A Sufficient Condition for Hamiltonian Cycles in Bipartite Tournaments

Wang Jian Zhong ${ }^{1}$
Department of Mathematics, Taiyuan Institute of Machinery
Taiyuan Shanxi 030051 People's Republic of CHINA

Abstract

We prove a new sufficient condition on degrees for a bipartite tournament to be Hamiltonian, that is, if an $n \times n$ bipartite tournament T satisfies the condition $d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1$ whenever $u v$ is an arc of T, then T is Hamiltonian, except for two exceptional graphs. This result is shown to be best possible in a sense.

$T(X, Y, E)$ denotes a bipartite tournament with bipartition (X, Y) and vertex-set $V(T)=X \cup Y$ and arc-set $E(T)$. If $|X|=m$ and $|Y|=n$, such a bipartite tournament is called an $m \times n$ bipartite tournament. For a vertex v of T and a subdigraph S of T, we define $N_{s}^{-}(v)$ and $N_{s}^{+}(v)$ to be the set of vertices of S which, respectively, dominate and are dominated by, the vertex v. Put

$$
\begin{array}{ll}
N_{T}^{-}(S)=\bigcup_{v \in s} N_{T}^{-}(v) ; & N_{T}^{+}(S)=\bigcup_{v \in s} N_{T}^{+}(v) ; \\
d_{T}^{-}(v)=\left|N_{T}^{-}(v)\right| ; & d_{T}^{+}(v)=\left|N_{T}^{+}(v)\right| .
\end{array}
$$

Let P be a subset of X and Q a subset of $Y ; P \rightarrow Q$ (resp. $Q \rightarrow P$) denotes $p q \in E(T)$ (resp. $q p \in E(T)$) for all $p \in P$ and all $q \in Q$. If $P=\{x\}$ this becomes $x \rightarrow Q$. To simplify notation, we denote also $B_{1} \rightarrow B_{2}, B_{2} \rightarrow B_{3}, \cdots$, by $B_{1} \rightarrow B_{2} \rightarrow B_{3} \rightarrow \cdots$. Moreover, a factor of T is a spanning subdigraph H of T such that $d_{H}^{-}(v)=d_{H}^{+}(v)=1$ for all $v \in V(T) . T$ is said to be strong if for any two vertices u and v, there is a path from u to v and a path from v to u. A component of T is a maximal strong subdigraph.
$T\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ denotes the bipartite tournament, whose vertex-set may be partitioned into four independent sets $B_{i}, i=1,2,3,4$, such that $\left|B_{i}\right|=b_{i} \geq 0$ and $B_{1} \rightarrow B_{2} \rightarrow B_{3} \rightarrow B_{4} \rightarrow B_{1}$. Other terms and symbols not defined in this paper can be found in [1].

Up to now, there are very few conditions that imply the existence of Hamiltonian cycles for bipartite tournaments. An obvious necessary condition for an $m \times n$ bipartite tournament to be Hamiltonian is $m=n$. Therefore, we are only interested in researching Hamiltonian properties in $n \times n$ bipartite tournaments. We recall now the well-known conditions for an $n \times n$ bipartite tournament to have Hamiltonian cycles.

[^0]Theorem 1 (Jackson [2]). If an $n \times n$ strong bipartite tournament T satisfies

$$
v u \notin E(T)=>d_{T}^{-}(u)+d_{T}^{+}(v) \geq n,
$$

then T is Hamiltonian.
Theorem 2 (Wang [3]). If an $n \times n$ bipartite tournament T satisfies

$$
v u \notin E(T)=>d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1,
$$

then T is Hamiltonian, unless n is odd and T is isomorphic to $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$.
Obviously, Theorem 2 improves Theorem 1. In this paper we prove another condition that is weaker than the conditions of the two theorems above, ensuring an $n \times n$ bipartite tournament to be Hamiltonian, except for two described cases. In showing the main result we will use the following theorem:

Theorem 3 (Haggkvist and Manoussakis [4]). A bipartite tournament T is Hamiltonian if and only if T is strong and contains a factor.

Theorem 4 If an $n \times n$ bipartite tournament T satisfies

$$
u v \in E(T) \Rightarrow d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1
$$

then T is Hamiltonian, unless T is isomorphic to $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$ when n is odd or $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n+2}{2}\right)$ when n is even.

Proof. Suppose that T is an $n \times n$ bipartite tournament satisfying the hypotheses of the theorem. We first establish two claims.

Claim 1. If $n \geq 3$, then T is strong.
Assume that T is not strong and has components $B_{1}, B_{2}, \cdots, B_{m}$ with $m \geq 2$ such that $X\left(B_{i}\right) \rightarrow Y\left(B_{j}\right)$ and $Y\left(B_{i}\right) \rightarrow X\left(B_{j}\right)$ whenever $i \leq j$. Then B_{1} contains a vertex u such that $d_{T}^{-}(u) \leq \frac{\left|V\left(B_{1}\right)\right|}{4}$. Such a vertex exists because

$$
\sum_{v \in V\left(B_{1}\right)} d_{T}^{-}(v)=\left|E\left(B_{1}\right)\right| \leq \frac{\left|V\left(B_{1}\right)\right|^{2}}{4}
$$

Without loss of generality we may assume that $u \in X$.
Case 1. $Y\left(B_{m}\right) \neq \emptyset$. If there is a vertex v in $Y\left(B_{m}\right)$ such that $d_{T}^{+}(v) \leq \frac{\left|V\left(B_{m}\right)\right|}{4}$, then we have

$$
d_{T}^{-}(u)+d_{T}^{+}(v) \leq \frac{\left|V\left(B_{1}\right)\right|+\left|V\left(B_{m}\right)\right|}{4} \leq \frac{n}{2} .
$$

In particular, $u v \in E(T)$ implies

$$
d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1
$$

and so $n-1 \leq n / 2$ or $n \leq 2$, a contradiction. Now assume that $d_{T}^{+}(v)>\frac{\left|V\left(B_{m}\right)\right|}{4}$ for all $v \in Y\left(B_{m}\right)$, which implies $\left|X\left(B_{m}\right)\right| \neq \emptyset$. Since B_{m} is strong, we must have $\left|V\left(B_{m}\right)\right| \geq 4$ and so $d_{T}^{+}(v) \geq 2$ for all $v \in Y\left(B_{m}\right)$. In this case we can easily deduce that $\left|X\left(B_{m}\right)\right| \geq 3$. Furthermore, we can conclude that there is a vertex w in $X\left(B_{m}\right)$ such that $d_{T}^{+}(w)<\frac{\left|V\left(B_{m}\right)\right|}{4}$. Otherwise put $\left|X\left(B_{m}\right)\right|=a$ and $\left|Y\left(B_{m}\right)\right|=b$. Then $\left|V\left(B_{m}\right)\right|=a+b$ and hence

$$
\begin{aligned}
a b & =\sum_{w \in X\left(B_{m}\right)} d_{B_{m}}^{+}(w)+\sum_{w \in X\left(B_{m}\right)} d_{B_{m}}^{-}(w) \\
& =\sum_{w \in X\left(B_{m}\right)} d_{B_{m}}^{+}(w)+\sum_{v \in Y\left(B_{m}\right)} d_{B_{m}}^{+}(v) \\
& =\sum_{w \in X\left(B_{m}\right)} d_{T}^{+}(w)+\sum_{v \in Y\left(B_{m}\right)} d_{T}^{+}(v) \\
& >\frac{a(a+b)}{4}+\frac{b(a+b)}{4}=\frac{(a+b)^{2}}{4}
\end{aligned}
$$

which implies $(a-b)^{2}<0$. This is impossible. Thus we have

$$
\begin{equation*}
d_{T}^{-}(u)+d_{T}^{+}(w)<\frac{\left|V\left(B_{1}\right)\right|+\left|V\left(B_{m}\right)\right|}{4} \leq \frac{n}{2} . \tag{1}
\end{equation*}
$$

On the other hand, since B_{m} is strong, there is a vertex v in $Y\left(B_{m}\right)$ such that $u v, v w \in E(T)$. It follows that

$$
\begin{aligned}
& d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1 \quad \text { and } \\
& d_{T}^{-}(v)+d_{T}^{+}(w) \geq n-1,
\end{aligned}
$$

and so

$$
\begin{equation*}
d_{T}^{-}(u)+d_{T}^{+}(w) \geq n-2 \tag{2}
\end{equation*}
$$

It follows from (1) and (2) that $n-2<n / 2$, which implies $n<4$ contradicting $n \geq\left|X\left(B_{1}\right)\right|+\left|X\left(B_{m}\right)\right| \geq 4$.

Case 2. $Y\left(B_{m}\right)=\emptyset$. This implies that B_{m} is a vertex w of X with $d_{T}^{+}(w)=0$. Since the case $Y\left(B_{1}\right) \neq \emptyset$ is transformed into Case 1 by considering the converse digraph of T, it is sufficient to consider the case $Y\left(B_{1}\right)=\emptyset$. Noting that B_{1} is strong, we have $V\left(B_{1}\right)=X\left(B_{1}\right)=\{u\}$ and hence $d_{T}^{-}(u)=0$. Therefore we obtain

$$
\begin{equation*}
d_{T}^{-}(u)+d_{T}^{+}(w)=0 . \tag{3}
\end{equation*}
$$

Moreover, it is easy to see that there is a vertex v in Y such that $u v, v w \in E(T)$. Hence

$$
\begin{aligned}
& d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1, \\
& d_{T}^{-}(v)+d_{T}^{+}(w) \geq n-1,
\end{aligned}
$$

and so

$$
\begin{equation*}
d_{T}^{-}(u)+d_{T}^{+}(w) \geq n-2 . \tag{4}
\end{equation*}
$$

It follows from (3) and (4) that $n-2 \leq 0$ or $n \leq 2$ contradicting $n \geq 3$. This proves Claim 1.

Claim 2. Either T contains a factor, or else T is isomorphic to $T(k, k-1, n-$ $k, n-k-1$), $\frac{n}{2} \leq k \leq \frac{n+1}{2}$.

Suppose that T contains no factor. It follows from a well-known theorem of HallKonig on matchings (see [1], p.72) that there exists a subset P either of X or of Y such that $|P|>\left|N_{T}^{+}(P)\right|$. Without loss of generality, assume that $P \subseteq X$. Put $N_{T}^{+}(P)=Q, R=X \backslash P$, and $S=Y \backslash Q$. Then $S \neq \emptyset$ and $S \rightarrow P$. Consider the vertices p in P and s in S. We now see that $N_{T}^{-}(s) \subseteq R$ and $N_{T}^{+}(p) \subseteq Q$ and hence

$$
d_{T}^{-}(s)+d_{T}^{+}(p) \leq|R|+|Q|<|R|+|P|=n .
$$

Combining this with the fact that $s p \in E(T)$, implying $d_{T}^{-}(s)+d_{T}^{+}(p) \leq n-1$, we get

$$
d_{T}^{-}(s)+d_{T}^{+}(p)=|R|+|Q|=n-1 .
$$

It follows from this, and the arbitrariness of s and p, that $P \rightarrow Q$ and $R \rightarrow S$. Furthermore, we can conclude that $Q \rightarrow R$ for otherwise there are vertices q in Q and r in R such that $r q \in E(T)$ and therefore $d_{T}^{-}(r)+d_{T}^{+}(q) \leq|Q|-1+|R|-1=n-3$, contradicting the hypothesis of the theorem. Set $|P|=k$. Then it follows from $|Q|+|R|=n-1$ and $|P|+|R|=n$ that $|Q|=k-1$, and so $|R|=n-k$ and $|S|=n-k-1$. Thus we conclude that T is isomorphic to $T(k, k-1, n-k, n-k-1)$. We now prove that $\frac{n}{2} \leq k \leq \frac{n}{2}+1$ by considering the arcs $p q$ and $r s$, respectively. By the assumption of the theorem and the fact obtained above, we have

$$
\begin{aligned}
& n-1 \leq d_{T}^{-}(p)+d_{T}^{+}(q)=|R|+|S|=2 n-2 k-1 \text { and } \\
& n-1 \leq d_{T}^{-}(r)+d_{T}^{+}(s)=|P|+|Q|=2 k-1 .
\end{aligned}
$$

It follows that $\frac{n}{2} \leq k \leq \frac{n}{2}+1$. In particular, we deduce easily that $k=\frac{n+1}{2}$ when n is odd and $k=\frac{n}{2}$ or $\frac{n}{2}+1$ when n is even. Hence T is isomorphic to either $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$ or $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n+2}{2}\right)$ or $T\left(\frac{n+2}{2}, \frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}\right)$. However, it is easy to see that $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n+2}{2}\right) \cong T\left(\frac{n+2}{2}, \frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}\right)$. This proves Claim 2.

If $n \geq 3$, the theorem follows by Theorem 3 and Claims 1 and 2 . Only the cases $n=$ 1 and $n=2$ remain. In the first case T is only $T(1,1,0,0)=T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$. In the second case we can easily verify that $T \cong T(1,1,1,1)$ or $T \cong T(1,2,1,0)$. Clearly, the former is Hamiltonian and the latter is $T\left(\frac{n}{2}, \frac{n+2}{2}, \frac{n}{2}, \frac{n-2}{2}\right)$. The proof of the theorem is complete.

Remark 1. Theorem 4 is the best possible in the sense that it becomes false if the condition on the degrees is relaxed by one. To see this we construct the bipartite tournament $T=B_{1} \cup\{u\} \rightarrow B_{2} \cup\{v\} \rightarrow B_{3} \rightarrow B_{4} \rightarrow B_{1} \cup\{u\} /\{u v\} \cup\{v u\}$ with $\left|B_{1}\right|=\left|B_{2}\right|=\frac{n+1}{2}$ and $\left|B_{3}\right|=\left|B_{4}\right|=\frac{n-3}{2}$. It is easy to check that T satisfies
$d_{T}^{-}(x)+d_{T}^{+}(y) \geq n-2$ for all $x y \in E(T)$ and is not one of $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$ and $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n+2}{2}\right)$. However, T is obviously nonhamiltonian.

Remark 2. Theorem 4 is stronger than Theorem 2. This can be demonstrated by the bipartite tournament $B_{1} \cup\{u\} \rightarrow B_{2} \cup\{v\} \rightarrow B_{3} \cup\{w\} \rightarrow B_{4} \rightarrow B_{1} \cup\{u\} /\{u v, v w\}$ $\cup\{v u, w v\}$ with $\left|B_{2}\right|=\frac{n}{2}$ and $\left|B_{i}\right|=\frac{n-2}{2}$ for $i=1,3,4$. We verify easily that it satisfies the condition of Theorem 4 and so is Hamiltonian, however, not that of Theorem 2, and hence Theorem 2 does not apply.

Remark 3. In fact, an $n \times n$ bipartite tournament satisfying the condition of Theorem 4 is not only Hamiltonian but satisfies an even stronger result, unless T is isomorphic to $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$ or $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n-2}{2}\right)$. To see this, we first recall a result by Beineke and Little [5] that every Hamiltonian bipartite tournament either contains cycles of all possible even lengths, or else is isomorphic to $T(k, k, k, k)$ for some $k>1$. Zhang [6] and Haggkvist and Manoussakis [4] generalized this result by showing that every vertex of a Hamiltonian bipartite tournament is contained in cycles of all possible even lengths, unless T is isomorphic to $T(k, k, k, k)$ for some $k>1$. Combining this with Theorem 4 we can establish the following result.
Theorem 5 Let T be an $n \times n$ bipartite tournament satisfying

$$
u v \in E(T)=>d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1
$$

and w be any vertex of T. There are cycles of all possible even lengths through w, unless T is isomorphic to $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$ when n is odd or $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n+2}{2}\right)$ when n is even.

Moreover, Theorem 4 has the following two immediate consequences.
Corollary 4. 1 If an $n \times n$ bipartite tournament T satisfies

$$
v u \notin E(T)=>d_{T}^{-}(u)+d_{T}^{+}(v) \geq n-1,
$$

then T is Hamiltonian, unless n is odd and T is isomorphic to $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$.
Proof. Since $T\left(\frac{n}{2}, \frac{n-2}{2}, \frac{n}{2}, \frac{n+2}{2}\right)$ obviously does not satisfy the condition of the corollary, the conclusion follows from Theorem 4.

Corollary 4. 2An $n \times n$ bipartite tournament T of minimum indegree and outdegree at least $(n-1) / 2$ is Hamiltonian, unless n is odd and T is isomorphic to $T\left(\frac{n+1}{2}, \frac{n+1}{2}, \frac{n-1}{2}, \frac{n-1}{2}\right)$.

Proof. This follows immediately from Corollary 4.1. \square
Finally, a possible version of Theorem 4 for an oriented graph D is that D is Hamiltonian if $d_{D}^{-}(u)+d_{D}^{+}(v) \geq n-2$ whenever $u v$ is an arc of D. We believe this to be true.

Acknowledgement

I wish to thank the referee very much for many helpful suggestions concerning this paper.

References

1. J.A. Bondy and U.S.R. Murty, Graph theory with applications, Macmillan Press Ltd, London and Basingstoke (1976).
2. B. Jackson, Long paths and cycles in oriented graphs, J. Graph Theory 5 (1981) 145-157.
3. J.Z. Wang, Long cycles in bipartite tournaments, Discrete Math. (to appear)
4. R. Haggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38.
5. L.W. Beineke and C.H.C. Little, Cycles in bipartite tournaments, J. Combin. Theory B32 (1982) 140-145.
6. Zhang Ke Min, Vertex even pancyclicity in bipartite tournaments, J. Nanjing University, Math. Biquarterly 1 (1984) 85-88.

[^0]: ${ }^{1}$ The work for this paper was supported by Youth Science Foundation of Taiyuan Institute of Machinery and Natural Science Foundation of Shanxi Province

