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1. Abstract.

We consider the estimation of the number of labelled eulerian digraphs with
multiple edges by using an n-dimensional Cauchy integral. The asymptotic value is

obtained for any fixed bound on the multiplicity of an edge.

2. Main result.

By an eulerian digraph we mean a digraph in which the in-degree is equal to
the out-degree at each vertex. Let EDME(n,t) be the number of labelled loop-free
eulerian digraphs with n vertices in which the multiplicity of each edge is at most
t. Allowing loops would multiply EDME(n, t) by exactly (t 4+ 1)", since loops do
not affect the eulerian property. For the case where t = 1, McKay [1] obtained the
asymptotic formula

4m )(ﬂ—l)/2

EDME(n,1) = (% n1/2e=1/4(1 4 O(n=112+¢)).

for any € > 0.

We will identify EDME(n, t) as a coefficient in a n-variable power series, and es-
timate it by applying the saddle-point method to the integral provided by Cauchy’s
Theorem. Since the parameter which is tending to co is the number of dimensions,
the application of the saddle-point method has an analytic flavour different from
that of most fixed-dimensional problems. In particular, the choice of contour is triv-
ial but substantial work is required to demonstrate that the parts of contour where

the absolute value of the integrand is small contribute negligibly to the result.
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For s > 0 and n > 1, define U, (s) = {(z,2,,...,%,) | |z;| < s for 1 <i < n}.
Let 8 = (6;,...,6,), 8' = (6;,...,6,,_,) and let T : R™™! s R"™! be the linear

transformation defined by T': 8' = y = (y;,95,..+,¥,_; ), Where
n—1
y] = 81 - Z Gk/(n + nl/z)
k=1

for 1 <j <n— 1. The following Theorem 2.1 was obtained by McKay [1] which is

useful for our estimation.

Theorem 2.1. Let a,b and ¢ be real numbers with a > 0. Let 0 < € < 1/8, and let

n > 2 be an integer. Define

J =J(a,be,n) =
c 2
[ep(-a T @007 +5 3 6,-00+ 50 3 (-0 e,
1<i<k<n 1<i<k<n 1<j<k<n

where the integral is over 8' € U,,_;(n™Y/2%¢) with §, = 0. Then, as n — oo,

J = /2 (_(%{)(n—l)h exp<6z(j;c n O(n‘l/H“)). B

Lemma 2.2.

(i) For integert > 0 and real z with |z| < n/(t + 1),
| (1 +exp(iz) + - - - + exp(itz)) /(t + 1) |< exp(—~21—4~t(t + 2)z?).
(¢i) For integer t > 0 and any real z,
|1 +exp(iz) +--- + exp(itr)| <t -1+ (2+ Zcos(:l:))l/z.

Proof. The proof for (ii) is too elementary to include and the proof for (i) is as

follows.
’ 1 —exp(i(t + 1)z) (1 — cos((t + 1):1:))1/2
1 — exp(iz) 1 — cos(z)
_ sin((t + 1)|z]/2)
sin(|z]/2)
= exp (log (sin((¢ + 1)[21/2)) ~ log(sin(|z[/2)))

S+ 1)exp(—:};t(t +2)e?),

since for 0 < z < ,
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k22k-1B2kw2k
k(2k)! ’

log(sin(z)) = log(z) + Z (=1)
k=1

where {B,,} are the Bernoulli numbers, which satisfy (~1)*B,, < 0. §

Theorem 2.3. For any e > 0, as n — oo,

3(t + 1)2n (n-1)/2 12 3(,32 + 2t 4 2) 124

Proof. Since [Licjmrca(l+z;z0? +alzi? 4. -+ztz;*) is the generating function
for the digraphs in which the multiplicity of each edge is at most t, EDME (n,t)is

the constant term. By Cauchy’s Theorem,

EDME(n, t)
% f’ ILiciercn(l+ 220 + sleg® 4. +‘x}x;‘)dx
(27rz)"

xlxz..-x

.

n
n

where each integration is around a simple closed contour encircling the origin once
in the anticlockwise direction. We choose each contour to be the unit circle and

substitute z = e for 1 < J £ n. We obtain

EDME(n,t) =

(2 "
/ 1 +exp(i(6; — 6,)) +--- + exp (it(6; — Gk))) dé.
Un (")1<]¢k<n .
Defining.
1+exp(i(6; — 6,)) +--- + exp(it(6; — 6,))
T;(6) =
t41

and

9(6) = H k(e

1<55#k<n
we have
nz-—n

EDME(n,t) = %_{

where
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I= / 9(6) de.
Up ()

We will begin the evaluation of I with the part of the integrand which will turn
out to give the major contribution. Let I; be the contribution to I of those 6 such
that |6, - 6,| < n=1/%*¢ for 1 <j < n—1, where 6 values are taken mod 27. Since
9(9) is invariant under uniform translation of all §;, we see that the contributions

to I, from different values of 6,, are the same. Hence,

I, = 21r/ 9(0)dé’,
Unoy(n=1/2+¢)

where 8’ = (6,,...,6,_,) with §, = 0.

By using Taylor’s expansions for exp(iz) and log(1+ 2) for complex z, we obtain

g@)= JI T

1<j#k<n
=exp( E logTjk(B))
1<j#k<n
1
=exp(—-——-t(t+2) Z (8; — 6)?
l<1#k<n
0t(t+2)(t2+2t+2) > (0 —8,)
288 1<j#k<n
+0( Y 18- 6l )
1<J<k<n

Applying Theorem 2.1, we have

I =27rn1/2( 127 )(n-—l)/2 (“3(t2 +2t+2)

W+ 2m 20t(t + 2) +O(T). (21)

So our remaining work is to prove that the integral of g(8) over the other parts of
the region of integration is negligible compared to (2.1).

Let § = 7/6(t +1). For j = 0,1,2,3,6t + 4, 6t + 5, define the interval 4; =
[(7 ~1)8,76], and B = [~w, —26] U [26, 7). For any 8 € U, (=), let us suppose that

A U A, contains n/3(t + 1) or more of the §;. (If not, we can make this true by
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suitable trénslation). If6; € Band 6, € AgUA,, then 6§ < |6, — 6] < 7+ 6.
Define C to be the set consisting of such pairs (j, k) and I, to be the contribution
to I of all the cases where n® or more of the 6; lie in B. Since, if (j,k) € C,
IT;1.(6)] < (t—1+(2+2cos(6))!/?)/(t+1), and for any other pair (j, k), IT;:(6)] <1,
we have that |

2(14-€)/3(t-+1)

IL,] < (3t +8)(2m)"((t — 1+ (2 + 2 cos(6)2) /(¢ + 1))

From this it easily follows that I, = O(exp(—c,n!*¢))I, for some ¢, > 0. Thus we
can suppose that at least n — n® of the 6, lie in [-26,26]. Now define I;(r) to be
the contribution to I of those 8 such that ’

(i) 36 <16;] <  for r values of j,

(1) 6; € [—26,26] for at least n — n values of j, and
(iii) 6; € A3 U Agyy, for any other values of j.
Clearly Iy(r) = 0if r > n. If 6; and 6, are in classes (i) and (i), respectively, then
8 < |6; — 6| < m+ 26, while if they are both in classes (ii) and (iii), by Lemma 2.2,
|T;1(6)] < exp(—75t(t + 2)(9; — 6;)?). Using |T;;(6)| < 1 for the other cases, we
find ’

IL()| < (3t + 3)r" (n) ((t = 142+ 2c08(8)12) /(¢ + 1)) "7
x |I3(n — 1), . " (2.2)
where
I(m) = ] [ exp(-t(t+2)(6; - 6,)°)d6, ---do,.
Um(m) 1gj<kgm :
We can apply the transformation T' (using m in place of n) to easily obtgin

12% (m—1)/2
t(t + 2)m
Substituting back into (2.2) we find that

Ii(m) < 2rm!/2(

€

S < Tyfexp (= e+ o)

r=1
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for some c, > 0. We conclude that only substantial contribution must come from
the case r = 0.
Next, define I, (k) to be the contribution to I of those 8 such that

() 1.l<36 |

(i) n=/2+< < |8; — 6,| < 66 for h values of j, and
(iii) |6; — 8,,] < n~!/2*¢ for the remaining values of j.
Since g(8) is invariant under uniform translation of all §;, we see that the con-
tributions to I,(h) from different values of 6, are the same. Hence, we have
|y (h)] < 66I,(R)|, where |I}(h)] is the same integral over 8’ with 6, = 0. Since we
have |T;,(8)| < exp(—55t(t+2)(8; —6;)?), apply the transformation T to transform
the @' to y and the values of ' contributing to Ij(h) for h > 1 map to a subset of
those y such that either | SSF2] yi| > n¢/2 or |yx| > n~1/2+¢/2 for some k. Since

the contribution to

0 =) n-1
/ / exp(—%t(t-&-Z)nZyi)dy
of those y is O(n)(127/t(t + 2)n)(*~D/2exp (-—c3n2‘)k for some ¢; > 0, we conclude
that

n—1

Y IL(R)] < O(n) exp(—e;n®) |1
h=1
The remaining case, h = 0, is covered by I;. Therefore we have completed our

proof. &
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