 

Proof. Suppose that T is an n x n bipartite tournament satisfying the hypotheses 
of the theorem. We first establish two claims. 

Claim 1. If n 2:: 3, then T is strong. 
Assume that T is not strong and has components B l , B2 ,"', Bm with m 2:: 2 such 
that X(Bi) ~ Y(Bj ) and Y(Bi) ~ X(Bj) whenever i ~ j. Then Bl contains a vertex 
u such that dT(u) ~ !V<:l)l. Such a vertex exists because 

Without loss of generality we may assume that u E X. . 
Case 1. Y(Bm) -# 0. If there is a vertex v in Y(Bm) such that df(v) ~ !V(!",)!, 

then we have 

In particular, uv E E(T) implies 

dT(u) + 4(v) 2:: n-1 
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and so n - 1 ~ n/2 or n ~ 2, a contradiction. Now assume that d~( v) > 1V(!m)! 
for all v E Y(Bm), which implies IX(Bm)1 # 0. Since Bm is strong, we must have 
I V(Bm) I 2:: 4 and so d~(v) ~ 2 for all v E Y(Bm). In this case we can easily deduce 
that I X(Bf'n) I ~ 3. Furthermore, we can conclude that there is a vertex win X(Bm) 
such that d~(w) < !V(! ... )!. Otherwise put IX(Bm)1 = a and IY(Bm)1 = b. Then 
IV(Bm)1 = a + b and hence 

ab L dB~(W) + L dB-...c w) 
wEX(B .... ) wEX(Bm) 

= L dB~(W) + L dB~(V) 
wEX(B .... ) lIEY(Bm) 

L d~(w) + I: d~(v) 
wEX(B .... ) lIEY(B .... ) 

> 
a( a + b) b( a + b) (a + b)2 

4 + 4 = 4 
, 

which implies (a - b)2 < O. This is impossible. Thus we have 

(1) 

On the other hand, since Bm is strong, there is a vertex v in Y(Bm) such that 
UV, vw E E(T). It follows that 

and so 

dT(u) + d~(v) ~ n - 1 and 

dT(v) + d~(w) ~ n - 1, 

dT(u) + d~(w) ~ n - 2. (2) 

It follows from (1) and (2) that n - 2 < n/2, which implies n < 4 contradicting 
n ~ IX(Bl)1 + IX(Bm)1 ~ 4. 

Case 2. Y(Bm) = 0. This implies that Bm is a vertex w of X with d~(w) = O. 
Since the case Y(Bl ) =1= 0 is transformed into Case 1 by considering the converse 
digraph of T, it is sufficient to consider the case Y(Bl) = 0. Noting that Bl is strong, 
we have V(Bl ) = X(Bl) = {u} and hence dT(u) = O. Therefore we obtain 

dT(u) + d~(w) = O. (3) 

Moreover, it is easy to see that there is a vertex v in Y such that uv, vw E E(T). 
Hence 

and so 

dT(u) + d~(v) ~ n - 1, 

dT(v) + d~(w) ~ n - 1, 
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d:r(u) + dt(w) 2: n - 2. (4) 

It follows from (3) and (4) that n - 2 S; 0 or n ~ 2 contradicting n 2:: 3. This 
proves Claim 1. 

Claim 2. Either T contains a factor, or else T is isomorphic to T(k, k - 1, n -
k, n - k - 1), ~ ~ k ~ n~l. 

Suppose that T contains no factor. It follows from a well-known theorem of Hall
Konig on matchings (see [1], p.72) that there exists a subset P either of X or of Y 
such that IPI > INi(P)I. Without loss of generality, assume that P ~ X. Put 
Ni(P) = Q, R = X \ P, and S = Y \ Q. Then 8 -:f 0 and S -4 P. Consider the 
vertices p in P and s in 8. We now see that NT (s) ~ Rand Ni (p) ~ Q and hence 

d:r{s) + dt(p) S; IRI + IQI < IRI + IPI = n. 

Combining this with the fact that sp E E(T), implying dT(s) + dt(p) S; n -I, we 
get 

d:r(s) + dt(p) = IRI + IQI = n - 1. 

It follows from this, and the arbitrariness of sand p, that P -4 Q and R -4 S. 
Furthermore, we can conclude that Q -4 R for otherwise there are vertices q in Q and 
r in R such that rq E E(T) and therefore d:r{r) + dt(q) ~ IQI-l + IRI-l = n - 3, 
contradicting the hypothesis of the theorem. Set IPI = k. Then it follows from 
IQI + IRI = n - 1 and IPI + IRI = n that IQI = k - I, and so IRI = n - k and 
lSI = n - k -1. Thus we conclude that T is isomorphic to T( k, k -1, n - k, n - k -1). 
We now prove that ~ S; k S; ~ + 1 by considering the arcs pq and rs, respectively. 
By the assumption of the theorem and the fact obtained above, we have 

n - 1 ~ d:r(p) + 4(q) = IRI + 181 = 2n - 2k - 1 and 

n -1 ~ d:r(r) + dt(s) = IPI + IQI = 2k-1. 

It follows that ~ S; k S; ~ + 1. In particular, we deduce easily that k = ~ when 
n is odd and k = ~ or ~ + 1 when n is even. Hence T is isomorphic to either 
T(n+l n+l n-l n-l) or T(!! n-2 !! n+2) or T(n+2 !! n-2 !!) However it is easy to 

2'2'2'2 2'2'2'2 2'2'2'2' , 
th t T( n n-2 n n+2) ~ T(n+2 n n-2 n) Th' Cl' 2 see a 2' -2-' 2' -2- - -2-' 2' -2-' 2' IS proves aIm. 
If n 2: 3, the theorem follows by Theorem 3 and Claims 1 and 2. Only the cases n = 

1 and n = 2 remain. In the first case T is only T{l, 1, 0, 0) = T(n~l, n~l, n;l, n;l). In 
the second case we can easily verify that T ~ T( 1, 1, 1, 1) or T ~ T( 1,2, 1, 0). Clearly, 
the former is Hamiltonian and the latter is T( ~, ~, ~, n;2). The proof ofthe theorem 
is complete. 0 

Remark 1. Theorem 4 is the best possible in the sense that it becomes false if 
the condition on the degrees is relaxed by one. To see this we construct the bipartite 
tournament T = BI U {u} -4 B2 U {v} -4 B3 -4 B4 -4 BI U {u}/{uv} U {vu} 
with IBII = IB21 = n~l and IB31 = IB41 = n;3. It is easy to check that T satisfies 
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dT(x) + dj;(y) 2:: n - 2 for all xy E E(T) and is not one of T(~,~, n;1, n;1) and 
T( n n-2 n !!H.) H T· b· 1 h ·It . "2, -2-' "2, 2 . owever, IS 0 VlOUS Y non amI oman. 

Remark 2. Theorem 4 is stronger than Theorem 2. This can be demonstrated by 
the bipartite tournament B1 u{ u} --+ B 2 U{ v} --+ B3U{ w} --+ B4 -t B1 U{ u} / {uv, vw} 
U{vu, wv} with IB21 = ~ and IBil = n;2 for i =1,3,4. We verify easily that it satisfies 
the condition of Theorem 4 and so is Hamiltonian, however, not that of Theorem 2, 
and hence Theorem 2 does not apply. 

Remark 3. In fact, an n X n bipartite tournament satisfying the condition of 
Theorem 4 is not only Hamiltonian but satisfies an even stronger result, unless T is 
isomorphic to T(n+1 n+1 n-1 n-1) or T(!! n-2 !! n-2) To see this we first recall a 

2 ' 2 ' 2 , 2 2' 2 '2' 2 • , 
result by Beineke and Little [5] that every Hamiltonian bipartite tournament either 
contains cycles of all possible even lengths, or else is isomorphic to T( k, k, k, k) for 
some k > 1. Zhang [61 and Haggkvist and Manoussakis [41 generalized this result 
by showing that every vertex of a Hamiltonian bipartite tournament is contained in 
cycles of all possible even lengths, unless T is isomorphic to T( k, k, k, k) for some 
k > 1. Combining this with Theorem 4 we can establish the following result. 

Theorem 5 Let T be an n X n bipartite tournament satisfying 

uv E E(T) => dT(u) + dj;(v) ~ n - 1, 

and w be any vertex of T. There are cycles of all possible even lengths through w, 
unless T is isomorphic to T(n+1 n+l n-1 n-l) when n is odd or T(!! n-2 !! !!.±1) 2 , 2 , 2 ' 2 2' 2 '2' 2 
when n is even. 

Moreover, Theorem 4 has the following two immediate consequences. 

Corollary 4. 1 If an n X n bipartite tournament T satisfies 

vu rf- E(T) => d:z;(u) + dj;(v) ~ n - I, 

then T is Hamiltonian} unless n is odd and T is isomorphic to T(ntl, nr ' n;1, n;l). 

Proof. Since T(~, n;2,~, nt2) obviously does not satisfy the condition of the 
corollary, the conclusion follows from Theorem 4. 0 

Corollary 4. 2 An n x n bipartite tournament T of minimum indegree and out
degree at least (n - 1)/2 is Hamiltonian, unless n is odd and T is isomorphic to 
T(!!±l n+1 n-1 n-1) 

2 ' 2 ' 2 ' 2 • 

Proof. This follows immediately from Corollary 4.1. 0 

Finally, a possible version of Theorem 4 for an oriented graph D is that D is 
Hamiltonian if d:D(u) + dj)(v) ~ n - 2 whenever uv is an arc of D. We believe this to 
be true. 
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